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Abstract. We present the collective evaluation of the regional-scale models that took part in the fourth edition of
the Air Quality Model Evaluation International Initiative (AQMEII). The activity consists of the evaluation and
intercomparison of regional-scale air quality models run over North American (NA) and European (EU) domains
for 2016 (NA) and 2010 (EU). The focus of the paper is ozone dry deposition. Dry deposition is among the most
important processes of removal of chemical compounds from the atmosphere and an important contributor to the
overall chemical budget of the latter. Furthermore ozone dry deposition is very important as it can be severely
detrimental to vegetation physiology. The collective evaluation begins with an operational evaluation, namely a
direct comparison of model-simulated predictions with monitoring data aiming at assessing model performance
(Dennis et al., 2010). Following the AQMEII protocol and Dennis et al. (2010), we also perform a probabilistic
evaluation in the form of ensemble analyses and an introductory diagnostic evaluation. The latter analyzes the
role of dry deposition in comparison with dynamic and radiative processes and land use/land cover (LULC) types
in determining surface ozone variability. Important differences are found across dry deposition results when the
same LULC is considered. Furthermore, we found that models use very different LULC masks, thus introducing
an additional level of diversity in the model results. The study stresses that, as for other kinds of prior and
problem-defining information (emissions, topography, or land–water masks), the choice of LULC mask should
not be at modeler discretion. Furthermore, LULC should be considered as a variable to be evaluated in any future
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model intercomparison, unless set as common input information. The differences in LULC selection can have
a substantial impact on model results, making the task of evaluating dry deposition modules across different
regional-scale models very difficult.

1 Introduction

This paper presents the results of the operational and prob-
abilistic evaluation of the regional-scale models taking part
in the Air Quality Model Evaluation International Initiative
phase 4 (AQMEII-4) activity. As presented in Galmarini et al.
(2021), the AQMEII-4 focus is dry deposition process mod-
eling within regional-scale models (AQMEII-4 Activity 1) as
well as standalone dry deposition modules (AQMEII-4 Ac-
tivity 2) as detailed in Clifton et al. (2023).

As traditionally done in past editions of the AQMEII ac-
tivity (Solazzo et al., 2012a, b; Im et al., 2015), and in agree-
ment with the protocol described by Dennis et al. (2010),
prior to any detailed analysis of specific process modeling
(diagnostic evaluation), a thorough analysis of the overall
performance of the model must be conducted via operational
and probabilistic evaluation. The scope of such an approach
is to verify the positioning of the models participating in
AQMEII with respect to observations or any other model
simulating the case study or against a multi-model ensemble
(Galmarini et al., 2013). Such an analysis has the scope of
assisting the interpretation of any other detailed (diagnostic)
result in this paper or other contribution to the special issue
and understanding how the different processes contribute to
the model spread. Examples of this approach can be found
in Solazzo et al. (2012a, b), Vautard et al. (2012), Im et al.
(2015, 2018), Giordano et al. (2015), Brunner et al. (2015),
and Kioutsioukis et al. (2016). The operational evaluation
also provides important context for the interpretation of diag-
nostic results – for example, the contrast in diagnostic com-
parisons between models with higher and lower evaluation
performance helps to identify specific processes which may
contribute to the differences (an example of this approach ap-
pears in Makar et al., 2025, this issue, for sulfur and nitrogen
dry deposition, as well as Vivanco et al., 2018).

Since the operational and probabilistic analysis is instru-
mental to the interpretation of ozone dry-deposition-related
results (the focus of the fourth edition of AQMEII), we shall
concentrate on the variables that are directly or indirectly
connected to the description of dry deposition processes
within the models, namely atmospheric concentrations, land
use/land cover (LULC) masks, and meteorology. A detailed
diagnostic analysis of modeled ozone dry deposition can be
found in Hogrefe et al. (2025, this issue).

2 Models, domains, and years of consideration

The setup of the AQMEII-4 Activity 1 is detailed in Gal-
marini et al. (2021). In essence, the activity consists of run-
ning regional-scale models on the North American (NA) and
European (EU) domains for the years 2010 and 2016 and the
years 2009 and 2010, respectively. The motivations behind
the selection of these for years are given in Galmarini et al.
(2021). The models that took part in AQMEII-4 are listed
in Table 1, where details on the institutions in charge and
the cases simulated are also provided. These models and in
particular their dry deposition schemes are described more
in detail in Galmarini et al. (2021, this issue), Makar et al.
(2025, this issue) and Hogrefe et al. (2023 and 2025, this
issue). Note that simulations took place with harmonized in-
put emissions fields (Galmarini et al., 2021, this issue); all
models started with the same anthropogenic, lightning NOx ,
and forest fire emissions inventory for North America and
Europe, respectively (Galmarini et al., 2021), while biogenic
emissions and other natural sources of emissions such those
of sea salt particles were carried out as part of internal model
processing and should be considered “part of the model” in
the analysis that follows.

The analysis described here will only focus on two year-
long simulations: 2016 for the NA case and 2010 for the EU
case in the interest of synthesis. The following aspects will
be considered in detail in this paper:

– Analysis of space- and/or time-averaged ozone concen-
trations

– Analysis of seasonal, diurnal, and spatial variations of
ozone (and to a lesser extent nitric oxide and nitrogen
dioxide concentrations in order to assist in the ozone
analysis)

– Ensemble analysis of modeled ozone concentrations

– The role of variability in effective fluxes for specific
pathways in determining the variability of ozone dry de-
position flux over different LULC types

– The role of variability in wind speed, mixed layer
height, dry deposition, and radiation in determining the
variability of ozone concentrations at the surface

Model values will be evaluated against ozone and
precursor concentrations collected by regional op-
erational networks during the year in consideration.
More specifically, for North America the monitoring
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Table 1. Institutions in charge and the models used in AQMEII-4 case studies.

Abbreviation Modeling system
(dep. scheme)

Domain Modeling group Dry
deposition

scheme

LU for dry deposition scheme

NA1 (10700) WRF/CMAQ (M3Dry) NA US EPA M3Dry MODIS

NA2 (10701) WRF/CMAQ (STAGE) NA US EPA STAGE AQMEII-4 (mapped from
MODIS)

NA3 (10703) GEM-MACH (Base) NA Environment and Climate
Change Canada

Wesely Robichaud (Robichaud et al.,
2020)

NA4 (10704) GEM-MACH (Zhang) NA Environment and Climate
Change Canada

Zhang Zhang et al. (2003)

NA5 (10705) GEM-MACH (Ops) NA Environment and Climate
Change Canada

Wesely Robichaud (Robichaud et al.,
2020)

NA6 (10702) WRF-Chem (RIFS) NA Research Center for
Sustainability (RIFS)

Wesely USGS24

NA7 (10708) WRF-Chem (UPM) NA Technical University of Madrid
(UPM)

Wesely USGS24

NA8 (10709) WRF-Chem (NCAR) NA National Center for
Atmospheric Research/Yonsei
University

Wesely USGS24

EU1 (10702) WRF-Chem (RIFS) EU Research Center for
Sustainability (RIFS)

Wesely CORINE 33

EU2 (10708) WRF-Chem (UPM) EU Technical University of Madrid
(UPM)

Wesely USGS24

EU3 (10707) LOTOS/EUROS EU TNO DEPAC Mapped from Coordination of
Information on the
Environment (CORINE) land
cover as described in Vendel et
al. (2023)

EU4 (10710) WRF/CMAQ (STAGE) EU University of Hertfordshire STAGE MODIS+ extended urban

network databases employed included the US Environ-
mental Protection Agency’s Air Quality System (AQS;
https://aqs.epa.gov/aqsweb/airdata/download_files.html, last
access: 30 September 2025), the Canadian National Air Pol-
lution Surveillance (NAPS) program (https://www.canada.
ca/en/environment-climate-change/services/air-pollution/
monitoring-networks-data/national-air-pollution-program.
html, last access: 30 September 2025), and the
Canadian National Atmospheric Chemistry database
(https://www.canada.ca/en/environment-climate-change/
services/air-pollution/monitoring-networks-data/
national-atmospheric-chemistry-database.html, last ac-
cess: 30 September 2025). For the European case the
monitoring network databases employed include the Eu-
ropean Monitoring and Evaluation Programme (EMEP;
https://www.emep.int/, last access: 30 September 2025)
and the European Air Quality Database (AIRBASE;

https://eeadmz1-cws-wp-air02-dev.azurewebsites.net/
download-data/, last access: 30 September 2025). The
databases provide measurements in ppb for the NA case
and µgm−3 for the EU case. We opted for sticking to the
original units to avoid a conversion of one into the other to
preserve the integrity of datasets and avoid the instruction of
uncertainties that would penalize the quality of one or the
other.

Given the continental dimension of the two regional do-
mains simulated under AQMEII-4, the latter have been di-
vided into subregional domains for analysis. These group
portions of the network that share common features such as
atmospheric circulation and possible sources of ozone pre-
cursors and also provide continuity with past AQMEII model
evaluation phases (Solazzo et al., 2012a, b).

Figure 1 shows the subregions selected within the two
modeling domains, the corresponding sampling sites, and the
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yearly average measured ozone (Fig. 1a and b). As noted by
Solazzo et al. (2012a), from the distributions of the pollu-
tants, it is easy to identify the reason for those specific divi-
sions in subdomains. In North America, a longitudinal divide
is present between the western (R1), central (R2), and eastern
parts of the continent, while the latter also requires a latitudi-
nal division into two smaller subdomains (R3 and R4) due to
the different kinds of precursor distributions and consequent
ozone formation potentials. In Europe, the spatial distribu-
tion of emitters is different from North America and shows
greater spatial density. There are areas that require specific
attention, being almost decoupled from the rest of the conti-
nental airshed. These are typically the Iberian Peninsula and
southern Mediterranean basin (R4), the Po Valley (R3), and
eastern Europe (R2). These NA and EU analysis subregions
were first defined in Solazzo et al. (2012a), though with less
detail, and have been used in subsequent AQMEII analyses
(e.g., Hogrefe et al., 2018) with different subdivisions but
with the same goal of identifying regions with more homo-
geneous chemical potentials. For the sake of synthesis and in
the absence of direct measurement of ozone dry deposition,
this paper will concentrate exclusively on the model perfor-
mance with respect to ozone concentrations with a few refer-
ences to nitrogen oxides to give a more comprehensive sense
of the quality of the performance of the individual models
and the ensemble.

3 Operational evaluation

3.1 Ozone and nitrogen oxide surface air concentrations

3.1.1 NA case

The model performances at continental level and for the
whole year are presented in Figs. 2–6. For the two continents,
the root mean square error (RMSE) and mean bias (MB) are
computed from hourly ozone values for the entire year and
are shown for each model in Figs. 2 and 3 for North America
and Figs. 4 and 5 for Europe. Figure 6 shows the spatially
averaged results presented in Figs. 2 through 5 as box plot
diagrams. In general, RMSE for the NA case (and in partic-
ular, for two models, namely NA7 (WRF-Chem (UPM)) and
NA8 (WRF-Chem (NCAR))) appears to be larger than the
EU case. Note that, since ozone values are reported in ppb
over NA and µgm−3 over EU, the range of the color scales
over both continents has been set such that the same colors
represent the same absolute errors (note the difference in the
numerical values for the color bars for these figures) to ac-
count for unit differences and allow for a visual comparison
between continents. Most differences from the observations
are found in the eastern and southeastern parts of the NA
domain. As from Figs. 2–5, three groups of behaviors can
be distinguished for the NA case. Relative to the rest of the
models, NA1, NA2, NA3, and NA5 (WRF/CMAQ (M3Dry),
WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH

Figure 1. Annual average of ozone at all available monitoring sta-
tions in North America for 2016 (a) [ppb] and Europe for 2010 (b)
[µgm−3]. The rectangular areas represent the four selected subre-
gions (R1, R2, R3, R4).

(Ops)) show low RMSE values and comparable behaviors.
NA4 (GEM-MACH (Zhang)) and NA6 (WRF-Chem (RIFS))
show slightly higher errors in the middle to east coast part of
the domain, whereas NA7 (WRF-Chem (UPM)) and NA8
(WRF-Chem (NCAR)) show markedly higher errors in the
middle to eastern part of the domain and along the west coast.
Looking at the biases (Fig. 3), the analysis presented above
is confirmed with some nuances. In fact, we can see that the
grouping can be more refined. A first group is made of the
two EPA models NA1 and NA2 (WRF/CMAQ (M3Dry) and
WRF/CMAQ (STAGE)) with a widespread overestimation
across the continent. NA3 and NA5 (GEM-MACH (Base)
and GEM-MACH (Ops)) produce the smallest biases of the
group (see also Fig. 3) and with a clearer west–east regional
separation compared to NA1 and NA2. Finally, NA4, NA6,

Atmos. Chem. Phys., 25, 12923–12953, 2025 https://doi.org/10.5194/acp-25-12923-2025



I. Kioutsioukis et al.: Operational, diagnostic and probabilistic evaluation of AQMEII-4 12927

Figure 2. Individual model ozone RMSE calculated over the whole year (2016) over NA. From NA1 through NA8: WRF/CMAQ (M3Dry),
WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and
WRF-Chem (NCAR). Units are in ppb.

