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S.1 Field campaign overview: sampling and chemical analyses 

 

 
Figure S1. Sampling periods of the PM1 filters collected at Gruvebadet, Ny-Alesund, and subsequently analyzed by H-NMR (dark-
light green bars) and HR-TOF-AMS (dark-light blue bars). Field blank filters collection time is indicated by grey lines and names. 

 

Table S1. Limit of Detection (LOD) for each species measured by Ion Chromatography (IC) and for water-soluble organic carbon 
(WSOC) by TOC analyzer. The LODs are calculated based on the average and standard deviation of the five field blanks analyzed. In 
particular LOD = BLK_mean + 2* BLK_std.dev. 

 IC 
(!g/mL) 

TOC-
analyzer 
(!g/mL) 

 Na NH4 ma K dma tma Mg Ca ace for MSA Cl NO2 NO3 SO4 oxa WSOC 

LOD 0.36 0.03 0.05 0.05 0.05 0.05 0.004 0.06 0.02 0.02 0.02 0.21 0.01 0.03 0.12 0.05 1.16 
 

 

 

 

 . 



Table S2. H-NMR identified/measured functional groups/chemical species/categories. *Functional groups are in italic. **Categories including some of the other species specifically identified are in 
underlined italic 

name of the species/ functional 
group*/ category of compounds** 

ID of the species/ 
functional group chemical shifts used for identification & quantification examples for molecules possible origin/source references 

aromatic protons Ar-H band 6.5-8.5 ppm phenols, nitro-phenols […] biomass burning, [...] Decesari et al., 2001; Tagliavini 2006; Decesari et al., 2007; 
Chalbot and Kavouras, 2014 

anomeric and/or vinyl protons O-CH-O band 6-6.5 ppm 

vinylic protons of not completely oxidized isoprene and 
terpenes derivatives, of products of aromatic-rings opening 

(e.g., maleic acid), or anomeric protons of sugars derivatives 
(glucose, sucrose, levoglucosan, glucuronic acid, etc.) 

biogenic marine mostly primary 
Decesari et al., 2001; Claeys et al. 2004; Schkolnik & 
Rudich, 2005; Tagliavini 2006; Decesari et al., 2007; 

Chalbot and Kavouras, 2014 

hydroxyl/alkoxy groups H-C-O band 3.2-4.5 ppm aliphatic alcohols, polyhols, saccharides, ethers, and esters biogenic marine primary Chalbot and Kavouras, 2014 

benzyls and acyls/ amines, 
sulfonates 

H-C-C= / H-C-X 
(X≠O) 

band 1.8-3.2 ppm 

protons bound to aliphatic carbon atoms adjacent to 
unsaturated groups like alkenes (allylic protons), carbonyl or 

imino groups (heteroallylic protons) or aromatic rings (benzylic 
protons) 

biogenic/anthropogenic mostly 
secondary 

Decesari et al., 2001; Graham et al., 2002; Decesari et al., 
2007; Chalbot and Kavouras, 2014 

unfunctionalized alkylic protons H-C band 0.5-1.8 ppm 
methyls (CH3), methylenes (CH2), and methynes (CH) groups 
of several possible molecules: fatty acids chains, alkylic portion 

of biogenic terpenes, etc. 

biogenic/anthropogenic 
primary/secondary 

Decesari et al., 2001; Graham et al., 2002; Decesari et al., 
2007; Chalbot and Kavouras, 2014 

hydroxymethansulfopnic acid HMSA singlet at 4.39 ppm  anthropogenic secondary Suzuki et al., 2001; Gilardoni et al., 2016; Brege et al 2018 

methane-sufonate MSA singlet at 2.80 ppm  biogenic marine secondary 
Suzuki et al., 2001; Facchini et al., 2008a; Decesari et al., 

2020 

di-methylamine DMA singlet at 2.72 ppm  biogenic marine secondary Suzuki et al., 2001; Facchini et al., 2008a 

tri-methylamine TMA singlet at 2.89 ppm  biogenic marine secondary Suzuki et al., 2001; Facchini et al., 2008a 

anhydrosugars  anomeric singlet between 5.40-5.45 ppm & specific structures 
between 3.5 and 4.6 ppm 

levoglucosan, mannosan, galactosan and anomeric-C 
anhydroderivatives from cellulose/lignin combustion 

biomass burning Tagliavini et al., 2006; Pietrogrande et al., 2017 

levoglucosan levo anomeric singlet at 5.45 ppm & specific structures between 3.5 and 
4.6 ppm 

 biomass burning Tagliavini et al., 2006; Paglione et al., 2014a&b; 
Pietrogrande et al., 2017 

saccharides Sac 
used synonymously for compounds carrying H-C-O groups in 

unresolved mixtures but when also anomeric protons (O-CH-O) are 
present 

glucose, sucrose and other sugars structurally similar not 
unequivocally identified 

biogenic marine primary 
Graham et al., 2002; Facchini et al., 2008b; Decesari et al., 
2011; Decesari et al, 2020; Liu et al., 2018; Dall’osto et al., 

