Supplement of Atmos. Chem. Phys., 25, 12983–13006, 2025 https://doi.org/10.5194/acp-25-12983-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Tropospheric ozone responses to the El Niño-Southern Oscillation (ENSO): quantification of individual processes and future projections from multiple chemical models

Jingyu Li et al.

Correspondence to: Qi Fan (eesfq@mail.sysu.edu.cn) and Xiao Lu (luxiao25@mail.sysu.edu.cn)

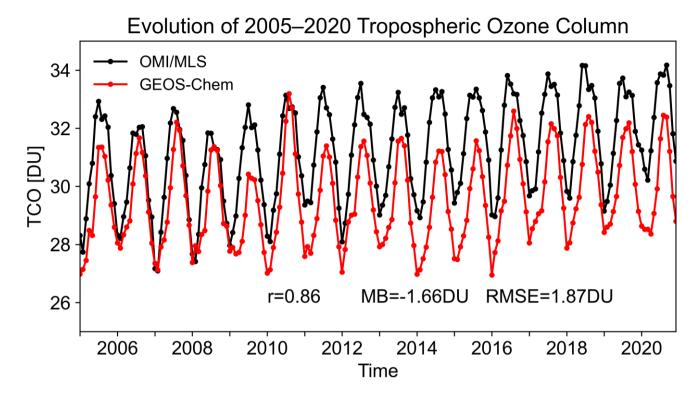

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Ocean components and sea surface temperature SST calculation information of the CMIP6 models used in this study.

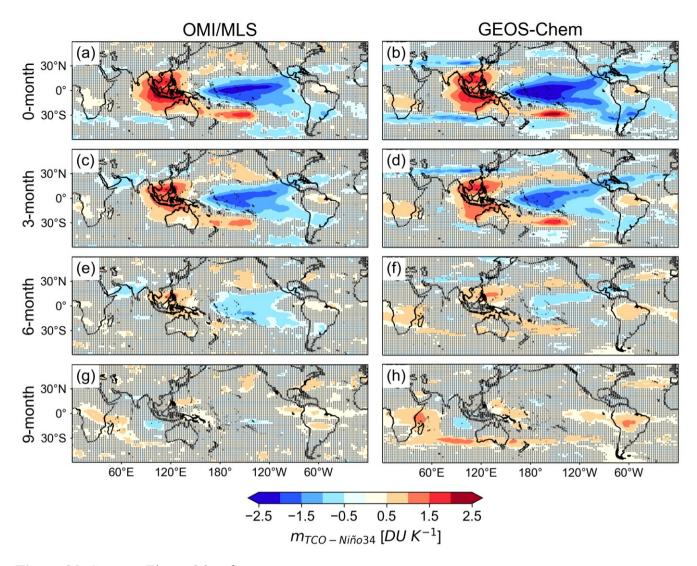
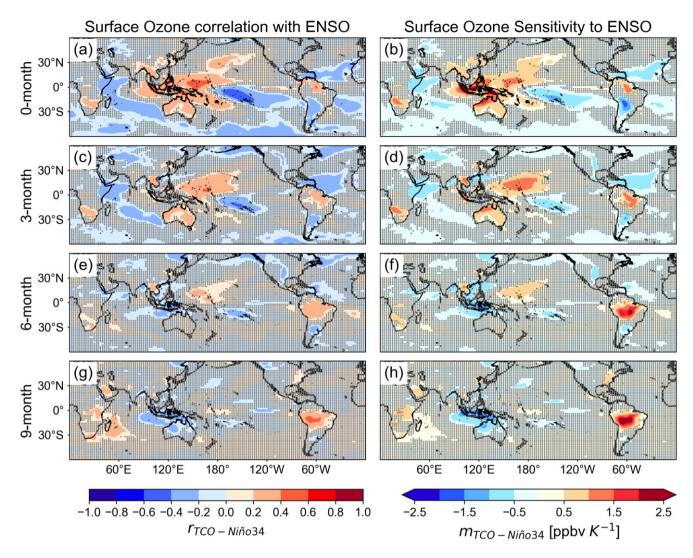
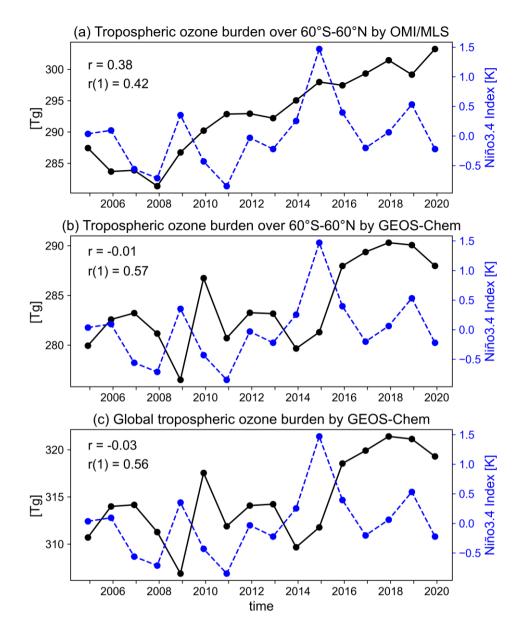
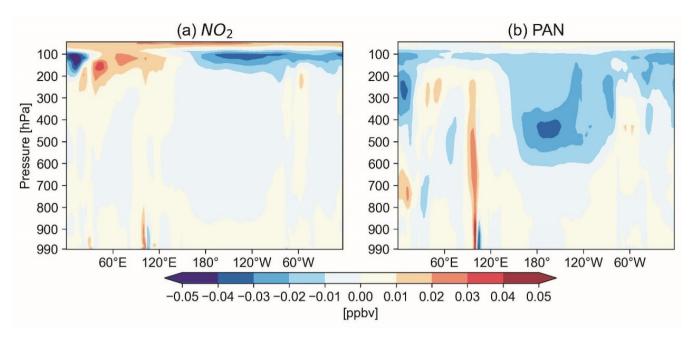
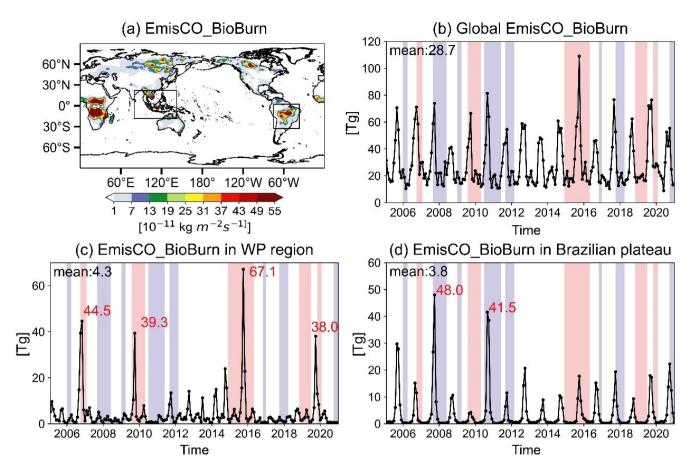