NA7, and NA8 (GEM-MACH (Zhang), WRF-Chem (RIFS),
WRF-Chem (UPM), WRF-Chem (NCAR)) have larger bi-
ases, with NA8 having the largest mean bias (MB) of all
(Fig. 4). This analysis helps to distinguish the impacts of
different dry deposition modules from the impacts of differ-
ences in other aspects of the model on simulated ozone. For
example, WRF/CMAQ (M3Dry) and WRF/CMAQ (STAGE)
differ only in their dry deposition modules, and the differ-
ences between these two simulations are generally smaller
than their differences relative to the GEM-MACH and WRF-
Chem simulations. On the other hand, the dry deposition
scheme has an important effect when we look at NA4 (GEM-
MACH (Zhang)) vs. NA3 (GEM-MACH (Base)). These two
models share the same regional-scale system but use a dif-
ferent dry deposition scheme. The effect of the dry deposi-
tion schemes on the ozone concentration is quite remarkable.

Recent work emphasizes a substantial effect of the magni-
tude of dry deposition velocity on ozone concentration (e.g.,
Baublitz et al., 2020; Wong et al., 2019; Clifton et al., 2020b).
The results are consistent with those in Clifton et al. (2023)
where the individual dry deposition module performances
were evaluated (see discussion below). Therein larger dif-
ferences were shown to exist between the Zhang and Base
schemes used in GEM-MACH than between the M3Dry and
STAGE schemes used in CMAQ. Comparing NA3 (GEM-
MACH (Base)) to NA5 (GEM-MACH (Ops)) reveals the
impacts of model configuration and science option choices
other than dry deposition, since both simulations use the We-
sely scheme but differ in a number of other modeling aspects,
as described in more detail in Makar et al. (2025). The rel-
atively low MB for models NA3 and NA5 reflects the use
of a similar deposition velocity algorithm, while differences
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Figure 3. Individual model ozone MB calculated over the whole year (2016) over NA. From NA1 through NA8: WRF/CMAQ (M3Dry),
WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and
WRF-Chem (NCAR). Units are in ppb.

between these two models reflect the use of process repre-
sentations in NA3 which are absent in NA5 (for canopy ver-
tical turbulence different approaches for canopy vertical mix-
ing and photolysis – Makar et al., 2017; feedbacks between
chemistry and meteorology – Makar et al., 2015a, b; vehicle-
induced turbulence – Makar et al., 2021; and satellite-derived
leaf area index – Zhang et al., 2020, while NA5 makes use of
a simplified means of adding surface emissions in the model
which assumes that fresh emissions are evenly mixed into
the first two model layers). The effects of model configura-
tion choices are also evident in the results of the three re-
maining models (WRF-Chem (RIFS), WRF-Chem (UPM),
and WRF-Chem (NCAR)) that share the same dry deposition
model and overall model code but utilize different configu-
ration options. These simulations show a consistent overes-
timation that cannot be attributed clearly to one factor (see

also Fig. 3). The three implementations are also with re-
spect to three different WRF-Chem version numbers (3.9.1,
4.0.3, and 4.1.2, respectively); versions 3.9.1 and 4.0.3 use
the Grell and Devenyi (2002) cumulus parameterization, and
version 4.1.2 uses the Grell and Freitas (2014) parameteriza-
tion. Furthermore, both WRF-Chem (RIFS) and WRF-Chem
(UCAR) employ the same gas-phase mechanism (Emmons
et al., 2010), while that of WRF-Chem (UPM) differs from
the other two models. The relatively minor differences be-
tween WRF-Chem (UPM) and WRF-Chem (UCAR) shown
in Fig. 6a may thus reflect differences in the gas-phase
chemistry, with the former’s mechanism resulting in slightly
lower positive bias levels. Knote et al. (2015) conducted
a comparison of the two gas-phase mechanisms (CBMZ
and MOZART4) within the same modeling framework and
showed that the two mechanisms have biases opposing in
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Figure 4. Individual model ozone RMSE calculated over the whole year (2010) over EU. From EU1 through EU4: WRF-Chem (RIFS),
WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ (STAGE). Units are in µgm−3. Color bars are set to twice the range used in Fig. 2 to
allow for a visual comparison across continents, accounting for the conversion factor of 1.96 between the different units.

both magnitude and sign over North America. The larger dif-
ferences (same figure) with the RIFS implementation reflect
differing cloud amounts and hence differing photolysis rates
within the two implementations. The large overestimation of
ozone by the WRF-Chem (UCAR) configuration may thus
be linked to the underestimated precipitation in this model
reported elsewhere (e.g., Makar et al., 2025), which also im-
plies smaller cloud amounts and stronger solar radiation.

3.1.2 EU case

In Figs. 4 and 5, RMSE and MB in Europe are presented, re-
spectively. The errors have more a hot-spot character that is
mainly evident in the southern part of the domain and therein
at well-recognized critical regions like the Po Valley in the
north of Italy, Greece, and the Iberian Peninsula. This result
is confirmed in the MB plots that also show EU3 (LOTO-
S/EUROS) as the best-performing model of the four though
in many cases underestimating ozone concentration levels.
EU2 shows worse RMSE scores than the other three models,
in particular over Germany, Poland, and Hungary, and scores
the highest median RMSE value (Fig. 6b). As for the rest of
the domain, smaller RMSE values can be noticed throughout
the region for all models. EU1 (WRF/Chem (RIFS)) and EU4
(WRF/CMAQ (STAGE)) show comparatively larger errors,

especially in the southern and northern parts of the domain,
respectively. This behavior of EU1, EU2, and EU4 may be
associated with the prediction of NO2 and NO concentration
(see later discussion).

In this case, a model implementation/user effect can be an
element of consideration since the EU4 is the same model
that is used by the EPA in the NA case (NA2), but in this
instance run by the University of Hertfordshire. In the im-
plementation of EU4, the primary differences lie in the me-
teorological model and the MEGAN biogenic emissions in-
put. These variations in meteorological drivers and biogenic
emissions can introduce differences, potentially contributing
to the observed model biases when compared to other im-
plementations of the same model. However, it should also be
noted that the CMAQ simulations in North American (mod-
els NA1, NA2, Fig. 3) also show positive biases, particularly
along the US eastern seaboard. Some of these biases may
be attributable to the need for physical process representa-
tion for forest canopy shading and turbulence (see Makar
et al., 2017, which intercompares multiple models) and has
been found more recently to improve the performance of the
CMAQ model (Campbell et al., 2022; Wang et al., 2025).
Many of the regions with the highest ozone biases in mod-
els EU1, EU2, and EU4 correspond to areas with high for-
est canopy and leaf area index values, as does the eastern
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Figure 5. Individual model ozone MB calculated over the whole year (2010) over EU. From EU1 through EU4: WRF-Chem (RIFS), WRF-
Chem (UPM), LOTOS/EUROS, WRF/CMAQ (STAGE). Units are in µgm−3. Color bars are set to twice the range used in Fig. 2b to allow
for a visual comparison across continents, accounting for the conversion factor of 1.96 between the different units.

Figure 6. Individual model ozone MB (a, b) and RMSE (c, d) calculated over the whole year over NA (a) and EU (b). NA case units: ppb,
EU: µgm−3.

Atmos. Chem. Phys., 25, 12923–12953, 2025 https://doi.org/10.5194/acp-25-12923-2025



I. Kioutsioukis et al.: Operational, diagnostic and probabilistic evaluation of AQMEII-4 12931

seaboard of the USA and Canada, and the negative biases
in EU1 and EU4 for NO and NO2 are consistent with the
absence of the more realistic reduction in thermal diffusiv-
ity coefficients and photolysis rates expected under forest
canopies (Makar et al., 2017); the performance of these mod-
els may be improved through the inclusion of forest canopy
processes.

From the analysis of NO, NO2, and O3 normalized root
mean square error vs. normalized mean bias in the soccer
plots of Fig. S1 in the Supplement for the two continents, we
note that the two precursors to ozone show an error smaller
than 15 % for all models except two. For the NA case, the
ozone soccer plots confirm the grouping of the results quali-
tatively derived from the regional analysis of Fig. 2. Figure 6
shows that GEM-MACH models NA3 and NA5 have ozone
bias values closest to zero, followed by CMAQ (NA1 and
NA2), while CMAQ has the lowest RMSE values, closely
followed by the GEM-MACH NA3 and NA5 implemen-
tations. Four models show small error (< 15 %), two with
medium (> 15 % and < 20 %) and two with high (> 20 %).
The ozone goal plots for the EU (Fig. S1) show a statistical
tendency to produce smaller errors than the NA case and in
particular more coherence between the errors for ozone and
its precursors.

The Taylor diagram depicted in Fig. S2 also evaluates the
correlation between simulated and observed ozone values.
The results show a higher correlation of model predictions
with observations in the EU case, while the other statistical
parameters in the diagram confirm what has been presented
in the other plots. The multi-model ensemble (MME) is also
presented for the two cases, showing in both instances an
improved performance with respect to the individual model
simulations.

3.1.3 Diurnal and seasonal variability

Figure 7 shows a comparison of observed and modeled
seasonal and diurnal cycles for North America for ozone,
NO, and NO2. These cycles were constructed by averag-
ing the underlying raw hourly data available for the entire
year over a given month of year or hour of day, respec-
tively. At the monthly level, the figure clearly shows that for
ozone in NA, almost all models overestimate the concentra-
tion during summer. The multi-model mean fails to repro-
duce the ozone maximum in April by overshooting by ap-
proximately 3 ppb and presenting a maximum in June. This
result is driven by four out of eight models (NA4 (GEM-
MACH (Zhang)), NA6 (WRF-Chem (RIFS)), NA7 (WRF-
Chem (UPM)), and NA8(WRF-Chem (NCAR))). Although
slightly overestimating the concentration, two models (NA3
(GEM-MACH (Base)) and NA5 (GEM-MACH (Ops))) man-
age to reproduce very accurately the seasonal evolution.
NA1 and NA2 (WRF/CMAQ (M3Dry) and WRF/CMAQ
(STAGE)) capture the trend and seasonality and just slightly
overestimate the ozone peak value.

The tendency for overestimating ozone concentration and
underestimating NO is also clear from Fig. 7 (for NA) and
Fig. 8 (for EU). Figure 7’s diurnal variation panels (Fig. 7b,
d, and f) in particular show that the models NA3 and NA5
have the closest values to observations for O3, NO, and NO2,
though all models underestimate the NOx totals. This is es-
pecially evident for NO and NO2 in the midday hours (10:00
to 18:00 LT), when the simulated NO and NO2 values are
the closest in the ensemble to the observations. The monthly
variation panels (Fig. 7a, c, and e) show that the relative im-
pact of the NOx underestimates is smaller in the summer than
in the winter, and models NA3 and NA5 have the closest NO
values to observations and slightly overestimate NO2 in the
summer. Model NA3 includes a forest canopy parameteriza-
tion (Makar et al., 2017), which takes into account reduced
vertical coefficients of thermal diffusivity and photolysis lev-
els below the forest canopy – these in turn reduce turbulent
mixing (resulting in higher NOx concentrations from surface
sources) and also shift the chemical regime from ozone pro-
duction to ozone destruction by NOx titration below the for-
est canopy. Model NA3 also includes the effects of vehicle-
induced turbulence on NOx emissions from vehicles (Makar
et al., 2021), an effect which results in more efficient dis-
persion of these emissions out of the surface layer. Model
NA5 assumes the area emissions of NOx are evenly and
instantaneously distributed over the first two vertical levels
of the model rather than incorporating these emissions as a
flux boundary condition on the diffusion equation. As noted
above, Models NA3 and NA5 include process representation
which can enhance the vertical transport of freshly emitted
NOx out of the lowest model layer; at least some of supe-
rior performance may be related to this faster dispersion. The
ozone dry deposition velocity used in NA3 and NA5 versus
that of NA4 is also a driver for the differences between these
models, as noted in Clifton et al. (2023), who noted that NA3
and NA5 shared a scheme which significantly overestimated
ozone dry deposition velocities relative to observations in
the summer while providing reasonable estimates during the
winter, while the Zhang scheme, used in NA4, showed little
seasonal variation (tending to be flat over time, with overesti-
mates during winter and underestimates during summer). It is
of note that the models that reproduce the seasonal evolution
of ozone most accurately during summer when the rest of the
models struggle have the dry deposition schemes with the
largest positive biases in summertime ozone dry deposition
velocity and the greatest seasonal amplitude (Clifton et al.,
2023). This implies (1) that the factors affecting the ozone
concentrations have a strong seasonal dependence (models
NA4 versus NA3 and NA5) (2) and that while one means
of helping achieve that seasonal dependence is through an
overestimation of the ozone dry deposition velocity relative
to observations (models NA3 and NA5), (3) other season-
ally dependent process improvements than dry deposition ve-
locity are required to better simulate ozone (given that the
other models considered here which incorporate more accu-
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Figure 7. Average monthly (a, c, and e) and diurnal (b, d, and f) cycles of ozone, NO, and NO2 [ppb] for the 2016 NA case study. Thin
colored lines (solid, dashed, dotted): models; red dots: observations; black line: multi-model mean.

rate ozone dry deposition schemes, relative to the observa-
tions in Clifton et al., 2023, also have high positive biases
in parts of NA and EU; Figs. 3 and 5). As noted above, pro-
cess representation of forest canopy shading and turbulence
is one such possible means of model performance improve-
ment1. The other consideration worth examining is the inter-
dependence between model cloud cover and surface photoly-

1We note that subsequent investigation at ECCC of the GEM-
MACH dry deposition algorithm described in Makar et al. (2018),
following the results published in Clifton et al. (2023), identified
two key errors added to the code in the version subsequent to the
code version used in Makar et al. (2017). Specifically, the cuticle
resistance formula (Makar et al., 2018, Eq. S.8; Clifton et al., 2023,
Eq. 42) made use of Zhang et al. (2002) dry cuticle resistance co-
efficients (rcuti, rlu), which should not have been scaled by inverse
leaf area index, and made use of Zhang et al. (2002) coefficients
for the lower canopy resistance (Makar et al., 2018, Eq. S.2; Clifton
et al., 2023, Eq. 44), which did not include the required scaling of
the coefficients by (LAI∧0.25)/(u∗)∧2. Subsequent to these correc-
tions, a much closer fit to the observations in Clifton et al. (2023)

sis rates, given the variation between NA WRF-Chem models
NA6, NA7, and NA8, where the largest differences in ozone
positive bias correspond to the use of differing cloud param-
eterizations.