2022°; Paglione et al., 2024 

glucose Gls anomeric doublet at 5.22 ppm & specific structures between 3.5 and 
4.2 ppm (not quantified but possibly quantifiable @5.22 ppm) 

 biogenic marine primary Decesari et al., 2020; Dall'Osto et al., 2022b 

sucrose Suc anomeric doublet at 5.40 ppm & specific structures between 3.5 and 
4.2 ppm (not quantified but possibly quantifiable @5.40 ppm) 

 biogenic marine primary Decesari et al., 2020; Dall'Osto et al., 2022b 

ribose Rib anomeric doublet at 5.37 and 5.24 ppm & specific structures 
between 3.6 and 4.2 ppm (not quantified) 

 biogenic marine primary Suggested by this study (to be confirmed) 

polyols  unresolved mixture not quantified (including glycerol and D-threitol) 
glycerol, threitol, erytritol and structurally similar molecules not 

unequivocally identified 
  

glycerol Gly specific structures at 3.55, 3.66 & 3.77 ppm (not quantified but 
possibly quantifiable @ 3.55 ppm) 

 biogenic marine primary Decesari et al., 2020; Dall'Osto et al., 2022b 

D-threitol D-th specific structures between 3.6 - 3.7 ppm (not quantified)  biogenic marine primary suggested by Paglione et al., 2024 (to be confirmed) 

arabitol Arab specific structures between 3.6 - 4 ppm (not quantified)  biogenic marine primary Suggested by this study (to be confirmed) 

galacticol Gal specific structures between 3.7 - 4 ppm (not quantified)  biogenic marine primary Suggested by this study (to be confirmed) 

phenolic compounds PCs unresolved resonances between 6.5 – 7.2 ppm 
Phenol and other compounds consisting of one or more 

hydroxyl groups (−OH) bonded directly to an aromatic ring 
(e.g., vanillic acid, etc.) 

biomass burning […] Decesari et al., 2007; Chalbot and Kavouras, 2014 

low-molecular weight fatty acids or 
"lipids" 

LMW-FA unresolved complex resonances at 0.9, 1.3, and 1.6 ppm in the H-C 
spectral region 

fatty acids (free or bound) from degraded/oxidized lipids (e.g. 
caproate, caprylate, suberate, sebacate, etc.) and similar 

compounds owning a chemical structures of alkanoic acids. 
biogenic marine primary Graham et al., 2002; Facchini et al., 2008b; Decesari et al., 

2011; Decesari et al, 2020; Liu et al., 2018 

biogenic SOA BSOA Series of singlets/doublets between 0.9 – 1.6 ppm 
compounds formed from the oxidation of terpenes and 

isoprene, including terebic acid, MBTCA (Methyl-
butanetricarboxylic Acid) and methyl-tetrols  

biogenic terrestrial secondary Finessi et al., 2012; Zanca et al., 2017 
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Figure S2. Comparison between the parallel quantifications of WSOC, WSOM and OC measured by the different instruments employed: 
panel (a) shows the WSOC reconstructed by H-NMR spectra conversion (based on the specific functional-groups-related stochiometric H:C 5 
ratios) against the total WSOC measured by TOC-analyzer; panel (b) reports the water-soluble organic mass (WSOM) measured by AMS 
against the one calculated by WSOC measured by the TOC-analyzer converted using the AMS OM:OC elemental ratios; panel (c) shows 
the comparison between WSOM measured by AMS and reconstructed by H-NMR spectra; finally, panel (d) shows the total OC measured 
by Sunset against the water soluble fraction (WSOC) measured by the TOC-analyzer. 
 10 



4 
 

 
Figure S3. Comparison between mass concentrations of alkylamines and MSA identified and quantified by NMR and IC analyses. Missing 

data points corresponds to not-detectable values.  

 
 15 
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Figure S4. molecular tracers identified and quantified by H-NMR, namely methane sulfonic acid (MSA), di- and tri- methyl amines (DMA 
and TMA, respectively), hydroxy-methane sulfonic acid (HMS) and levoglucosan. Panel a) shows the concentrations measured in every 
single samples, while panel b) reports the monthly averages. Missing data points corresponds to not-detectable values (i.e., specific signals 20 
of those compounds in the NMR spectra are not emerging from the baseline). 
 

 
Figure S5. elemental ratios (OM:OC, O:C, H:C) extrapolated by HR-AMS spectra: panel a) time series along the year; panel b) Van Kreveln 
diagram with highlighted seasonal average values (colored empty circles) and variability (error bars, representing standard deviations)   25 
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S.2 Additional information on PMF Analysis of HR-AMS and H-NMR spectra 

The aim of PMF is to derive a linear combination of components (factors) that can reproduce the observed chemical 30 

composition and variations in time of the sampled organic aerosol (OA) and can be possibly linked to specific OA sources 

and/or OA formation/transformation processes in atmosphere (Zhang et al., 2011).  