Name	Ocean components	Resolution	Reference		
AWI-ESM-1-1-LR	FESOM 1.4	50km	Shi et al. (2020)		
BCC-ESM1	MOM4	50km	Wu et al. (2020)		
CESM2-WACCM	POP2	100km	Danabasoglu et al. (2020)		
EC-Earth3-AerChem	NEM3.6	100km	Döscher et al. (2022)		
GFDL-ESM4	MOM6	25km	Dunne et al. (2020)		
IPSL-CM6A-LR-INCA	NEMO-OPA	100km	Boucher et al. (2020)		
MPI-ESM-1-2-HAM	MPIOM1.63	50km	Mauritsen et al. (2019)		
MRI-ESM2-0	COM4.4	100 km	Yukimoto et al. (2019)		
NorESM2-MM	MICOM	100 km	Seland et al. (2020)		
UKESM1-0-LL	NEMO-HadGEM3-GO6.0	100 km	Sellar et al. (2019)		

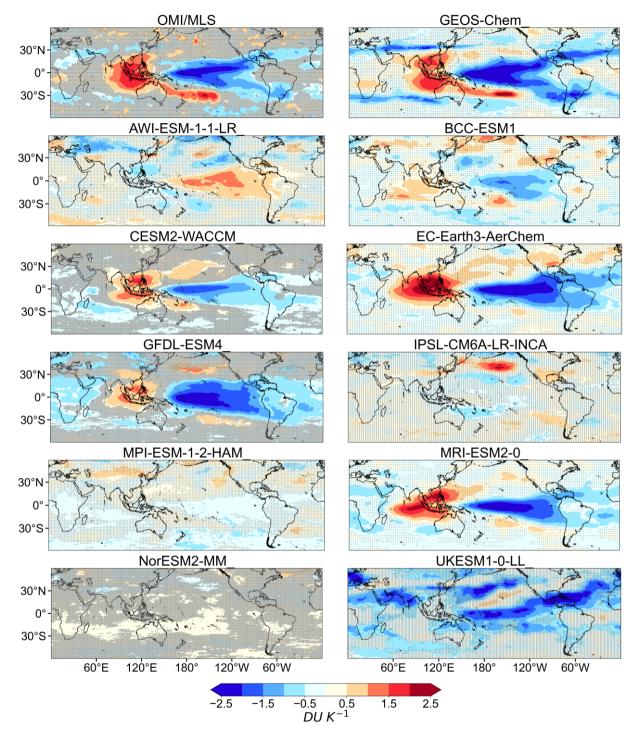
Table S2. Key metrics for quantifying ozone-ENSO relationship over 2005-2014 from OMI satellite observations, GEOS-Chem and CMIP6 models results.