For NO and NO2, the models show seasonal cycles which
differ between the models (Figs. 7a, c, e and 8a, c, e) ver-
sus the observations and between the NA and EU observa-
tions. Observed NA ozone peaks in April (month 4, Fig. 7
upper left panel), while observed EU ozone peak in July
(month 7, Fig. 8 upper left panel). As noted above, models
NA1, NA2, NA3, and NA5 all capture the NA O3 seasonal-
ity (CMAQ and Base and Ops GEM-MACH configurations),
while the WRF-Chem models predict a late summer peak,
similar to observations in EU. All models tend to overes-
timate compared to observed ozone concentrations (excep-
tions: NA3 and NA5 in April and May, Fig. 7, EU2 and EU3
from November to April). All models underestimate winter-

was achieved (K. Toyota, A. Robichaud, personal communication,
2024).
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Figure 8. Average monthly (a, c, and e) and diurnal (b, d, and f) cycles of ozone, NO, and NO2 [µgm−3] for the 2010 EU case study. Thin
colored lines: models; red dots: observations; black line: multi-model mean.

time NOx (though NA models NA1, NA2, NA3, NA5, and
NA7 have close NO2 performance to observations from July
through October, Fig. 7), and EU3 NO values closely match
observations, while EU2 NO2 is biased high relative to obser-
vations. All NA models have significant (factor of 2 or more)
negative biases in NO and the largest seasonal NO2 negative
biases in winter. As a consequence, all NA models strongly
underestimate the amplitude of the observed seasonal cycle.
Potential factors which might drive an underestimate of win-
tertime NOx include underestimates in the emissions of NOx

from combustion sources such as wintertime home heating
from fossil or wood fuels (Denier van der Gon, 2015), un-
derestimates of atmospheric stability (i.e., if the simulated at-
mosphere is more unstable than the actual atmosphere, NOx

emissions may build up to higher concentrations in the model
than is observed), and the potential for HONO cycling in the
presence of snow on the surface, leading to longer lifetimes
of NOx (Michaud et al., 2015). Figure 8 also shows, not un-

expectedly, that the models with the smallest NO and NO2
biases (EU2 (WRF-Chem (UPM)) and EU3 (LOTOS/EU-
ROS)) do quite well for O3, NO, and NO2, and the EU NO
and NO2 biases for these models are in general much smaller
than the NA model biases. At the diurnal level (Figs. 7 and 8
right panels) the results are consistent with what is found at
the seasonal level in terms of overestimations or underesti-
mations. At the diurnal level, EU2 outperforms the others,
showing a good capacity to catch the average time evolution
of the three pollutants.

The monthly averaged ozone, NO, and NO2 concentration
breakdowns at the subregional level are presented in Figs. S3
and S4 for NA and EU, respectively. From Fig. S3 one can
conclude that the major contribution to the domain-wide es-
timation presented earlier is essentially coming from regions
R2, R3, and R4 (i.e., the eastern part of the domain), whereas
all model results in R1 are rather similar and in agreement
with the measurements throughout the year, with some mod-
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Figure 9. Monthly average cycles of O3 concentrations in [ppb] as calculated in subregions R1–R4 over the NA domain. Thin colored lines
(solid, dashed, dotted): models; red dots: observations; black line: multi-model mean.

els overestimating cold seasons but to a lesser extent than
in the other regions. The summertime ozone overestima-
tion over the eastern US for NA1 and NA2 (WRF/CMAQ
(M3Dry) and WRF/CMAQ (STAGE)) is consistent with the
findings of Appel et al. (2021). It is also worth noting that
all of the NA models (Fig. 9) overestimate O3 in the period
from July through September in regions R2, R3, and R4, an
observed effect largely absent in the EU models (Fig. 10). We
also note that the time series of observed O3 for North Amer-
ica shows April peaks for regions R2, R3, and R4, while
R1 peaks in June. One possible cause for the observed early
spring peak in the latter regions is the transport of upper-
tropospheric O3 downwind of the Western Cordillera, a pro-
cess which is known to be at its maximum in the spring-
time (Pendlebury et al., 2018). From Fig. S4, referring to
the EU case, we see that EU1 and EU4 underestimated NO
and NO2, whereas EU2 largely overestimates for all Euro-
pean subregions. Such model performances can explain the
ozone biases as they affect ozone titration at night. This ef-
fect is apparently exacerbated in the Po Valley area, which is
known for high NOx emission levels. The observational sites
in the Scandinavian Peninsula are mainly from the EMEP
network, which is representative of the remote background,
whereas the AIRBASE network rural background sites are
more prone to local sources of pollution.

These regional differences will be instrumental to the anal-
ysis of dry deposition processes. The same behavior observed
in subregions is found at both the seasonal and hourly level.

From Fig. 10 we can see the situation in Europe, which lacks
the large positive biases in the NA simulations.

3.1.4 Summary of the analysis

Overall conclusions from the comparisons with observations
for NO, NO2 and O3 are the following:

– the models which most closely match NO and NO2
(EU2, EU3) also have the best performance for O3

– models with negative biases for NO and NO2 also have
positive biases for O3, and the magnitude of the NOx

negative biases is inversely proportional to the magni-
tude of the O3 positive biases for all models

– the relative magnitude of the “freshly emitted” compo-
nent of NOx (i.e., NO) tends to be underestimated, with
the exception of model EU3 (LOTOS/EUROS)

These results all point towards excessive vertical mixing of
fresh NO emissions up from the lowest model layer as a root
cause of the model biases in the other models. The reasons
for this conclusion are the following:

1. the relative fraction of NOx that is NO will be highest
in air dominated by fresh emissions;

2. the relationship between positive ozone biases and neg-
ative NO biases indicates that the ozone biases are due
to insufficient NO titration;
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Figure 10. Monthly average cycles of O3 concentrations in [µgm−3] as calculated in subregions R1–R4 over the EU domains. Thin colored
lines: models; red dots: observations; black line: multi-model median.

3. the effect is exacerbated in winter in all NA models and
some EU models – a time when the atmosphere tends
to be more stable, and photolysis rates in the Northern
Hemisphere are low, both conditions which favor NOx

titration.

A secondary cause may be missing NO emissions in the
wintertime, though this seems less likely due to the relatively
high confidence in mobile emissions and stack emissions,
which dominate the NOx emissions totals, and the relatively
good performance of EU3 relative to the other EU models
when making use of the same emissions inventory.

3.2 Ozone dry deposition fluxes

We start our examination of O3 dry deposition fluxes with
the direct comparison of the effective and total fluxes cal-
culated by the models. Effective flux is a convenient way
of examining the contribution of the resistances of various
pathways towards bulk dry deposition, taking into account
that variability is not only due to these resistances but also
surface ozone concentrations (Galmarini et al., 2021). The
definition of effective fluxes is analogous to the definition
of effective conductances (Paulot et al., 2018; Clifton et al.,
2020b). Specifically, by definition, the sum of the effective
fluxes equals the total ozone dry deposition flux, and this
equality is used in the subsequent analysis. Within AQMEII-
4, the relevant effective conductances were defined a priori
and every participating modeling group was requested to de-
termine the combination of all relevant resistances accounted

for in their systems, necessary to produce the effective con-
ductances requested. The definitions of the effective conduc-
tances, the dry deposition modeling approaches, and the de-
tailed formulation of effective fluxes for each model are pre-
sented in Galmarini et al. (2021, this issue). Because effective
conductances and ozone concentrations can covary on daily
timescales, it was important to archive high-frequency effec-
tive fluxes; for this same reason, conclusions about drivers
of variations in effective fluxes may be distinct from those
regarding effective conductances. The analysis of effective
and total fluxes is performed only for the grid cells in which
all models share the same LULC (for details on the common
LULC classifications see Galmarini et al., 2021, this issue).
By restricting the analysis to locations sharing the same char-
acteristics of land use across models, we reduce the impact of
LULC variability on the resulting analysis, thus allowing us
to compare only the response of models to the different dry
deposition schemes employed for a given LULC. We present
model results at grid cells that are covered by at least 85 %
evergreen needleleaf forest (NA: 1544 cells, EU: 2531 cells)
and planted-cultivated (NA: 6130 cells, EU: 6108 cells). In
addition, we also define an “ozone receptor” case that corre-
sponds to the grid cells where ozone is monitored at the sur-
face for the two continents (NA 1551 cells, EU 1656) inde-
pendently from the underlying LULC type, which can there-
fore be different from model to model. In the Supplement the
deciduous broadleaf forest (581 cells) and mixed forest (705
cells) are also presented for the NA case only for the sake of
synthesis.
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An important finding is obtained by simply imposing the
data selection criterion described above. As can be noted, for
the same continent the models share relatively few grid cells
with the same dominant LULC. This is a clear indication of
the fact that individual LULC masks, employed in the mod-
els, were obtained from substantially different sources (Ta-
ble 1). Such results raise a significant issue: is it acceptable
that the characterization of the land surface differs so much?
In principle LULC masks adopted by the AQMEII-4 models
should be very comparable, especially when sources of this
information with a high degree of spatial resolution are now
available. More discussion may be found in Sect. 5 and in
our companion paper (Hogrefe et al., 2025, this issue).

Figures S5 and S6 show seasonal cycles of the total ozone
dry deposition flux and its decomposition into the three dif-
ferent effective fluxes. The pathways represented by these
effective fluxes are (1) lower canopy and soil conductances
combined in one factor (LCAN+SOIL) since some models
did not distinguish these two terms, (2) cuticular conductance
(CUT), and (3) stomatal conductance (ST).

The following features can be appreciated across the
model results:

– The magnitude peak of the ozone flux varies consider-
ably from model to model in some cases (NA8), being
almost twice that of others (NA4) for the monthly aver-
age.

– Typically, the flux is highest during summer and lowest
during winter. In some cases, some fluxes show nearly
constant values throughout the summer season (NA2,
NA3, NA5, and NA7). In others, there is a stronger mid-
summer peak (NA1, NA4, NA6) in July or August. NA8
shows a double-peak shape. Given that the dry deposi-
tion scheme is the same in NA8 as NA7 and NA6, this
suggests that this double peak is either meteorologically
driven or ozone-driven.

– In the EU case more homogeneity appears between EU1
and EU2 behaviors, while EU4 shows a slightly differ-
ent performance for this macrolevel analysis at least.

The breakdown of the contributions of the specific path-
ways to the total ozone flux does not appear to identify any
common behavior either across models or within the same
LULC type or across time. It is particularly notable that the
relative contributions of the different pathways vary between
models (e.g., compare the relative magnitude of stomatal
flux in NA1 and NA2, Fig. S5a). Some models employing
the same dry deposition algorithm nevertheless have differ-
ent contributions associated with the different pathways (see
NA3 versus NA5, which have the same dry deposition al-
gorithm, yet the soil term dominates in NA3 and the cuticle
term dominates in NA5). The difference in soil versus cuti-
cle terms dominating in NA3 and NA5 likely reflects differ-
ences in meteorology between these two model implemen-
tations; as noted above, NA3 includes feedbacks between

meteorology and chemistry, in turn resulting in differences
in the meteorological terms controlling these two deposition
pathways.