In particular, PMF attempts to solve the bilinear matrix equation, !"# = ∑ &"'('# + *"#
+
',- , by following the weighted least-

squares approach. !"# refers to a particular experimental measurement of concentration species j (here, one point of the mass 

or NMR spectrum) in one particular sample i. Individual experimental measurements are decomposed into the sum of p 35 

components or sources, each one of which is described by the product of two elements; one of these elements, (('#), defines 

the relative amount of the considered variable j in the source composition (loading of this variable on the source chemical 

profile) and the other, (&"'), defines the relative contribution of this source in that sample i (score of the source on this sample). 

The sum is extended to k = 1,. . . , p factors/sources, leaving the measurement unexplained residual stored in *"#  .  

The mathematical goal of the model is to find values of gi,k (factor contributions), fk,j (factor profiles), and p (number of factors) 40 

that best reproduce original data matrix (xi,j). For this purpose the values of gi,k and fk,j are iteratively fitted to the data using a 

least-squares algorithm, minimizing the fit parameter called Q, defined as the sum of squared residuals: . =	∑ ∑ (
12,4
52,4
)78

#,-
9
",-  

where sij is the uncertainty of the jth species concentration in sample i, n is the number of samples, and m is the number of 

species. The use of a data uncertainties input matrix to scale the residuals is one of the main advantages of PMF with respect 

to other non-negative factor analysis techniques, making it especially applicable to working with environmental datasets. 45 

 

In the case of AMS the organic mass spectra were normalized and scaled by the TOC-based WSOC, in order to avoid problems 

of collection and transmission efficiencies and of nebulization efficiency (Bozzetti et al., 2017; O’Brien et al., 2019). Similarly, 

also the NMR spectra before the blanks subtraction were normalized to the total WSOC mass reconstructed by stoichiometric 

H/C ratios conversion applied to the measured functional groups (see Section 2.2.1 of the main text and refer to Tagliavini et 50 

al., 2006 and Decesari et al., 2007). 

 

The PMF AMS input matrix here included the 81 organics mass spectra with their 741 HR fragments until m/z up to 208. 

Before PMF, the organic data matrix was arranged according to the Ulbrich et al. (2009) recommendations. Isotope ions were 

removed and a minimum counting error was applied to create the data uncertainty input matrix. All fragments with a signal-55 

to-noise ratio (SNR) below 0.2 were removed from the matrices, and those with a signal-to-noise ratio below 2.0 were down-

weighted, according to the recommendations of Paatero and Hopke (2003), increasing their uncertainty by a factor 2. Finally, 

the fragments related to ion CO2+ were also down-weighted since they are calculated as a constant fraction of the ion CO2+ 

(Allan et al., 2004). Unconstrained PMF was performed for p = 2–8 factors to choose a “best” solution before the model 

statistical and rotational uncertainty analysis (described later). Five random seed runs were performed for each p (35 runs in 60 

total). Some diagnostics were produced (Figure S6) to investigate the optimum p based on the explained variability of the input 
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matrix (Q/Qexp, scaled residuals) and the stability and/or interpretability of the solutions among different runs for each p. 

Eventually, a 4-factors solution was chosen because of the best separation of interpretable spectral features and contributions. 

All random seed runs provided essentially identical results (that is, the lowest Q/Qexp relative standard deviation) especially 

for the 4-factor solution (the factor profiles are shown in Figure S7). The Q/Qexp of this average 4-factor solution exhibited a 65 

random pattern in both dimensions (time series and variables) of the reconstructed PMF output matrix (81 samples and 741 

HR fragments up to m/z 208).  

The 3-factors solution (p=3) was also considered, but eventually rejected because not able to separate a specific factor related 

to the Arctic Haze period from the background mixed factor (see description in the main text, Section 3.3). Going to 5-factors 

instead, the solutions start to be less robust producing multiple factors for the same constituents (see correlation coefficients 70 

reported in Figure S8). 

 
Figure S6. AMS PMF Q-values and residuals plots: (a) Q/Qexp ratio versus the number of factors p as the average between the different 5 
random runs executed for each p (i.e., Q/Qexp avg.). (b) Q/Qexp avg. to evaluate the stability of the different random runs for each p. Both in 
(a) and (b) the yellow circle denotes the chosen solution (p=4); (c) distribution of the scaled residuals among samples and variables (AMS 75 
spectra m/z fragments). 
 

For factor identification (Zhang et al., 2011), we used a combination of criteria. These include in particular the factor seasonal 

cycle, fragmentation pattern, characteristic fragments, time series correlation with external markers, time series correlation 

with environmental parameters and the BT analysis. 80 

The atomic ratios (O:C, H:C, N:C and S:C) and OM:OC ratios shown in Figure S7 were calculated for each AMS-PMF factor 

(for m/z up to 208), using the Analytical Procedure for Elemental Separation (EAlight version 1.06) within Igor. 

 



8 
 

 
Figure S7. Mass spectra profiles of the 4-factors by AMS-PMF. The profiles are shown as normalized fragment intensities in HR with 85 
average atomic ratios. The fragments are color-coded with the family (as detailed by the legend). 
 