	WP				EP					
	r _{max}	m _{max}	r _{mean}	m _{mean}	Area _%	\mathbf{r}_{min}	\mathbf{m}_{min}	r _{mean}	m _{mean}	Area%
OMI/MLS	0.57	2.12	0.42	1.31	0.94	-0.79	-2.67	-0.52	-1.42	0.89
GEOS-Chem	0.51	1.97	0.37	1.16	0.90	-0.79	-2.81	-0.51	-1.63	0.89
BCC-ESM1	0.47	0.85	0.29	0.54	0.61	-0.74	-1.60	-0.45	-0.97	0.73
CESM2-WACCM	0.64	1.71	0.39	0.90	0.94	-0.85	-1.98	-0.51	-0.90	0.79
EC-Earth3-AerChem	0.62	2.76	0.44	1.57	0.98	-0.90	-2.72	-0.63	-1.69	0.85
GFDL-ESM4	0.55	1.54	0.33	0.81	0.76	-0.81	-2.69	-0.61	-1.65	0.99
MRI-ESM2-0	0.66	2.29	0.47	1.30	0.95	-0.86	-2.61	-0.64	-1.53	0.77


Figure S1. The interannual variation of tropospheric column ozone (TCO) concentration in the 60°N-60°S region for the period 2005-2020 from OMI/MLS satellite observations and GEOS-Chem model simulation. The correlation coefficient, mean bias (MB), and Root Mean Squared Error (RMSE) are shown inset.


Figure S2. Same as Figure 2 but for $m_{\text{TCO-Niño}34}$.


Figure S3. Same as Figure 2 and S2 but for surface ozone concentrations and for GEOS-Chem model only.


Figure S4. Response of tropospheric ozone burden to ENSO on interannual scale. Panels (a) and (b) show the tropospheric ozone burden over 60°S-60°N from OMI/MLS satellite product and GEOS-Chem simulations, and panel (c) show the global tropospheric ozone burden from GEOS-Chem, all with the Niño3.4 index over 2005-2020 shown in blue. The correlation coefficient between the ozone burden and Niño3.4 index (both for the same year (r) and for Niño3.4 index leading by one-year (r(1)) are shown in set.

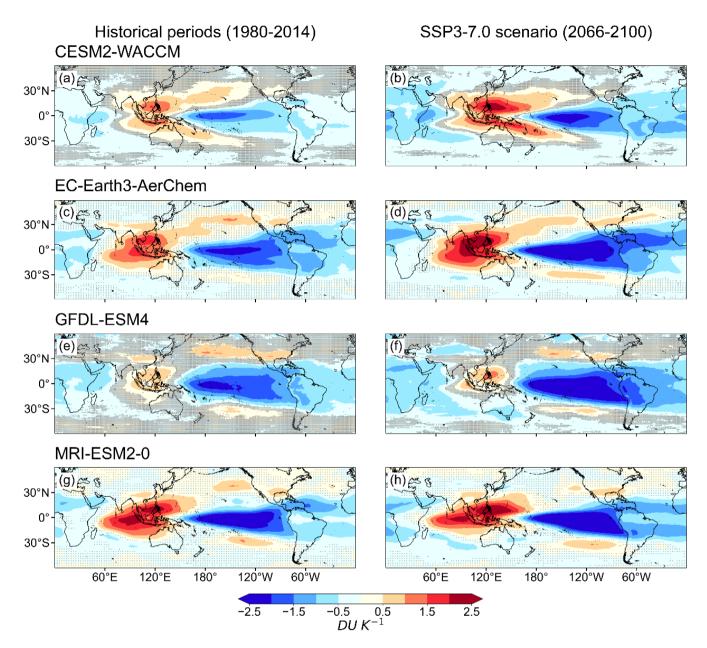

Figure S5. The vertical distribution of (a)NO₂ and (b)PAN difference between TRANSPORT simulation during El Niño periods and BASE simulation during Normal periods in the equatorial region (5°S-5°N).

Figure S6. The CO emissions from biomass burning: (a) global mean spatial distribution, (b) total global emissions, (c) total emissions in the WP region, and (d) total emissions in the Brazilian plateau over 2005-2020. The red (blue) shading represents El Niño (La Niña) events with the Niño3.4 index greater than 0.5 (less than -0.5).

Figure S7. Same as Figure 6 but for $m_{\text{TCO-Niño34}}$.

Figure S8. Same as Figure 9 but for $m_{\text{TCO-Niño}34}$.