We note that an exception to the explanation presented
above is for the “planted-cultivated” LULC, where ST and
LCAN+SOIL tend to dominate the flux. There is also a
clear summer maximum in ST across models (Fig. S5e),
but the exact seasonality of ST differs significantly between
models. LCAN+SOIL tends to have a bimodal seasonality
for this LULC type – with minima during winter and dur-
ing times of maximum ST. CUT tends to be low – with NA1
and NA2 suggesting slightly higher values – with weak but
noticeable seasonality with a broad growing season peak. To
a certain extent, this pattern in seasonal variation in the dif-
ferent pathways and their contribution to the total flux also
shows up for deciduous forests (Fig. S5c), but less so for
CMAQ than for the other models. In general, stomatal flux
tends to drive seasonality in the ozone flux, as Clifton et al.
(2023) found for ozone dry deposition velocity at the individ-
ual flux sites, but sometimes there is a seasonal contribution
in non-stomatal flux. The models also all differ in the rela-
tive contributions of LCAN+SOIL, CUT, and ST, as also
found by Clifton et al. (2023). For example, cuticular flux
is very low in some models (e.g., WRF-Chem) but a domi-
nant contributor (about 1/3 except over crops) in NA1 and
NA2. Perhaps the primary conclusion is that model behavior
can be grouped around the model type. In fact, clear simi-
larities can be found among NA3 and NA5 (GEM-MACH
(Base) and GEM-MACH (Ops) for several land use types), as
well as NA6, NA7, and NA8 (WRF-Chem (RIFS), (UPM),
and (NCAR), respectively). In the EU case, EU1 and EU2
(both WRF-CHEM) have comparable yearly characteristics,
while EU4 (WRF/CMAQ (STAGE), used by the University
of Hertfordshire) shares a similar breakdown with NA2 (WR-
F/CMAQ (STAGE), run by the USA-EPA).

Although relevant for operational evaluation, the analysis
in Figs. S5 and S6 does not easily reveal the significance of
dry deposition processes and pathways in determining ozone
variability across models. Toward this end, hierarchical and
variation partitions are considered in Sect. 5.

4 Probabilistic evaluation

The ensemble analysis described in this section aims to iden-
tify the models that contribute to an improved ensemble re-
sult and the best combination of models that improves the
ensemble skill. Such analysis is part of the probabilistic eval-
uation described in Dennis et al. (2010) and constitutes one
of the four pillars of evaluation defined therein and adopted in
the overall AQMEII activity. In past phases of AQMEII, en-
semble analysis was also presented as an integral part of the
model evaluation (Solazzo et al., 2012a, b, 2013a, b, 2017b;
Galmarini et al., 2013; Kioutsioukis and Galmarini, 2014;
Im et al., 2015; Kioutsioukis et al., 2016; Galmarini et al.,
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Table 2. NA case. For all available combinations of models analyzed, the table presents those that produce the minimum errors (blue
columns) as well as all other combinations that fall within 10 % of that minimum error (yellow and orange columns). The minimum RMSE
of 3.77 ppb is achieved by the second-order ( , all combinations of two models out of eight) combination of WRF/CMAQ (STAGE) and
GEM-MACH (Ops) as well as the third-order ( , all combinations of three models out of eight) combination of WRF/CMAQ (STAGE),
GEM-MACH (Base), and GEM-MACH (Ops). The combinations with the lowest and second-lowest RMSE are shown as RMSE values in
bold and italics, respectively. The frequency column shows the number of times each model was part of an ensemble weighted by the number
of ensembles considered.

Model Model code Frequency (%) Order of model combination

1 2 3 4

WRF/CMAQ (M3Dry) NA1 (10700) 36.4 X X X X
WRF/CMAQ (STAGE) NA2 (10701) 54.5 X X X X X X
GEM-MACH (Base) NA3 (10703) 63.6 X X X X X X X
GEM-MACH (Zhang) NA4 (10704)
GEM-MACH (Ops) NA5 (10705) 81.8 X X X X X X X X X
WRF-Chem (RIFS) NA6 (10702) 9.1 X
WRF-Chem (UPM) NA7 (10708)
WRF-Chem (NCAR) NA8 (10709)
RMSE (ppb) 3.90 3.95 3.77 3.86 4.02 3.83 3.77 4.04 3.83 3.93 4.10

2018). The ensemble mean of the model results has already
been presented in the operational analysis. However, identi-
fying which and how many models contribute to improved
ensemble results is another question to be addressed in this
context. The analysis uses ozone mean concentration mea-
sured at the monitoring sites as a reference and techniques
based on model combination to determine the optimal re-
sults as described in earlier studies (Solazzo et al., 2012a, b,
2013a, b; Galmarini et al., 2013, 2018; Kioutsioukis and Gal-
marini, 2014; Kioutsioukis et al., 2016).

The skill of an ensemble increases if we combine accurate
and diverse models (Kioutsioukis and Galmarini, 2014). As
shown by Solazzo et al. (2012a) the skill normally reaches a
maximum for an ensemble composed of fewer than half of
the available models and then deteriorates when more mod-
els are added until reaching an asymptotic value. Given m

available models, several combinations of model results in
groups of n≤m can be produced. In this analysis, we aim
at identifying the minimum number of models that produce
the optimal result and which models produce the highest en-
semble skill. We therefore consider all ensembles obtained
by combinations of members in each group constructed from

the m models (i.e., a total of
∑m

n=1
(m
n

)
ensembles, where(m

n

)
represents the combination of n models out of a total of

m available). For each combination, we calculate the RMSE
with respect to the measured values and identify the ensem-
ble with the least error. Note that these ensembles cover the
full range of possible combinations from first order (one
model ensemble) to mth order (m= 8 models for NA case
and m= 4 models for EU). To avoid the exclusion of mean-
ingful results and at the same time to study how the variety
of models analyzed combines toward those, we also present
the results of ensembles with RMSE within 10 % of the opti-

mal one. Lastly, we determine the frequency with which each
model is selected as part of an optimal ensemble.

In Table 2 the results from NA are presented. The anal-
ysis of the 255 ensembles obtained by combining the mod-
els in groups of 1, 2, and 3 through 8 gives an RMSE rang-
ing from 3.77 to 11.89 ppb. The results from Solazzo et al.
(2012a) are confirmed in this study; therefore, in Table 2 we
present only results up to order 4 (i.e., four members in the
ensembles) in the NA case, since for higher orders the re-
sults only deteriorate. The ensembles with the least error are
obtained from the average of results from two and three mod-
els (i.e., a second- and third-order ensemble, blue columns).
The models that contribute to these two optimal ensembles
are WRF/CMAQ (STAGE) and GEM-MACH (Ops) for or-
der 2 and WRF/CMAQ (STAGE), GEM-MACH (Base) and
GEM-MACH (ops) for order 3. The second-best ensembles
(yellow columns) are also of order 2 and 3 and are com-
posed of GEM-MACH (Base) and GEM-MACH (Ops) re-
sults and WRF/CMAQ (M3Dry), GEM-MACH (Base), and
GEM-MACH (Ops), respectively. In particular, it is worth
noting that (a) order 1 features two of the models most
present in the ensembles and their individual result is still
within 10 % of the best higher-order ensembles. (b) WRF-
CMAQ and GEM-MACH are the most frequent contributors,
and (c) WRF-Chem versions (RIFS, UPM, NCAR) never
contribute to any ensemble set. We note that both WRF/C-
MAQ and GEM-MACH (Base and Ops) are used for opera-
tional air quality forecasting in the USA and Canada, respec-
tively, and hence (1) they are frequently evaluated against
monitoring data under the principle that new model versions
must improve the forecast before replacing old model ver-
sions, (2) the ongoing evaluation process will tend to select
model configurations with the best performance with respect
to ozone concentrations, (3) this ongoing evaluation process
is for the model as a whole, while individual processes tend
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Table 3. Same as Table 2 for the EU case.

Model Model code Freq. (%) Order of model combination

2 3 4

WRF-Chem (RIFS) EU1 (10702) 60 X X X
WRF-Chem (UPM) EU2 (10708) 40 X X
LOTOS/EUROS EU3 (10707) 100 X X X X X
WRF/CMAQ (STAGE) EU4 (10710) 80 X X X X
RMSE (µgm−3) 7.51 8.15 7.92 8.11 8.17

to be evaluated based on other data and are incorporated into
the base code, and (4) this process can result in the adop-
tion of processes with compensating errors (cf. Makar et al.,
2014, and note the contrast between dry deposition velocity
performance for NA3 and NA5 here versus the dry deposi-
tion velocity performance in Clifton et al., 2023). As new
data such as the dry deposition observations of Clifton et al.
(2023) become available, compensating errors come to light,
allowing corrections and updates to the model codes to be
carried out.

The EU ensemble (Table 3) has four models, which gen-
erates 15 ensembles with RMSEs ranging from 7.51 to
14.59 µgm−3. Four out of the 15 combinations of second,
third, and fourth order have errors within 10 % (yellow col-
umn) of the optimal combination generated from LOTO-
S/EUROS and WRF-Chem (RIFS) for the second order (blue
column). No first-order ensemble has an RMSE smaller than
the second-order best ensemble, meaning that no individual
model run on the EU case performs better than the combina-
tion of the two shown in the second-order grouping. LOTO-
S/EUROS is present in all the ensembles created but alone
does not do better than when its results are averaged with
those of WRF/CMAQ (STAGE). The latter, operated by the
University of Hertfordshire for this case study, is present
80 % of the time as a contributor to the second- and third-best
ensembles. We note that LOTOS/EUROS, like the GEM-
MACH and WRF/CMAQ models in NA, provides opera-
tional forecasts of O3, NO2, and PM10 and hence will likely
benefit from ongoing evaluation and selection of the process
representation that gives the most accurate model results.
Since the results of all orders are shown in Table 3 we can
see that the conclusion of Solazzo et al. (2012a) is confirmed
to the extent that a combination of half of the available mem-
bers tends to outperform any single model or larger ensem-
ble of results. It should be clear that the number of models is
only an indication of the extent to which the combination of
specific models allows one to produce the best results with a
reduced number of ensemble members.

5 Variance analysis of ozone fluxes and the role of
conductances, turbulence, radiation, and wind
speed with ozone variability in common LULC
types

At this stage of the analysis it is important to determine the
overall role of dry deposition and other relevant factors in de-
termining the variability of ozone concentrations at the sur-
face. Having established which grid cells represent the same
LULC characterization (Sect. 3.2), we proceed with the anal-
ysis of dry deposition data by identifying a set of parameters
that are expected to be relevant in the characterization of the
ozone flux, namely

– lower canopy and soil effective flux (LCAN+SOIL)
combined as one factor

– cuticular effective flux (CUT)

– stomatal effective flux (ST)

We also identify the factors that are expected to be relevant
in the determination of ozone concentration variability at the
surface, namely

– boundary layer height,

– solar radiation,

– wind speed,

– dry deposition velocities.

Chemical transformation is a dominant factor in creating
ozone variability together with the abundance of ozone pre-
cursors. However, it is challenging to represent the influence
of these factors through a specific variable, although solar
radiation can be viewed as a proxy for photochemical activ-
ity. We note that air temperature can also have a significant
influence on photochemical formation of ozone, but air tem-
perature will also influence the dry deposition pathways; the
two influences would be difficult to differentiate. Although
the analysis will be performed over all the months of the
analyzed years, the main focus will be around the summer
months, when the ozone production and mixing ratios are
normally at maximum levels and when models perform the
worst, at least over NA.
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5.1 Relative relevance of pathway fluxes in ozone flux
variability

Variation partitioning of a single response variable (Y , e.g.,
total O3 flux, or O3 concentration) is based on the adjusted
R2 in a regression framework (Peres-Neto et al., 2006; Lai
et al., 2022). For example, the variation partitioning of O3
flux between three sets of predictors (X1: LCAN+SOIL,
X2: CUT, X3: ST) can be achieved through the estimation
of the fractions (represented here by the dummy variables: a,
b, c, d, e, f, and g) based on one (Xi), two (Xi , Xj ), or three
(Xi , Xj , Xk) variables (Fig. S7).

1. Fractions based on one variable:

[a+ d + f + g] = R2
Y |X1

[b+ d + e+ g] = R2
Y |X2

[c+ e+ f + g] = R2
Y |X3 (1a)

2. Fractions based on two variables:

[a+ b+ d + e+ f + g] = R2
Y |(X1,X2)

[a+ c+ d + e+ f + g] = R2
Y |(X1,X3)

[b+ c+ d + e+ f + g] = R2
Y |(X2,X3) (1b)

3. Fraction based on all three predictor variables:

[a+ b+ c+ d + e+ f + g] = R2
Y |(X1,X2,X3). (1c)

Y in Eqs. (1a)–(1c) is the predictor variable in this case
ozone deposition flux. From the above expressions, we can
estimate the sole and shared contributions of each predictor.
For example, the sole and shared fractions of variation ex-
plained by X1 are respectively

sole= [a] = [a+ b+ c+ d + e+ f + g]

− [b+ c+ d + e+ f + g], (2a)
shared= [d/2+ f/2+ g/3], (2b)

where (similarly for the other fractions)

[d] = [a+b+c+d+e+f +g]−[c+e+f +g]−[a]−[b].