 

 
Figure S8. Correlation coefficients (Pearson R2) between AMS factor profiles and contributions of different solutions by PMF ME-2: (a) 90 
4-factors solution (p=4), eventually chosen as the best solution; (b) 5-factors solution. 
 

(a) p=4 R2 (Pearson) (b) p=5 R2 (Pearson)
F1 F2 F3 F4 F1 F2 F3 F4 F5

Profiles Factor1 Factor2 Factor3 Factor4 Profiles Factor1 Factor2 Factor3 Factor4 Factor5
F1 Factor1 1 F1 Factor1 1
F2 Factor2 0.86 1 F2 Factor2 0.90 1
F3 Factor3 0.92 0.96 1 F3 Factor3 0.52 0.42 1
F4 Factor4 0.92 0.76 0.83 1 F4 Factor4 0.86 0.85 0.71 1

F5 Factor5 0.94 0.98 0.50 0.92 1

Contributions Contributions

F4 Factor4 0.06 0.00 0.00 1 F5 Factor5 0.44 0.02 0.02 0.01 1
F3 Factor3 0.00 0.13 1 F4 Factor4 0.02 0.10 0.07 1
F2 Factor2 0.09 1 F3 Factor3 0.00 0.04 1
F1 Factor1 1 F2 Factor2 0.02 1

F1 Factor1 1
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The PMF NMR input matrix included the full collection of 87 NMR spectra of PM1 samples object of the study. The 

application of PMF analysis to NMR spectral datasets is relatively new for atmospheric sciences, even though non-negative 

factor analysis being widely employed in other fields, especially in biochemistry. In the present study, we followed the 95 

procedure already described in previous publications (Paglione et al., 2014a; Paglione et al., 2024).  

Before the statistical analysis, the original NMR spectra were subjected to several preprocessing steps in order to remove 

spurious sources of variability. A polynomial fit was applied to baselines and subtracted from the spectra. Careful horizontal 

alignment of the spectra was performed using the Tsp-d4 and buffer singlets as reference positions (at 0.00ppm and 8.45ppm, 

respectively). The spectral regions containing only noise or sparse signals of solvent/buffer (H< 0.5 ppm; 4.7 < H< 5.2 ppm; 100 

and 8.15< H <8.60 ppm) were omitted. The five blanks spectra were averaged together and the corresponding mean blank-

spectrum was subtracted to all the sample-spectra. Binning over 0.02 ppm of chemical shift intervals was applied to remove 

the effects of peak position variability caused by matrix effects. Low-resolution spectra (~400-points) were finally obtained 

and processed by applying the Multilinear Engine 2 solver (ME-2, Paatero, 2000) controlled within the Source Finder software 

(SoFi v8.6, Canonaco et al., 2013; Crippa et al., 2014).  105 

The uncertainty input matrix required by PMF was derived in this study from the signal-to-noise ratios of the NMR spectra (as 

already described in previous publications, Paglione et al., 2014a, 2014b and 2024). In particular, the uncertainty was 

calculated for each sample as 7 times the standard deviation of the signal intensity in a portion of the spectrum containing only 

noise/baseline values (between 6.5 and 7ppm). 

Solutions with different number of factors (p= from two up to eight) were explored for the spectral dataset. Also for NMR five 110 

random seed runs were performed for each p (35 runs in total). Eventually, a five-factors solution was chosen because of the 

best separation of interpretable spectral features and contributions. The 4-factors solution (p=4) was also considered, but 

rejected in the end because not able to separate a specific factor related to the Arctic Haze period from the background mixed 

factor (see later description). Going to 6-factors instead, the solutions start to be less robust producing multiple factors for the 

same constituents (see correlation coefficients reported in Figure S9) and in disagreement between different runs. 115 
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Figure S9. Correlation coefficients (Pearson R2) between NMR factor profiles and contributions of different solutions by PMF ME-2: (a) 
five-factors solution (p=5), eventually chosen as the best solution; (b) six-factors solution. 120 
 

The same mathematical diagnostics used for AMS-PMF solutions evaluation were produced also for NMR (Figure S10). The 

Q/Qexp values for the NMR-PMF suggest that a number of factors higher than five does not significantly improve the goodness 

of fit (panel a). All random seed runs provided essentially identical results (that is, the lowest Q/Qexp relative standard 

deviation) only starting from the 5-factor solution (panel b). The scaled residuals resulted to be randomly distributed between 125 

samples and variables, without any clear structures/patterns (panel c). 

 

 

 

(a) p=5 F1a F1b F2 F3 F4 (b) p=6 F1a F1b F2 F3 F4 F5
Profiles Factor1 Factor2 Factor3 Factor4 Factor5 Profiles Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
F1a Factor1 1 F1a Factor1 1
F1b Factor2 0.00 1 F1b Factor2 0.52 1
F2 Factor3 0.08 0.41 1 F2 Factor3 0.00 0.16 1
F3 Factor4 0.00 0.48 0.62 1 F3 Factor4 0.00 0.24 0.42 1
F4 Factor5 0.04 0.45 0.48 0.56 1 F4 Factor5 0.00 0.20 0.50 0.52 1

F5 Factor6 0.00 0.18 0.62 0.45 0.46 1
Contributions

F4 Factor5 0.00 0.05 0.56 0.02 1 Contributions
F3 Factor4 0.00 0.01 0.01 1 F5 Factor6 0.03 0.36 0.67 0.02 0.29 1
F2 Factor3 0.00 0.19 1 F4 Factor5 0.03 0.07 0.50 0.02 1
F1b Factor2 0.21 1 F3 Factor4 0.02 0.01 0.00 1
F1a Factor1 1 F2 Factor3 0.00 0.14 1

F1b Factor2 0.07 1
F1a Factor1 1
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 130 
Figure S10. NMR factor analysis Q-values and residuals plots: (a) Q/Qexp ratio versus the number of factors p as the average between the 
different 5 random runs executed for each p (i.e., Q/Qexp avg.). (b) Q/Qexp avg. to evaluate the stability of the different random runs for 
each p. Both in (a) and (b) the yellow circle denotes the chosen solution (p=4); (c) distribution of the scaled residuals among samples and 
variables (AMS spectra m/z fragments). 
 135 

The interpretation of NMR factor spectral profiles was based on the presence of molecular resonances of tracer compounds, 

and on the comparison with a library of reference spectra recorded in laboratory/chamber experiments or in the field during 

near-source studies (Suzuki et al., 2001; Schmitt-Kopplin et al., 2012; Paglione et al., 2014a, 2014b; Decesari et al., 2014, 

2020; Paglione et al., 2024). The identification was also supported by elaboration tools/software providing extensive libraries 

of biogenic compounds, such as Chenomx NMR suite (Chenomx inc., evaluation version 9.0), or allowing theoretical 140 

simulations of H-NMR spectra of atmospheric relevant molecules, such as ACD/Labs (Advanced Chemistry Developments 

inc., version 12.01). Two examples of tracers identified in the NMR spectra and used for interpretation of NMR factor profiles 

are reported in Figure S11 and S12). Further comparisons for the interpretation of Factor 1b and Factor 2 are instead reported 

in Figure S13 and S15. 

 145 
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Figure S11. Example of identification of possible tracers using the extensive libraries of compounds offered by Chenomx NMR suite 
(Chenomx inc., evaluation version 9.0). Here it is reported an attempt of fitting the ambient PM1 spectrum of sample 26-Jul-2019, with the 
signals expected for the molecules available in the database. Red line is the fitting line using the sum of the possible molecules available in 
the database. Legend reports a list of compounds identified in this spectrum. Especially noteworthy are the signals of some fatty acids esters 150 
from degraded/oxidized lipids such as caproate, caprylate, suberate, sebacate, etc. and similar compounds owning a chemical structure of 
alkanoic acids.  
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 155 
Figure S12. Example of identification of possible tracers using the extensive libraries of compounds offered by Chenomx NMR suite 
(Chenomx inc., evaluation version 9.0). In this figure are shown the expected NMR spectral patterns of some sugars and polyols, specifically 
sucrose (yellow line), glucose (cyan line), ribose (greenish line), glycerol (magenta line), D-threitol (light-blue line) and others (as specified 
in the color legend), against the NMR spectrum of PM1 sample 30-Jul-2019 (black line). The spectral region distorted by H2O signal is 
removed in the ambient spectrum 160 
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Figure S13. Comparison between the profile of Factor 1b (attributed to marine POA) and some NMR spectra of sea-spray generated during 
bubble bursting experiments from previous studies (PEGASO and PI-ICE projects, Decesari et al., 2020; Dall’Osto et al., 2022a) and with 
Factor analysis results on Southern Ocean ambient OA in PM1 samples (Paglione et al., 2024). 165 
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Figure S14. Comparison between the time trends of selected H-NMR factors and of molecular tracers from IC/HPLC-MS analysis:(top-left) 170 
H-NMR factor for marine aged POA vs. C3-C7 saturated dicarboxylic acids (DCAs) (= malonic + succinic + malic + glutaric + adipic + 
pimelic acids) and sugars (= glucose + sucrose + xylose + ribose); (left-center) H-NMR factor for Arctic haze and wood burning tracers 
(levoglucosan and vanillic acid); (top-right) H-NMR Factor 4 (background) vs oxalic acid, C1-C2 monocarboxylic and hydrocarboxylic 
acids (OH-MCAs = acetic + glycolic acid) and maleic acid; (right-center) H-NMR Factor 4 (background) vs glycine, total L-aminoacids (L-
AA) and total D-aminoacids (D-AA). The trends of the main C6 polyols (mannitol, sorbitol) are shown on the bottom-right corner. 175 
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Figure S15. Panel (a): maps of the Arctic Marginal Ice Zone (MIZ) from the archive of the US National Ice Center (USNIC) for some dates 180 
of the summer 2019 (https://usicecenter.gov/Products, last access:16 Jan. 2025). Panel (b): concentration weighted trajectories (CWT) map 
of Factor 1b, showing the most probable source area for that factor, to be compared with panel (a). Panel (c): bars show the sea-water/sea-
ice fractional influence on the backtrajectories at GVB, overlaid on the time series of PMF contributions of F1b (marine POA) as apportioned 
by NMR analysis (green line and area). Ground condition maps were obtained from the National Ice Center’s Interactive Multisensor Snow 
and Ice Mapping System (IMS) (Helfrich et al., 2007; National Ice Center, 2008), National Snow & Ice Data Center (NISDC; https: 185 
//nsidc.org/, last access: 16 Jan. 2025). We used the daily Northern Hemisphere maps with a resolution of 4 km. The ground types considered 
were “sea-water”, “sea-ice”, “land”, and “snow”. Seawater indicates passage of the air mass over open seawaters, while sea ice indicates 
passage over icecovered seawaters. For each back-trajectory endpoint, we applied nearest-neighbor interpolation in space and time to find 
the closest pixels on the satellite map and associated the endpoint with the corresponding ground type. Combining the information obtained 
along the whole back-trajectory (or group of back-trajectories for PM1 samples) allowed estimation of the contribution of each ground type 190 
to each PM1 sample. 
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Figure S16. Comparison between the profile of Factor 2 and some NMR spectra of HULIS by laboratory analysis of standards (Suwanne 
river Fulvic acid), ambient PM1 samples and factor analysis results from previous studies (Paglione et al., 2014a; 2014b; Decesari et al., 195 
2014). 
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 200 