The analysis proceeds by carrying out multiple regressions
for Eqs. (1a) through (1c); the values of the left-hand-side
terms that minimize the differences between left- and right-
hand sides of the equations are then compared – these pro-
vide the relative contribution of the component terms towards
the net correlation coefficient between the ozone flux and the
three predictors.

For the sake of synthesis in the main paper, we shall
present results of the variance decomposition analysis for the
two most relevant LULC cases (evergreen needleleaf forest
and ozone receptors). The analysis for all other LULC types

selected and listed in Sect. 3.2 is presented in the Supple-
ment.

Figure 11 presents the contribution to the ozone dry de-
position flux variability of the three effective fluxes (total
or “sole” plus “shared”: first and third column of plots in
each figure) and their decomposition into “sole” and “shared”
fractions (second and fourth column panels) for all months
of 2016 and for the eight models participating in the NA
case study for shared cells covered by at least 85 % evergreen
needleleaf forests.

Considering the first and third columns of Fig. 11 (where
the sum of Eqs. 1a and 2b is presented) we note that for all
models the fractional contributions to ozone flux variance
add up to 1 as expected. For the summer period, we can
see that the models can be divided into three main groups.
The first group is where stomatal effective fluxes dominate in
defining the ozone flux variability (WRF/CMAQ (M3Dry),
WRF/CMAQ (STAGE)), a second group where the domi-
nant pathway to ozone flux variability is through the cuticu-
lar effective flux (GEM-MACH (Base), GEM-MACH (Ops)
and GEM-MACH (Zhang)), and a third group where the
main factor is the combined soil and lower canopy effec-
tive flux (WRF-Chem (RIFS), WRF-Chem (UPM), WRF-
Chem (NCAR)). This constitutes a significant result that is
also in line with those obtained by Clifton et al. (2023) but
extends their finding. For example, Clifton et al. (2023) show
that different models have very different relative partitioning
across effective conductances at individual sites. Our result
here suggests that spatial variability in the ozone flux across
the same LULC type is mainly determined by different flux
pathways. Given the fact that the grid cells selected were
dominated by the same land use type, differences between
the three groups can be attributed to substantial differences
in the dry deposition modules, concentration gradients, and
meteorology. In the winter and autumn months, the contri-
bution to ozone flux variability is equally distributed across
the three pathways for all models for this LULC type. We
also note that the seasonal cycle of the “sole” terms varies as
a function of model. The stomatal conductance term domi-
nates the CMAQ implementations (NA1, NA2) in the sum-
mertime, while for the GEM-MACH implementations (NA3,
NA4, NA5), summertime seasonality is mostly driven by the
soil+lower canopy term, and for WRF-Chem implementa-
tions (NA6, NA7, NA8), stomatal and soil+lower canopy
terms both have a weak maximum in the summer.

In Fig. 11 the results of the decomposition obtained ac-
cording to Eq. (2) are independently presented (columns 2
and 4). For the sake of presenting the results in a clearer way,
the contributions to the variation obtained from Eq. (2b) are
plotted after changing their sign to better distinguish them
from the others, but the total sum of the negative and posi-
tive values should be 1. This more detailed analysis allows us
to verify the previous one with additional details. For exam-
ple, the predominance of stomatal flux in WRF-CMAQ in the
warm season is due to the sole contribution of stomatal flux,
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Figure 11. NA case study at 1544 shared cells covered by at least 85 % needleleaf forest. Panels in the first and third column: variance
partition (VP) of ozone dry deposition flux into the individual importance (i.e., total effect) of (1) lower canopy and soil effective fluxes
combined in one factor, (2) cuticular effective flux, and (3) stomatal effective flux. Panels in the second and fourth column: split of the
individual importance of the effective fluxes into sole and shared contributions. The shared effects are displayed with negative numbers. For
the sake of making the pictures easier to read, the explicit names of the modeling systems are reported in the figure.

whereas in the other seasons the shared contributions domi-
nate. For GEM-MACH, the importance of the cuticular flux
seen earlier arises from its shared contributions except GEM-
MACH (Zhang) where its sole fraction appears equally high
throughout the year. Five process representation differences
between NA3 and NA5 have been summarized above – one
of these is different driving meteorology, which may influ-
ence differences between these two models in Fig. 11. We
note that the WRF-Chem models are also used in feedback
mode and have less variation than the GEM-MACH case, po-
tentially indicating a smaller impact of differing model pa-
rameterizations on the feedback portions of the WRF-Chem

code. Last, for WRF-Chem, the shared contribution of soil
and canopy flux is important all year, but its sole contribu-
tion becomes equally high in the warm season.

Figure 12a shows the same analysis for the EU continent
where the picture differs from NA, indicating very different
meteorological condition between the two regions. This is
not unexpected, in that EU meteorology is strongly influ-
enced by the ocean circulation of the Gulf Stream, while
the NA meteorology is over a broad region that has a much
broader range of conditions in a “continental” climate. In two
of the three models (WRF-Chem), the importance of soil–
lower canopy and stomatal effective fluxes in the warm sea-
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Figure 12. (a) EU case study at 2531 shared cells covered by at least 85 % needleleaf forest. Panels in the first column: variance partition (VP)
of ozone dry deposition flux into the individual importance (i.e., total effect) of (1) lower canopy and soil effective fluxes combined in one
factor, (2) cuticular effective flux, and (3) stomatal effective flux. Panels in the second column: split of the individual importance of the
effective fluxes into sole and shared contributions. The shared effects are displayed with negative numbers. For the sake of making the
pictures easier to read, the explicit names of the modeling systems are reported in the figure. (b) Same as (a) but at the location of ozone
receptors in EU (1551 shared cells).

son (mid-spring through October) is due to their shared frac-
tions, while the sole contribution of the cuticular effective
flux in winter drives the variation of the total O3 flux. The
seasonality of the EU stomatal component is shared with that
of NA6, while the EU soil components have a greater degree
of seasonality compared to the NA WRF-Chem models. The
other model – EU4 (WRF/CMAQ (STAGE)) – shows a more
even distribution of the stomatal contribution across the year
and a more equal distribution across the three pathways dur-
ing the year. EU3 is not presented since no data were deliv-
ered for effective conductances.

From Figs. S8–S10 one can deduce that the rest of the land
covers (deciduous broadleaf forest, mixed forest, planted-
cultivated) still exhibit a dominance of stomatal effective
flux during the summer. These LULCs all have a signifi-
cant deciduous component, and the summertime dominance
is in part due to the wintertime absence of foliage in the
more northerly parts of the model domains. Depending on
the model, cuticular and soil are at times the second contrib-
utor to variability of ozone flux.

The category “ozone receptor” groups the results at grid
cells containing an ozone sampling location regardless of the
land cover adopted by individual models (Fig. 12b for EU
and Fig. 13 for NA). It is interesting to note that the ozone
receptor case shows a remarkable consistency across models
in terms of the contribution of the different effective fluxes
and their variability in time, a behavior not seen when per-
forming this analysis for grid cells dominated by specific
LULC types. This can be appreciated from Fig. 12 where
the evergreen needleleaf forest case (Fig. 12a) is presented
side by side with the ozone receptor case (Fig. 12b) for the
EU domain. There is some disagreement for the EU about
the stomatal flux contribution during winter (zero or low)
and on the exact partitioning during warm months, but gen-
erally all the models show substantial contributions from the
stomatal flux though disagreeing on the exact non-stomatal
partitioning. The consistency for the ozone receptor case is
also visible across the continents (Fig. 13 for the NA case)
where the contribution has a remarkable resemblance across
models for seasonality and the partitioning of the ozone flux
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Figure 13. Same as Fig. 11 but at the location of ozone receptors in NA (1551 shared cells).

variance across the effective fluxes compared to individual
land use type values. For the NA case, models suggest mod-
erate to strong contributions for LCAN+SOIL during win-
ter yet small to moderate contributions during summer; the
contribution of cuticular effective flux tends to be constant
and moderate throughout the year, with three models (WRF-
CHEM) suggesting smaller contributions in winter; stomatal
effective flux makes up the difference, roughly a third of the
total but sometimes as low as 10 % or as high as 50 %.

This result calls for some important considerations.

1. The remarkable consistency and similarity found among
the model results at the ozone receptor locations could
be due to the lack of dominance of any specific LULC
type at this subset of grid cells considered. This would
be in agreement with the fact that the locations have pre-
sumably been chosen for air quality monitoring activi-

ties and by design are intended to be neutral to any pre-
vailing process such as the removal of pollutants from
the atmosphere by dry deposition processes, thus ex-
tending the spatial representativity of the monitoring lo-
cations.

2. The variance decomposition into contributions of both
sole fluxes and shared fluxes (columns 2 and 4 of Fig. 13
and column 2 in Fig. 12b) does not show the same
agreement found for the total fluxes (columns 1 and 3
of Fig. 13 and column 1 of Fig. 12b). This indicates that
every dry deposition model maintains a peculiarity in its
behavior for individual land use types. This specificity
is lost in the results when the ozone monitoring sta-
tions are considered. This suggests that while the mon-
itoring station locations show that the models perform
in a similar fashion for mixtures of LULC types, the
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model performance for individual land use types (rep-
resented by a much smaller number of stations) may
differ significantly. Given that model performance is
judged using observation station values, this may in-
dicate that dry deposition algorithms have been inad-
vertently tuned towards providing similar results in the
regions where mixtures of LULC values are present –
but require single LULC type stations for the evalua-
tion of individual LULC performance. We note that this
tuning is not intentional but a product of the purpose for
which monitoring stations have been set up (e.g., human
health impacts and hence closer to human habitations
than remote locations which may have a single LULC)
and the availability of infrastructure (roads, electrical
power) for station operations. This result underscores
the importance of land-use-specific dry deposition sites
such as those used in point model dry deposition ve-
locity analysis in Clifton et al. (2023, this issue) when
evaluating dry deposition algorithms and suggests that
subsets of monitoring network stations located in sin-
gle LULC types should be identified (or constructed if
none are available) in order to further improve model
performance within those LULC types. The result is that
the dry deposition algorithms achieve similar results for
dry deposition flux relative to observations – but some-
times via very different pathways, especially across dif-
ferent LULCs. This is in line with suggestions from re-
cent work examining a single model (Silva and Heald,
2018), a review paper on modeling ozone dry deposi-
tion (Clifton et al., 2020a), and the results of the single-
point modeling AQMEII Activity 2 paper (Clifton et al.,
2023). These findings and the above analysis illustrate

– a strong need to generate observational datasets
which focus on specific dry deposition components
for model evaluation (e.g., as suggested by Clifton
et al., 2020a),

– the need for dry deposition velocity observation to
evaluate dry deposition algorithm performance, and

– the need for monitoring network locations that rep-
resent specific LULCs to improve model perfor-
mance in regions where one LULC dominates.

The current evaluation practice with mixed LULC mon-
itoring stations used for dry deposition algorithm eval-
uation prevents progress in algorithm improvement in
specific LULCs and allows LULC-specific compensat-
ing errors to be missed in dry deposition algorithm de-
velopment.

3. If (1) and (2) can be confirmed one should consider
comparing dry deposition results obtained at opera-
tional monitoring sites with care – the net results of the
comparison may be that the regional models and possi-
bly their dry deposition fluxes agree on average for re-
gions with multiple land use types, but the agreement

is the result of regional model evaluation procedures
as opposed to a mechanistic dry deposition velocity al-
gorithm evaluation that is LULC-specific. Furthermore,
this may give an appearance of agreement among re-
gional models that may be illusory, since in grid cells
with shared dominant LULC types more disagreement
has been demonstrated in the above analysis. An impor-
tant implication of this finding is the need to evaluate re-
gional models using both single-land-use and multiple-
land-use stations in the future and for representation in
single-land-use locations to be a consideration in moni-
toring network design.

5.2 Nonlinear contributions of other factors to the ozone
concentration variance

The analysis of the nonlinear contributions to the ozone vari-
ance has been conducted by introducing other factors con-
sidered to be relevant in influencing ozone variability at the
surface level, namely boundary layer height, solar radiation,
wind speed, and dry deposition velocity. In a way, this anal-
ysis allows us to determine the role of dry deposition in re-
lation to other factors influencing the variation of ozone con-
centrations at the evergreen needleleaf forest cells and there-
fore estimate its relevance as a driver of ozone variance in a
regional-scale model. Figure 14 presents the analysis for the
NA case, while Fig. 15 shows results for the EU case.