 
 
Figure S17. Panel (a): levoglucosan concentration measured by NMR (greenish markers) overlaid on the time series of PMF contributions 
of Factor 2 and Factor 3 (redish and greysh lines and backgrounds); in the subpanel, scatterplots of levoglucosan concentrations (x-axis) 
against F2 (right y-axis) and F3 (left y-axis) contributions during summer (jun.-sept.) and winter (dec.-mar.), respectively. Panel (b): 205 
concentration weighted trajectories (CWT) map of Factor 2, showing the most probable source area for that factor; to be compared with 
panel (c), reporting the wildifires map by NASA MODIS satellite for July 2019. 
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Figure S18. Comparison between the H-NMR spectrum of the sample of July 04th 2019 at full resolution and H-NMR spectra of oxidation 210 
products of terpenes (i.e., terebic acid and MBTCA by standard solutions) and isoprene (i.e., methy-tetrols, by PAM chamber experiments). 
 

 

 

  215 
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Table S3. Pearson Correlation coefficients (R) between the time series of AMS and NMR factor-contributions for the chosen solutions. 

   
AMS       NMR           

   
F1 F2 F3 F4 F1a F1b F2 F3 F4 F1a+F1b 

  
R (Pearson) marine 

OA 

Aged 
wildfires 

OA 

Arctic-
haze 
OA 

background 
mix OA 

marine 
SOA 

marine 
POA 

Aged 
wildfires 

OA 

Arctic 
haze 
OA 

background 
mix OA 

marine 
OA_TOT 

AMS F1 marine OA 1 0.23 0.00 0.01 0.84 0.80 0.11 -0.05 0.05 0.93 

  F2 
Aged 

wildfires 
OA 

0.23 1 0.14 0.42 0.21 0.58 0.98 0.10 0.73 0.49 

  F3 Arctic haze 
OA 0.00 0.14 1 0.34 -0.07 0.07 0.09 0.84 -0.05 0.02 

  F4 background 
mix OA 0.01 0.42 0.34 1 0.08 0.14 0.45 0.38 0.57 0.13 

NMR F1a marine 
SOA 0.84 0.21 -0.07 0.08 1 0.50 0.17 -0.07 0.13 0.80 

  F1b marine 
POA 0.80 0.58 0.07 0.14 0.50 1 0.43 0.04 0.24 0.92 

  F2 
Aged 

wildfires 
OA 

0.11 0.98 0.09 0.45 0.17 0.43 1 0.06 0.77 0.38 

  F3 Arctic haze 
OA -0.05 0.10 0.84 0.38 -0.07 0.04 0.06 1 -0.09 -0.01 

  F4 background 
mix OA 0.05 0.73 -0.05 0.57 0.13 0.24 0.77 -0.09 1 0.22 

  F1a+F1b marine 
OA_TOT 0.93 0.49 0.02 0.13 0.80 0.92 0.38 -0.01 0.22 1 

 

 

 220 

 

 

 

 

 225 
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Model uncertainty 

The PMF model statistical and rotational uncertainty was assessed via a bootstrapping (BS) approach for both AMS and NMR 

dataset. The BS approach randomly resample the spectral datasets, generating new input matrices from the original input 

matrix for each new run. Each newly generated PMF input matrix had a total number of samples equal to those of the original 230 

matrices, although some of the original filter samples were represented several times, and others were not represented at all. 