From Fig. 14 we firstly note that the selected components
have a very relevant role in the determination of the surface
ozone variance as, overall, they account on average for 60 %
to 80 % of ozone variance. The remaining portion can be
attributed to variations in emissions and chemical reactions
that cannot easily be represented by a specific variable or to
other factors not considered in this analysis. Across the eight
models participating in the NA case study, we can note the
dominance of solar radiation followed by PBL height and
dry deposition velocity, whereas wind speed seems to be rel-
evant throughout the year only for three of the eight (WR-
F/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH
(Zhang)). We note that correlation does not necessarily im-
ply causation – the wind speed dependence effects noted here
may reflect model dependence on the friction velocity, which
can be expressed as a function of the wind speed, logarith-
mic profile, and surface roughness. The contribution of wind
speed across models is very scattered in time though con-
tributing on average 30 % of the resolved variability. In some
models it appears to be among the dominant factors in win-
ter more than in summer (WRF/CMAQ (M3Dry), WRF/C-
MAQ (STAGE), GEM-MACH (Zhang), WRF-Chem (RIFS),
WRF-Chem (UPM)). While WRF-Chem (UPM) uses the
CBMZ mechanism (see Makar et al., 2025, this issue), the
dry deposition implementation for CBMZ accounts only for
four seasons, while the other two WRF-Chem models (RIFS
and NCAR) employ the MOZART chemical mechanism, for
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Figure 14. NA case study at 1544 shared cells covered by at least 85 % needleleaf forest. Variance partition (VP) of ozone concentration for
each model into the individual importance (i.e., total effect) of wind speed, PBL height, solar radiation, and dry deposition velocity. For the
sake of making the pictures easier to read, the explicit names of the modeling systems are reported in the figure.

which the dry deposition algorithm has tabulated entries on
a monthly basis which are used in dry deposition. That is,
the WRF-Chem dry deposition implementations which are
linked to different gas-phase mechanisms have differing de-
grees of seasonal resolution.

We note that the differences noted above for NA3 ver-
sus NA5 include different LAI information (with different
sources and seasonal dependence).

It appears that in North America a seasonality in the contri-
bution of the various components is more evident. The differ-
ences between GEM-MACH (Base) and GEM-MACH (Ops)
can be attributed at least partially to the meteorology change
associated with feedbacks, but also may partially result in the
differing seasonality in LAI inputs. The no-feedback model
(GEM-MACH (Ops)) has less ozone variability associated
with wind speed and more with solar radiation compared to

the feedback model GEM-MACH (Base); feedbacks exac-
erbate meteorological variability. GEM-MACH (Base) ver-
sus GEM-MACH (Zhang) shows how much the dry depo-
sition scheme can affect the variability via the feedbacks:
GEM-MACH (Base) and GEM-MACH (Zhang) are other-
wise identical models. This quantifies the impact of feed-
backs on meteorology and hence dry deposition velocity
variance. WRF-Chem is also a feedback model, and the im-
pact of the feedbacks shows up as differences in the relative
importance of meteorology versus ozone dry deposition ve-
locity itself between the different implementations.

In EU we see from Fig. 15a that the contributions have
a greater degree of scatter than for NA. WRF-Chem (UPM)
and WRF/Chem (RIFS) share an important contribution of
dry deposition velocity in February and of PBL in April,
November, and December. It is interesting that across the
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Figure 15. (a) EU case study at 2531 shared cells covered by at least 85 % needleleaf forest. Variance partition (VP) of ozone concentration
for each model into the individual importance (i.e., total effect) of wind speed, PBL height, solar radiation, and dry deposition velocity. For
the sake of making the pictures easier to read, the explicit names of the modeling systems are reported in the figure. (b) Same as (a) but at
the location of the ozone receptors in EU (1551 shared cells).

year the components account for a smaller portion of the total
variance (< 50 %) than in the NA case. This could be due to
drastically different conditions and the dominance of emis-
sions variability (and consequently chemistry) for the ozone
variability. Each of the models uses different driving mete-
orology, but the variation in observed conditions across EU
may be less than across NA, as noted above. The March case
of WRF-Chem (RIFS) is particularly interesting where the
PBL height, solar radiation, wind speed, and dry deposition
velocity contribute less than 5 % of the ozone variance. An-

other difference between the NA and EU case studies is the
contribution of dry deposition compared to the other pro-
cesses in determining ozone variability. In NA, dry depo-
sition velocity contributes 10 % to 25 % to ozone variabil-
ity during summer and 10 % to 50 % during winter. In the
EU, however, the summer contribution is much lower and in
February two models out of four show a 70 % contribution.

All these results clearly point toward the relevance of dry
deposition in determining ozone variability and concentra-
tions at the surface, and yet they also show that important
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Figure 16. Same as Fig. 14 but at the location of ozone receptors in NA (1551 shared cells).

differences are present in the process description in individ-
ual models that can greatly influence the outcome.

When the same analysis is performed at the O3 receptor
cells, we can clearly demonstrate hypothesis (1) and possi-
bly (2) presented in the previous section. Figure 15b for the
EU case and Fig. 16 for the NA case show the results for the
O3 receptor cells. The eight models in the NA case clearly
show that at those grid cells the contribution of dry deposi-
tion velocity to ozone variability is generally much smaller
compared to the results for grid cells with specific common
LULC types, for example with respect to evergreen needle-
leaf forests. Despite this general trend, NA1, NA2, NA3,
and NA5 (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE),
GEM-MACH (Base), GEM-MACH (Ops), respectively) still
show that during winter, dry deposition can be a significant
contributor to ozone concentration variability at receptor lo-
cations. This result also confirms hypothesis (3) in the previ-
ous section; the operational ozone monitoring sites are not

suitable for the analysis of dry deposition results for spe-
cific LULC classes. A similar conclusion can be drawn for
the EU case (Fig. 15b), which is presented back to back
with the evergreen needleleaf forest case. To corroborate
the last statement, Fig. 17 shows a comparison of the frac-
tion of the entire NA common domain (excluding grid cells
dominated by water, i.e., water fraction > 0.5) covered by
each LU type to the LU distribution of all grid cells cor-
responding to O3 receptor locations (EU results are shown
as Fig. S11). As can be noted, existing O3 receptor loca-
tions are characterized mainly by planted/cultivated, shrub-
land, and urban LULC with a 10 % coverage of deciduous
broadleaf forest (Fig. 17b). At these locations all models ap-
pear to have the same distribution of the main LULC type
apart from shrubland (NA3, 4, and 5, 20 % more abundant)
and planted/cultivated (same models, 10 % less abundant).
However, the distribution of LULC from the overall NA com-
mon model domain (Fig. 17a) demonstrates that the current
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Figure 17.

receptor site LULC poorly represents the relative amount of
land use occurring throughout the domain, with, for exam-
ple, much higher evergreen needleleaf and grassland frac-
tions and much lower urban land use LULC in the all-domain
data of Fig. 17a compared to the observing station values of
Fig. 17b.

In this respect, it is important also to note that in spite of
the formal differences among dry deposition modules (Gal-
marini et al., 2021), in conditions of uniform LU character-
istics and dominance of urban and planted/cultivated LULC

types, the models tend to produce comparable results in terms
of contributors to ozone variability. This result further under-
lines the importance of a correct and uniform characteriza-
tion of the both the input LULC data and the extent to which
monitoring station data reflect LULC across the domain, both
of which are driving factors in determining the differences
among dry deposition modules.
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Figure 17. (a) Fraction of entire NA common domain (excl. grid cells dominated by water, i.e., water fraction > 0.5) covered by each LU
type. (b) Fraction of all grid cells corresponding to O3 receptor locations covered by each LU type.

6 Conclusions

An operational evaluation has been conducted on the mod-
els that took part to the AQMEII-4 activity (Galmarini et al.,
2021). A total of 12 models were analyzed, 8 of which were
run over the North American continental air quality simu-
lation of the year 2016, and the rest were run over Europe
for the year 2010. The scope of the evaluation is to deter-

mine the level of agreement of the models against available
measurements and how they compare with one another. This
is normally referred to as operational evaluation and accord-
ing to Dennis et al. (2010) is the first necessary step prior to
any more detailed evaluation or intercomparison of model re-
sults. The focus of the fourth phase of AQMEII is the analysis
of the performance of dry deposition schemes in regional-
scale models, and therefore the operational evaluation has
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been performed having that goal in mind. Ozone dry depo-
sition, in particular, is the focus of this analysis. Ozone av-
erage annual concentration errors ranged between 10 % and
30 % in NA and between 10 % and 15 % in EU except for
one model (35 % error). Errors for NO and NO2 were on the
order of 5 %–10 % and 10 %–15 %, respectively, in NA and
15 % for both pollutants in EU. The subregional analysis con-
firmed these findings, considering the expected subregional
variability related to different emission patterns. The mod-
els can be distinctively grouped by performance with WR-
F/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH
(Base), and GEM-MACH(Ops) showing a better overall ca-
pacity to predict ozone concentrations in NA followed by
GEM-MACH (Zhang) and WRF-Chem (RIFS), while WRF-
Chem (RIFS) and WRF-Chem (NCAR) show larger errors
throughout the year and the domain. In the EU case LOTO-
S/EUROS outperforms the two WRF-Chem versions (RIFS
and UPM) and WRF/CMAQ (STAGE). This result is also
very evident from the probabilistic analysis where all combi-
nations of possible ensembles were calculated and reflect the
results of the operational evaluation.

As far as the dry deposition is concerned, a diagnostic
evaluation was performed aiming at analyzing the variance
contribution of the different pathways to the variance of the
overall ozone dry deposition fluxes. All cells covered with
at least 85 % of the same land use types were considered
in this analysis. Across grid cells containing mostly needle-
leaf forests over NA, the main example used in our study, the
analysis shows the mixed response of the various dry deposi-
tion schemes adopted in the regional-scale models; one group
of models shows a prevailing contribution of the stomatal ef-
fective flux in determining spatial ozone flux variability, one
shows that the three pathways contribute rather equally, and
the last group of models shows that the lower canopy and soil
effective flux are the prevailing contributors. Thus, models
are simulating very different drivers of ozone flux variability
in space, even for the same land use type. The contribution
to ozone variability of wind speed, dry deposition velocity,
solar radiation, and boundary layer height was also investi-
gated.

When the abovementioned analysis was also performed
for all grid cells where ozone monitors were present regard-
less of the LULC type, a remarkable result was found. Re-
gardless of the EU or NA case considered, all the differ-
ences among models found for specific LULC types largely
disappeared, showing a more uniform behavior across mod-
els. This aspect was demonstrated to be attributable to a mi-
nor contribution of dry deposition at those sites in determin-
ing the ozone variability when compared with other factors.
Other factors contributing to this behavior are the presence
of predominant LULC types for which dry deposition is rel-
atively low and the uniform distribution of those types and
other LULC types across the models at the observation sta-
tion locations.

This result allows us to present important conclusions.
The first conclusion is that the evaluation of dry deposi-
tion processes should not be conducted only at operational
ozone monitoring sites. The latter’s characteristics are se-
lected based on other considerations aside from dry de-
position. They appear unsuitable for dry deposition algo-
rithm evaluation. An analysis of dry deposition modeling
at these sites may produce illusory agreement among mod-
els that could be completely misleading and misrepresenta-
tive. Therefore, specific sites with a predominance of LULCs
which induce high dry deposition should be selected among
existing monitoring stations, or added to existing monitoring
networks, for dry-deposition-focused model evaluation.

The second conclusion is a recurring theme throughout
AQMEII-4 regional modeling studies to date (e.g., Hogrefe
et al., 2025; Makar et al., 2025), namely the necessity of a
harmonization of LULC data across regional-scale air qual-
ity models, as large diversity in the characterization of the
surface is still present among all models, and this diversity
has a significant impact on model performance. Considering
the existence of detailed information in space and time on
LULC (e.g., Copernicus Land Monitoring services, USGS,
Landsat), we find the lack of agreement between models on
the input land use data anachronistic and of great concern.
Any interpretation of the behavior of dry deposition schemes
will be impaired by the lack of agreement of LULC masks
and will inevitably include an inherent uncertainty difficult
to quantify. The present situation is comparable to the one
where models use different topographies or terrain eleva-
tions to the extent of including (excluding) specific reliefs
or mountain ranges in (from) the domain. If there is an am-
bition to improve the performance of regional-scale models
in terms of dry deposition processes (effectively a sink in the
concentration budget), the selection of up-to-date and com-
mon LULC data is a fundamental and necessary prerequi-
site. Considering the advances in the characterization of land
surface at very high spatial and temporal resolutions (meter
scale), such effort cannot be further delayed and should be
taken on prior to any new model evaluation or intercompari-
son of dry deposition processes.

Code availability. It should be noted that the regional model code
used in this work was the current version for each model as of 2021,
but some of the models are no longer under active development,
while others have publicly available code. Below we list the best
methods for obtaining copies of the code at the time of writing.

CMAQ-M3Dry is based on the standard CMAQ v5.3.2 code,
available via Zenodo: https://doi.org/10.5281/zenodo.4081737 (US
EPA, 2020). CMAQ-STAGE is a custom version based on CMAQ
v5.3.2 and is available upon email request to Christian Hogrefe
(hogrefe.christian@epa.gov).