The resulting variability intervals represent possible temporal variations of the factors profiles, random measurement 

inaccuracies and errors in the modelling process, such as rotational ambiguity and a mis-specified number of factors (Reff et 

al, 2007). 100 BS runs have been performed to AMS 4-factors solution and NMR 5-factors solution respectively. In both the 

analyses, BS resamples reproduced 100% of the base factors and only a low change in Q was observed (6% and 9% for AMS 235 

and NMR respectively). The average estimated concentration of each factor to the total observed OA varied by less than 30 % 

of its mean value. Profiles and contributions reported in Figure S19 are the averages (lines) and the standard deviations (error 

bars) from the 100 BS runs.  
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 240 

(a)  

(b)  

Figure S19. Results of the model uncertainty evaluation through bootstrap analysis (100 runs) for AMS (panel a) and NMR (panel b): lines 
represent the average factor profiles and contributions; error bars are the standard deviation of the 100 solutions. 
 245 

 



23 
 

 
 
Table S4. Pearson correlation coefficients between AMS & NMR factor contributions and ions/tracers measured by IC and other ancillary 
measurements. 250 

   
AMS 

   
NMR 

     

   
F1 F2 F3 F4 F1a F1b F2 F3 F4 F1a+F1b 

  
R (Pearson) 

Marine 

OA 

Aged 

wildfires 

OA 

Arctic-

haze 

OA 

Background 

mix OA 

Marine 

SOA 

Marine 

POA 

Aged 

wildfires  

OA 

Arctic-

haze 

OA 

background 

mix OA 

Marine 

OA_TOT 

Main tracers IC SO4 -0.05 0.07 0.79 0.43 0.01 -0.08 0.07 0.78 -0.04 -0.06 

  NO3 0.02 0.08 0.11 0.11 -0.11 0.10 0.04 0.20 0.05 0.01 

  NH4 0.35 0.37 0.59 0.58 0.37 0.28 0.34 0.55 0.22 0.35 

  Na -0.21 -0.09 0.42 0.27 -0.08 -0.28 -0.03 0.48 -0.04 -0.24 

  Br* 0.85 0.60 0.57 0.21 0.89 0.87 0.49 0.34 0.47 0.89 

  SeaSalt -0.21 -0.09 0.42 0.27 -0.08 -0.28 -0.03 0.48 -0.04 -0.24 

  nss-SO4 -0.04 0.08 0.79 0.43 0.01 -0.07 0.08 0.79 -0.04 -0.05 

  nss-K -0.15 -0.08 0.25 -0.09 -0.15 -0.13 -0.08 0.20 -0.08 -0.16 

  nss-
other_ions -0.16 -0.05 0.36 -0.04 -0.18 -0.13 -0.05 0.32 -0.08 -0.17 

 AMS Organics 0.35 0.94 0.35 0.61 0.31 0.63 0.90 0.30 0.68 0.55 

  Sulfate 0.08 0.12 0.80 0.52 0.12 0.04 0.10 0.73 0.00 0.08 

  Nitrate 0.33 0.30 0.07 0.44 0.17 0.35 0.24 0.06 0.30 0.31 

  Ammonium 0.09 0.13 0.80 0.53 0.13 0.05 0.11 0.73 0.01 0.09 

 PSAP eBC -0.15 0.08 0.75 0.48 -0.15 -0.08 0.10 0.83 0.08 -0.13 

 SUNSET EC -0.09 0.14 0.80 0.36 -0.18 0.09 0.10 0.81 0.00 -0.03 

Organic tracers IC MSA 0.82 0.16 -0.11 0.04 0.98 0.46 0.13 -0.09 0.10 0.77 

  Amines_TOT 0.64 0.41 0.09 0.10 0.32 0.85 0.29 -0.05 0.24 0.75 

 NMR MSA 0.84 0.22 -0.08 0.09 1.00 0.50 0.18 -0.08 0.16 0.81 

  Levoglucosan -0.14 0.36 0.54 0.40 -0.06 0.03 0.34 0.57 0.38 0.00 

  HMSA 0.38 0.44 0.39 0.36 0.35 0.43 0.37 0.43 0.33 0.45 

  TMA 0.67 0.73 0.14 0.38 0.59 0.84 0.67 0.08 0.50 0.84 

  DMA 0.50 0.83 0.20 0.60 0.50 0.66 0.78 0.17 0.63 0.66 

  Amines_TOT 0.64 0.80 0.17 0.48 0.58 0.81 0.74 0.12 0.57 0.81 

* 
Bromide is measured by UniVE 
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Source-marker AMS fragments.  

We provide here in Table S5 specific HR-AMS mass fragments identified in our dataset as characteristic of specific sources, 

which were also identified in previous studies. These fragments were selected based on their highest contribution to these 

factors and the dominant contribution of these factors to these fragments. 265 

 
Table S5. 