WRF-Chem is, as of October 2024, no longer being devel-
oped by NOAA GSL (see https://www2.acom.ucar.edu/wrf-chem,
last access: 10 October 2025). Readers interested in obtaining
copies of the specific code versions used here should contact
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the co-authors who contributed the following model simulations:
Aura Lupascu (aura.lupascu@ecmwf.int) for WRF-Chem (IASS)
(WRF-Chem v3.9.1), Roberto San Jose (roberto@fi.upm.es) for
WRF-Chem (UPM) (WRF-Chem v4.0.3), and Young-Hee Ryu
(yhryu@yonsei.ac.kr, younghee.ryu.ncar@gmail.com) and Alma
Hodzic (alma@ucar.edu) for WRF-Chem (UCAR) (WRF-Chem
v4.1.2).

LOTOS-EUROS is an open-source version of the
LOTOS-EUROS code based on LOTOS-EUROS v2.3 (see
https://airqualitymodeling.tno.nl/lotos-euros/open-source-version/,
last access: 10 October 2025).

GEM-MACH is the chemistry code of the versions of GEM-
MACH used in this work and can be provided by email request to
Paul A. Makar (paul.makar@ec.gc.ca).

Data availability. Observation data used in this study for
model evaluation are publicly available at the following
monitoring network data links. In North America, these
include the US Environmental Protection Agency’s Air
Quality System (AQS; https://www.epa.gov/aqs, last ac-
cess: 10 October 2025), National Atmospheric Deposi-
tion Program’s National Trend Network (NADP NTN;
https://nadp.slh.wisc.edu/networks/national-trends-network/,
last access: 10 October 2025), National Atmospheric Depo-
sition Program’s Ammonia Monitoring Network (AMON;
https://nadp2.slh.wisc.edu/data/AMoN/, last access: 10 October
2025), Canadian National Air Pollution Surveillance program
(NAPS; https://www.canada.ca/en/environment-climate-change/
services/air-pollution/monitoring-networks-data/
national-air-pollution-program.html, last access: 10 Octo-
ber 2025), and Canadian National Atmospheric Chemistry
database (https://www.canada.ca/en/environment-climate-change/
services/air-pollution/monitoring-networks-data/
national-atmospheric-chemistry-database.html, last ac-
cess: 10 October 2025). In Europe, these include the Eu-
ropean Monitoring and Evaluation Programme (EMEP;
https://www.emep.int/, last access: 10 October 2025)
and European Air Quality Database (AIRBASE; https:
//discomap.eea.europa.eu/map/fme/AirQualityExportAirBase.htm,
last access: 10 October 2025). Satellite ammonia retrieval products
used in this study were constructed at Environment and Climate
Change Canada.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-12923-2025-supplement.

Author contributions. SG, IK, CH, and PAM: study design.
SG: manuscript writing. IK: analyses and plots. PAM, CH, OEC,
and SG: AQMEII-4 steering committee coordination. PAM and
PC: GEM-MACH simulations. CH, JOB, and JP: CMAQ-M3Dry
and CMAQ-STAGE simulations. RB and RB: ENSEMBLE system
for submission of model output, monitoring data selection, and or-
ganization. AL and TB: WRF-Chem (RIFS) simulations. AH and
YHC: WRF-Chem (UCAR) simulations, comments on manuscript.
OEC and DS: comments on manuscript. RK: LOTOS-EUROS sim-
ulations. JLPC and RSJ: WRF-Chem (UPM) simulations, reanaly-

sis of WRF-Chem output. UA, KM, and RS: WRF-CMAQ (UH)
simulations.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Atmospheric Chemistry and Physics.
The peer-review process was guided by an independent editor, and
the authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“AQMEII-4: A detailed assessment of atmospheric deposition pro-
cesses from point to the regional-scale models”. It is not associated
with a conference.

Acknowledgements. We gratefully acknowledge the members
of the AQMEII4 steering committee who were not co-authors of
the current work (Christopher Holmes, Lisa Emberson, Johannes
Flemming, Sam Silva, Johannes Bieser, Jason Ducker, and Martijn
Schaap) for facilitating the analysis described in this paper by de-
signing and coordinating regional-scale air quality model simula-
tions.

Review statement. This paper was edited by Joshua Fu and re-
viewed by four anonymous referees.

References

Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R.
C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy,
B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G.
A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede,
D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community
Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1:
system updates and evaluation, Geosci. Model Dev., 14, 2867–
2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.

Baublitz, C. B., Fiore, A. M., Clifton, O. E., Mao, J., Li, J., Correa,
G., Westervelt, D. M., Horowitz, L. W., Paulot, F., and Williams,
A. P.: Sensitivity of Tropospheric Ozone Over the Southeast USA
to Dry deposition, Geophys. Res. Lett., 47, e2020GL087158,
https://doi.org/10.1029/2020GL087158, 2020.

Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia,
A., Balzarini, A., Baró, R., Bianconi, R., Chemel, C., Curci, G.,
Forkel, R., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak,
L., Im, U., Knote, C., Makar, P., Manders-Groot, A., van Mei-
jgaard, E., Neal, L., Pérez, J. L., Pirovano, G., San Jose, R.,
Schröder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella,
P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,

Atmos. Chem. Phys., 25, 12923–12953, 2025 https://doi.org/10.5194/acp-25-12923-2025

https://airqualitymodeling.tno.nl/lotos-euros/open-source-version/
https://www.epa.gov/aqs
https://nadp.slh.wisc.edu/networks/national-trends-network/
https://nadp2.slh.wisc.edu/data/AMoN/
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
https://www.emep.int/
https://discomap.eea.europa.eu/map/fme/AirQualityExportAirBase.htm
https://discomap.eea.europa.eu/map/fme/AirQualityExportAirBase.htm
https://doi.org/10.5194/acp-25-12923-2025-supplement
https://doi.org/10.5194/gmd-14-2867-2021
https://doi.org/10.1029/2020GL087158


I. Kioutsioukis et al.: Operational, diagnostic and probabilistic evaluation of AQMEII-4 12951

Hogrefe, C., and Galmarini, S.: Comparative analysis of mete-
orological performance of coupled chemistry-meteorology mod-
els in the context of AQMEII phase 2, Atmos. Environ., 115,
470–498, https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015.

Campbell, P. C., Tang, Y., Lee, P., Baker, B., Tong, D., Saylor, R.,
Stein, A., Huang, J., Huang, H.-C., Strobach, E., McQueen, J.,
Pan, L., Stajner, I., Sims, J., Tirado-Delgado, J., Jung, Y., Yang,
F., Spero, T. L., and Gilliam, R. C.: Development and evalua-
tion of an advanced National Air Quality Forecasting Capabil-
ity using the NOAA Global Forecast System version 16, Geosci.
Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-
3281-2022, 2022.

Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B.,
Coyle, M., Emberson, L., Fares, S., Farmer, D. K., Gentine,
P., Gerosa, G., Guenther, A. B., Helmig, D., Lombardozzi,
D. L., Munger, J. W., Patton, E. G., Pusede, S. E., Schwede,
D. B., Silva, S. J., Sörgel, M., Steiner, A. L., and Tai, A.
P. K.: Dry deposition of ozone over land: processes, mea-
surement, and modeling, Rev. Geophys., 58, e2019RG000670,
https://doi.org/10.1029/2019RG000670, 2020a.

Clifton, O. E., Paulot, F., Fiore, A. M., Horowitz, L. W., Cor-
rea, G., Baublitz, C. B., Fares, S., Goded, I., Goldstein, A.
H., Gruening, C., Hogg, A. J., Loubet, B., Mammarella, I.,
Munger, J. W., Neil, L., Stella, P., Uddling, J., Vesala, T.,
and Weng, E.: Influence of dynamic ozone dry deposition on
ozone pollution, J. Geophys. Res.-Atmos., 125, e2020JD032398,
https://doi.org/10.1029/2020JD032398, 2020b.

Clifton, O. E., Schwede, D., Hogrefe, C., Bash, J. O., Bland, S.,
Cheung, P., Coyle, M., Emberson, L., Flemming, J., Fredj, E.,
Galmarini, S., Ganzeveld, L., Gazetas, O., Goded, I., Holmes, C.
D., Horváth, L., Huijnen, V., Li, Q., Makar, P. A., Mammarella,
I., Manca, G., Munger, J. W., Pérez-Camanyo, J. L., Pleim, J.,
Ran, L., San Jose, R., Silva, S. J., Staebler, R., Sun, S., Tai,
A. P. K., Tas, E., Vesala, T., Weidinger, T., Wu, Z., and Zhang,
L.: A single-point modeling approach for the intercomparison
and evaluation of ozone dry deposition across chemical trans-
port models (Activity 2 of AQMEII4), Atmos. Chem. Phys., 23,
9911–9961, https://doi.org/10.5194/acp-23-9911-2023, 2023.

Denier van der Gon, H. A. C., Bergström, R., Fountoukis, C.,
Johansson, C., Pandis, S. N., Simpson, D., and Visschedijk,
A. J. H.: Particulate emissions from residential wood com-
bustion in Europe – revised estimates and an evaluation, At-
mos. Chem. Phys., 15, 6503–6519, https://doi.org/10.5194/acp-
15-6503-2015, 2015.

Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S.,
Hogrefe, C., Irwin, J., Trivikrama Rao, S., Scheffe, R.,
Schere, K., Steyn, D., and Venkatram, A.: A framework
for evaluating regional-scale numerical photochemical mod-
eling systems, Environ. Fluid Mech., 10, 471–489 (2010).
https://doi.org/10.1007/s10652-009-9163-2.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfis-
ter, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison,
D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
C., Baughcum, S. L., and Kloster, S.: Description and eval-
uation of the Model for Ozone and Related chemical Trac-
ers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
https://doi.org/10.5194/gmd-3-43-2010, 2010.

Galmarini, S., Kioutsioukis, I., and Solazzo, E.: E pluribus unum*:
ensemble air quality predictions, Atmos. Chem. Phys., 13, 7153–
7182, https://doi.org/10.5194/acp-13-7153-2013, 2013.

Galmarini, S., Kioutsioukis, I., Solazzo, E., Alyuz, U., Balzarini,
A., Bellasio, R., Benedictow, A. M. K., Bianconi, R., Bieser, J.,
Brandt, J., Christensen, J. H., Colette, A., Curci, G., Davila, Y.,
Dong, X., Flemming, J., Francis, X., Fraser, A., Fu, J., Henze, D.
K., Hogrefe, C., Im, U., Garcia Vivanco, M., Jiménez-Guerrero,
P., Jonson, J. E., Kitwiroon, N., Manders, A., Mathur, R.,
Palacios-Peña, L., Pirovano, G., Pozzoli, L., Prank, M., Schultz,
M., Sokhi, R. S., Sudo, K., Tuccella, P., Takemura, T., Sekiya, T.,
and Unal, A.: Two-scale multi-model ensemble: is a hybrid en-
semble of opportunity telling us more?, Atmos. Chem. Phys., 18,
8727–8744, https://doi.org/10.5194/acp-18-8727-2018, 2018.

Galmarini, S., Makar, P., Clifton, O. E., Hogrefe, C., Bash, J.
O., Bellasio, R., Bianconi, R., Bieser, J., Butler, T., Ducker,
J., Flemming, J., Hodzic, A., Holmes, C. D., Kioutsioukis, I.,
Kranenburg, R., Lupascu, A., Perez-Camanyo, J. L., Pleim, J.,
Ryu, Y.-H., San Jose, R., Schwede, D., Silva, S., and Wolke,
R.: Technical note: AQMEII4 Activity 1: evaluation of wet
and dry deposition schemes as an integral part of regional-
scale air quality models, Atmos. Chem. Phys., 21, 15663–15697,
https://doi.org/10.5194/acp-21-15663-2021, 2021.

Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U.,
Bianconi, R., Badia, A., Balzarini, A., Baró, R., Chemel, C.,
Curci, G., Forkel, R., Jiménez-Guerrero, P., Hirtl, M., Hodzic,
A., Honzak, L., Jorba, O., Knote, C., Kuenen, J. J. P., Makar,
P. A., Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G.,
Pouliot, G., San José, R., Savage, N., Schröder, W., Sokhi, R.
S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke,
R., Yahya, K., Žabkar, R., Zhang, Y., and Galmarini, S.: As-
sessment of the MACC reanalysis and its influence as chem-
ical boundary conditions for regional air quality modeling in
AQMEII-2, Atmos. Environ., 115, 371–388, ISSN 1352-2310,
https://doi.org/10.1016/j.atmosenv.2015.02.034, 2015.

Grell, G. A. and Dévényi, D.: A generalized approach
to parameterizing convection combining ensemble and
data assimilation techniques, Geophys. Res. Lett., 29,
https://doi.org/10.1029/2002GL015311, 2002.

Grell, G. A. and Freitas, S. R.: A scale and aerosol aware
stochastic convective parameterization for weather and air
quality modeling, Atmos. Chem. Phys., 14, 5233–5250,
https://doi.org/10.5194/acp-14-5233-2014, 2014.