Factor Characterizing peaks (up to mz 150) (*) 

Factor 1 – Marine biogenic OA  CHS, CH2SO, CH3SO, CH2SO2, CH3SO2, CH4SO3 

Factor 2 – Aged wildfires OA 

CH5O2, C3H7O, C5H4, C4H2O, C3H7O2, C5H6O, C3H3O3, C6H7O, C5H5O2, 
C5H6O2, C5H7O2, C4H4O3, C5H8O2, C5H9O2, C7H8O, C6H7O2, C6H8O2, 
C5H5O3, C6H9O2, C5H6O3, C5H7O3, C4H9O4, C8H10O, C6H5NO2, C7H7O2, 
C7H8O2, C3H9O5, C7H9O2, C7H10O2, C6H7O3, C7H11O2, C6H9O3, C9H8O, 
C5H9O4, C8H8O2, C7H7NO2, C8H9O2, C8H10O2, C6H3O4, C7H7O3, C8H11O2, 
C7H8O3, C7H9O3, C6H7O4, C5H8O5 

Factor 3 – Arctic haze OA CH4, C2H6O, CH3NO2, C5H12, C5O, C3H8O2, C4O2, C5H12O, C7H16, C7H3O, 
C7H4O, C8H16, C8H18, C8H5O2, C9H18O, C10H22, C8H3O3, C8H4O3 

Factor 4 – Background OA C8H3O 

(*) The fragment is explained by the factor for more than 60% 

 

 

S3. Source contributions to OC: methods 270 

The water soluble fraction of OC, accounting on average for 71±18% of the total OC, was quantified by AMS and NMR 

(compared with TOC-analyzer measurements) and further apportioned to different factors/sources using PMF. Furthermore, 

to quantify factors/sources contribution to the total OC, we employed a multilinear regression model (MLR). Specifically, we 

assume each factor has a constant recovery coefficient (:;), i.e., the reciprocal of water solubility. The sum of the product of 

these recovery coefficients and the corresponding factor contributions was then fitted to the total OC concentrations via 275 

Bayesian-based statistical framework Stan (Carpenter et al., 2017). This can be expressed as:  

                                                                <;~>(∑ :;" ∙ ;"," @AB7 )                                                                                                    (4) 

where :;"  represents the recovery coefficient for factor C , ;"  represents the concentrations of factor C ,@AB7  represents the 

variance, calculated as 10% of measured OC in our case, accounting for the residual error in the model. The Stan model was 

set with 4 Markov chain with 2000 iterations each to explore the solution set effectively. Detailed results with both AMS and 280 

NMR factors as input can be seen in Table S4.  

The approach was applied both to the AMS/NMR factors expressed in term of µgC m-3 (as already done in previous studies 

(Casotto et al., 2023; Cui et al., 2024) but also (for the first time) directly to NMR factors quantified in term of µmolH m-3, in 

order to try an approach to convert µmolH to µmolC without arbitrary assumptions (on the stoichiometric ratio of the different 

functional groups, as mentioned in Section 2.2 of the main text). It should be noted that the fitting coefficients starting from 285 
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concentrations in µmolH m-3 are all much higher than 1 because they include also the stochiometric H:C conversion necessary 

to fit OC mass. Given the fact that the OC-fitting results are very similar using both the approaches (see the comparison in Fig. 

S20), we eventually discuss in the main text only the version of the calculation starting from µgC m-3 (Figure 6 and related 

discussion). As a side consideration, this consistency of results supports the reliability of the stoichiometric ratio chosen for 

the C quantification of the functional groups from NMR spectra (Section 2.2). 290 

Considering the reasonable agreement between AMS and NMR reconstruction of total marine WSOC fraction (see Figure 4), 

we considered marine OCAMS to correspond to the sum of marine primary and secondary components as apportioned by NMR 

(marine POCNMR and SOCNMR) and we then split the marine OCAMS based on the NMR relative contributions of the two 

components, as expressed in following equations: 

 295 

DEFCG*	H<;IJK = DEFCG*	<;IJK ∗
9MN"81KABOPQ

9MN"81RABS,OPQT9MN"81KABS,OPQ
	       (5.1) 

DEFCG*	U<;IJK = DEFCG*	<;IJK ∗
9MN"81RABOPQ

9MN"81RABS,OPQT9MN"81KABS,OPQ
       (5.2) 

 

 
Table S6. OC fitting coefficients resulting by the multilinear regression of WSOC factors apportioned both by AMS and NMR 300 

   

OC recovery coefficients 

(RC) by WSOC 
 

   
by μgC by μmolH 

water-

solubility 

AMS F1 Marine OA 1.72 12.08 0.58 

  F2 Aged wildfires OA 1.21 10.06 0.82 

  F3 Arctic-haze OA 1.56 13.05 0.64 

  F4 Background OA 2.21 20.78 0.45 

NMR F1a Marine SOA 1.33 8.55 0.75 

  F1b Marine POA 1.55 14.44 0.65 

  F2 Aged wildfires OA 2.22 20.84 0.45 

  F3 Arctic-haze OA 2.04 18.80 0.49 

  F4 Background OA 1.56 13.66 0.64 
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Figure S20. Comparison between results of multilinear regression model applied both to the NMR and AMS factors (left and right side, 
respectively), expressed in term of µgC m-3 (upper charts) or alternatively in term of µmolH m-3 (lower charts). Pie charts report the relative 
contributions of the PMF-factors as annual averages. 305 
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