Hogrefe, C., Liu, P., Pouliot, G., Mathur, R., Roselle, S., Flemming,
J., Lin, M., and Park, R. J.: Impacts of different characterizations
of large-scale background on simulated regional-scale ozone
over the continental United States, Atmos. Chem. Phys., 18,
3839–3864, https://doi.org/10.5194/acp-18-3839-2018, 2018.

Hogrefe, C., Bash, J. O., Pleim, J. E., Schwede, D. B., Gilliam,
R. C., Foley, K. M., Appel, K. W., and Mathur, R.: An anal-
ysis of CMAQ gas-phase dry deposition over North Amer-
ica through grid-scale and land-use-specific diagnostics in the
context of AQMEII4, Atmos. Chem. Phys., 23, 8119–8147,
https://doi.org/10.5194/acp-23-8119-2023, 2023.

Hogrefe, C., Galmarini, S., Makar, P. A., Kioutsioukis, I., Clifton,
O. E., Alyuz, U., Bash, J. O., Bellasio, R., Bianconi, R., But-
ler, T., Cheung, P., Hodzic, A., Kranenburg, R., Lupascu, A.,
Momoh, K., Perez-Camanyo, J. L., Pleim, J. E., Ryu, Y.-H.,
San Jose, R., Schaap, M., Schwede, D. B., and Sokhi, R.:

https://doi.org/10.5194/acp-25-12923-2025 Atmos. Chem. Phys., 25, 12923–12953, 2025

https://doi.org/10.1016/j.atmosenv.2014.12.032
https://doi.org/10.5194/gmd-15-3281-2022
https://doi.org/10.5194/gmd-15-3281-2022
https://doi.org/10.1029/2019RG000670
https://doi.org/10.1029/2020JD032398
https://doi.org/10.5194/acp-23-9911-2023
https://doi.org/10.5194/acp-15-6503-2015
https://doi.org/10.5194/acp-15-6503-2015
https://doi.org/10.1007/s10652-009-9163-2
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.5194/acp-13-7153-2013
https://doi.org/10.5194/acp-18-8727-2018
https://doi.org/10.5194/acp-21-15663-2021
https://doi.org/10.1016/j.atmosenv.2015.02.034
https://doi.org/10.1029/2002GL015311
https://doi.org/10.5194/acp-14-5233-2014
https://doi.org/10.5194/acp-18-3839-2018
https://doi.org/10.5194/acp-23-8119-2023


12952 I. Kioutsioukis et al.: Operational, diagnostic and probabilistic evaluation of AQMEII-4

A diagnostic intercomparison of modeled ozone dry deposi-
tion over North America and Europe using AQMEII4 regional-
scale simulations, Atmos. Chem. Phys., 25, 12629–12656,
https://doi.org/10.5194/acp-25-12629-2025, 2025.

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A.,
Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C.,
Curci, G., Flemming, J., Forkel, R., Giordano, L., Jiménez-
Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O.,
Knote, C., Kuenen, J. J. P., Makar, P. A., Manders-Groot, A.,
Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G, San Jose,
R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., To-
rian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K.,
Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini,
S.: Evaluation of operational on-line-coupled regional air qual-
ity models over Europe and North America in the context of
AQMEII phase 2. Part I: Ozone, Atmos. Environ., 115, 404–420,
https://doi.org/10.1016/j.atmosenv.2014.09.042, 2015.

Im, U., Christensen, J. H., Geels, C., Hansen, K. M., Brandt, J., So-
lazzo, E., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bian-
coni, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming,
J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liu, P., Nop-
mongcol, U., Palacios-Peña, L., Pirovano, G., Pozzoli, L., Prank,
M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. G.,
Yarwood, G., Hogrefe, C., and Galmarini, S.: Influence of anthro-
pogenic emissions and boundary conditions on multi-model sim-
ulations of major air pollutants over Europe and North America
in the framework of AQMEII3, Atmos. Chem. Phys., 18, 8929–
8952, https://doi.org/10.5194/acp-18-8929-2018, 2018.

Kioutsioukis, I. and Galmarini, S.: De praeceptis ferendis: good
practice in multi-model ensembles, Atmos. Chem. Phys.,
14, 11791–11815, https://doi.org/10.5194/acp-14-11791-2014,
2014.

Kioutsioukis, I., Im, U., Solazzo, E., Bianconi, R., Badia, A.,
Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C.,
Curci, G., van der Gon, H. D., Flemming, J., Forkel, R., Gior-
dano, L., Jiménez-Guerrero, P., Hirtl, M., Jorba, O., Manders-
Groot, A., Neal, L., Pérez, J. L., Pirovano, G., San Jose, R., Sav-
age, N., Schroder, W., Sokhi, R. S., Syrakov, D., Tuccella, P.,
Werhahn, J., Wolke, R., Hogrefe, C., and Galmarini, S.: Insights
into the deterministic skill of air quality ensembles from the anal-
ysis of AQMEII data, Atmos. Chem. Phys., 16, 15629–15652,
https://doi.org/10.5194/acp-16-15629-2016, 2016.

Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J.
J., Madronich, S., Baro, R., Jimenez-Guerror, P., Luecken,
D., Hogrefe, C., Forkel, R., Werhan, J., Hirtl, M., Pereze,
J. L., San Jose, R., Giordano, L., Bunner, D., Yahya, K.,
and Zhang, Y.: Influence of the choice of gas-phase mech-
anism on predictions of key gaseous pollutants during the
AQMEII phase-2 intercomparison, Atmos. Environ., 115, 553–
568, https://doi.org/10.1016/j.atmosenv.2014.11.066, 2015.

Lai, J., Zou, Y., Zhang, J., and Peres-Neto, P.: Generalizing hi-
erarchical and variation partitioning in multiple regression and
canonical analysis using the rdacca.hp R package, Methods in
Ecology and Evolution, 13, 782–788, 2022.

Makar, P. A., Nissen, R., Teakles, A., Zhang, J., Zheng, Q., Moran,
M. D., Yau, H., and diCenzo, C.: Turbulent transport, emissions
and the role of compensating errors in chemical transport models,
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-
7-1001-2014, 2014.

Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci,
G., Žabkar, R., Im, U. Balzarini, A., Baro, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou,
A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B.,
Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn,
J., Zhang, J., and Galmarini, S.: Feedbacks between air pollu-
tion and weather, Part 1: Effects on weather, Atmos. Environ.,
115, 442–469, https://doi.org/10.1016/j.atmosenv.2014.12.003,
2015a.

Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar,
R., Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou,
A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B.,
Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn,
J., Zhang, J., and Galmarini, S.: Feedbacks between air pollu-
tion and weather, part 2: Effects on chemistry, Atmos. Environ.,
115, 499–526, https://doi.org/10.1016/j.atmosenv.2014.10.021,
2015b.

Makar, P. A., Staebler, R., Akingunola, A., Zhang, J., McLin-
den, C., Kharol, S. K., Pabla, B., Cheung, P., and Zheng,
Q.: The effects of forest canopy shading and turbu-
lence on boundary layer ozone, Nat. Commun., 8, 15243,
https://doi.org/10.1038/ncomms15243, 2017.

Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y.-
A., Zhang, J., Wong, I., Hayden, K., Li, S.-M., Kirk, J., Scott,
K., Moran, M. D., Robichaud, A., Cathcart, H., Baratzedah, P.,
Pabla, B., Cheung, P., Zheng, Q., and Jeffries, D. S.: Estimates
of exceedances of critical loads for acidifying deposition in Al-
berta and Saskatchewan, Atmos. Chem. Phys., 18, 9897–9927,
https://doi.org/10.5194/acp-18-9897-2018, 2018.

Makar, P. A., Cheung, P., Hogrefe, C., Akingunola, A., Alyuz-
Ozdemir, U., Bash, J. O., Bell, M. D., Bellasio, R., Bianconi, R.,
Butler, T., Cathcart, H., Clifton, O. E., Hodzic, A., Koutsioukis,
I., Kranenburg, R., Lupascu, A., Lynch, J. A., Momoh, K., Perez-
Camanyo, J. L., Pleim, J., Ryu, Y.-H., San Jose, R., Schwede,
D., Scheuschner, T., Shephard, M., Sokhi, R., and Galmarini, S.:
Critical load exceedances for North America and Europe using
an ensemble of models and an investigation of causes of envi-
ronmental impact estimate variability: an AQMEII4 study, At-
mos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-
25-3049-2025, 2025.

Michaud, V., Doussin, J.-F., Colomb, A., Afif, C., Bor-
bonb, A., Camredon, M., Aumont, B., Legrand, M., and
Beekmann, M.: Strong HONO formation in a suburban
site during snowy days, Atmos. Environ., 116, 155–158,
https://doi.org/10.1016/j.atmosenv.2015.06.040, 2015.

Makar, P. A., Stroud, C., Akingunola, A., Zhang, J., Ren, S.,
Cheung, P., and Zheng, Q.: Vehicle-induced turbulence and at-
mospheric pollution, Atmos. Chem. Phys., 21, 12291–12316,
https://doi.org/10.5194/acp-21-12291-2021, 2021.

Paulot, F., Malyshev, S., Nguyen, T., Crounse, J. D., Shevliakova,
E., and Horowitz, L. W.: Representing sub-grid scale varia-
tions in nitrogen deposition associated with land use in a global
Earth system model: implications for present and future ni-
trogen deposition fluxes over North America, Atmos. Chem.
Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-
2018, 2018.

Pendlebury, D., Gravel, S., Moran, M. D., and Lupu, A.: Im-
pact of chemical lateral boundary conditions in a regional

Atmos. Chem. Phys., 25, 12923–12953, 2025 https://doi.org/10.5194/acp-25-12923-2025

https://doi.org/10.5194/acp-25-12629-2025
https://doi.org/10.1016/j.atmosenv.2014.09.042
https://doi.org/10.5194/acp-18-8929-2018
https://doi.org/10.5194/acp-14-11791-2014
https://doi.org/10.5194/acp-16-15629-2016
https://doi.org/10.1016/j.atmosenv.2014.11.066
https://doi.org/10.5194/gmd-7-1001-2014
https://doi.org/10.5194/gmd-7-1001-2014
https://doi.org/10.1016/j.atmosenv.2014.12.003
https://doi.org/10.1016/j.atmosenv.2014.10.021
https://doi.org/10.1038/ncomms15243
https://doi.org/10.5194/acp-18-9897-2018
https://doi.org/10.5194/acp-25-3049-2025
https://doi.org/10.5194/acp-25-3049-2025
https://doi.org/10.1016/j.atmosenv.2015.06.040
https://doi.org/10.5194/acp-21-12291-2021
https://doi.org/10.5194/acp-18-17963-2018
https://doi.org/10.5194/acp-18-17963-2018


I. Kioutsioukis et al.: Operational, diagnostic and probabilistic evaluation of AQMEII-4 12953

air quality forecast model on surface ozone predictions dur-
ing stratospheric intrusions, Atmos. Environ., 174, 148–170,
https://doi.org/10.1016/j.atmosenv.2017.10.052, 2018.

Peres-Neto, P. R., Legendre, P., Dray, S., and Borcard, D.: Variation
partitioning of species data matrices: Estimation and comparison
of fractions, Ecology, 87, 2614–2625, 2006.

Robichaud, A., Cole, A., Moran, M., Lupu, A., Shaw, M., Roy,
G., Beauchemin, M., Fortin, V., Vet, R.: Total Deposition Maps
Evaluated from Measurement-Model Fusion in North America
(ADAGIO Project), in: Air Pollution Modeling and its Appli-
cation XXVI. ITM 2018, edited by: Mensink, C., Gong, W.,
and Hakami, A., Springer Proceedings in Complexity, Springer,
Cham, https://doi.org/10.1007/978-3-030-22055-6_40, 2020.

Silva, S. J. and Heald, C. L.: Investigating dry deposition of
ozone to vegetation, J. Geophys. Res.-Atmos., 123, 559–573,
https://doi.org/10.1002/2017JD027278, 2018.

Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R.,
Moran, M. D., Appel, K. W., Bessagnet, B., Brandt, J., Chris-
tensen, J. H., Chemel, C., Coll, I., Ferreira, J., Forkel, R., Fran-
cis, X. V., Grell, G., Grossi, P., Hansen, A. B., Miranda, A. I.,
Nopmongcol, U., Prank, M., Sartelet, K. N., Schaap, M., Silver,
J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R., Yarwood,
G., Zhang, J., Rao, S. T., and Galmarini, S.: Operational model
evaluation for particulate matter in Europe and North America in
the context of AQMEII, Atmos. Environ., 53, 75–92, ISSN 1352-
2310, https://doi.org/10.1016/j.atmosenv.2012.02.045, 2012a.

Solazzo, E., Bianconi, R., Vautard, R., Appel, K. W., Moran, M. D.,
Bessagnet B, Brandt, J., Christensen, J. H., Chemel, C., Coll, I.,
van der Gon, H. D., Ferreira, J., Forkel, R., Francis, X. V., Grell,
G., Grossi, P., Hansen .B., Jeričević A., Kraljević L., Miranda .I.,
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