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Abstract. Satellite instruments for measuring atmospheric column mixing ratios have improved significantly
over the past couple of decades, with increases in pixel resolution and accuracy. As a result, satellite observa-
tions are being increasingly used in atmospheric inversions to improve estimates of emissions of greenhouse
gases (GHGs), particularly CO, and CHy, and to constrain regional and national emission budgets. However, in
order to make use of the increasing resolution in inversions, the atmospheric transport models used need to be
able to represent the observations at these finer resolutions. Here, we present a new and computationally effi-
cient methodology to model satellite column average mixing ratios with a Lagrangian particle dispersion model
(LPDM) and calculate the Jacobian matrices describing the relationship between surface fluxes of GHGs and at-
mospheric column average mixing ratios, as needed in inversions. The development will enable a more accurate
representation of satellite observations (especially high-resolution ones) via the use of LPDMs and, thus, help
improve the accuracy of emission estimates obtained by atmospheric inversions. We present a case study using
this methodology in the FLEXPART (FLEXible PARTicle dispersion model) LPDM and the FLEXINVERT in-
version framework to estimate CH4 fluxes over Siberia using column average mixing ratios of CH4 (XCHjy) from
the TROPOMI (TROPOspheric Monitoring Instrument) instrument aboard the Sentinel-5P satellite. The results

of the inversion using TROPOMI XCHy are evaluated against results using ground-based observations.

1 Introduction

Satellite remote sensing provides a wealth of information on
the atmosphere and its composition. The number of satellite
missions monitoring long-lived greenhouse gases (GHGs),
specifically CO, and CHy, has grown substantially over the
past couple of decades, providing information on their vari-
ability, trends, and sources. From instruments aboard satel-
lites, it is possible to retrieve mixing ratios of GHGs, most
commonly as column averages (e.g. XCO, and XCHy) or,
depending on the instrument, viewing angle, and retrieval,
as sub-columns, which can be used to derive estimates of
surface—atmosphere fluxes using atmospheric transport mod-

els and inversion techniques (e.g. Alexe et al., 2015; Chen et
al., 2023; Chevallier et al., 2005; Peiro et al., 2022; Zhang
et al., 2023, 2021). Satellite instruments can be classified
as “area flux mappers” or “point source imagers” (Jacob
et al., 2022). Area flux mappers are high-precision instru-
ments with larger pixel sizes (on the order of 0.1-10 km) and
are designed to image mixing ratios on regional to global
scales, whereas point source imagers have smaller pixel size
(< 0.1km) and are designed to detect and quantify individual
sources by mapping their plumes (Jacob et al., 2022). Specif-
ically, it is the area flux mappers that are useful in inversions
to estimate global and regional fluxes of CO, and CH4, and
they are becoming increasingly used to determine regional
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and national emission budgets and for comparisons with
GHG emission inventories (e.g. Byrne et al., 2023; Deng et
al., 2022; Maasakkers et al., 2021; Nesser et al., 2024; Wor-
den et al., 2022). As satellite instrumentation has improved,
there has also been an increase in pixel resolution. For ex-
ample, the earliest satellite observations for CH4 were from
the SCIAMACHY instrument aboard ENVISAT, launched
in 2002, which had a pixel size of 30 x 60 km, whereas the
XCH4 product from TROPOMI (TROPOspheric Monitor-
ing Instrument) aboard Sentinel-5P, launched in 2017, has
a pixel size at nadir of 5.5 x 7 km, and the recently launched
MethaneSAT has a pixel size of just 0.1 x 0.4 km (Jacob et
al., 2022). With this resolution increase, it is important to
consider how the observations are represented in atmospheric
transport models for inverse modelling.

Up to the present, inversions with satellite observations
have primarily been made using Eulerian atmospheric trans-
port models, either using Green’s functions, adjoint models,
or ensemble approaches to relate the column average mix-
ing ratios to fluxes (e.g. Bergamaschi et al., 2009; Tsuruta
et al., 2023; Varon et al., 2023). This is because the num-
ber of model iterations or ensemble members is independent
of the number of observations, which for satellites can be a
very large number. In contrast, there are only very few exam-
ples in the literature in which Lagrangian particle dispersion
models (LPDMs) have been used with satellite observations
(e.g. Ganesan et al., 2017; Wu et al., 2018) because the num-
ber of model calculations required in their backward mode is
proportional to the number of observations making it com-
putationally demanding.

On the other hand, LPDMs have some advantages over Eu-
lerian models. LPDMs exhibit less numerical diffusion com-
pared to Eulerian models; because of this, they generally bet-
ter capture tracer filaments generated by atmospheric disper-
sion (Ottino, 1989) and fine structures in tracers mixing ratios
resulting from long-range transport (Rastigejev et al., 2010).
Furthermore, LPDMs can accurately represent any observa-
tion geometry, whereas an observation is represented by a
grid cell in Eulerian models (Pisso et al., 2019). With the in-
creasing resolution of satellite instruments, Eulerian model
resolution may become a limiting factor in the ability to ac-
curately represent an observation; hence, the use of LPDMs
becomes a more interesting alternative. Finally, LPDMs can
be run in a backward-in-time mode (without significant mod-
ifications to the code), which allows the sensitivity of an ob-
servation to fluxes to be calculated; in this way, LPDMs are
sometimes said to be “self-adjoint”.

The main challenges of using LPDMs with satellite obser-
vations are (1) the number of observations for which back-
ward computations need to be made and (2) that each re-
trieval is made over numerous vertical layers, which need to
be represented in the model and combined with the retrieval’s
averaging kernel and prior mixing ratio profile. Here, we
present a novel methodology to represent total column ob-
servations efficiently in an LPDM and to enable the use of
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LPDMs across a variety of spatial and temporal scales for
atmospheric inversions with satellite data. The methodology
has been implemented in the FLEXPART (FLEXible PARTi-
cle dispersion model, version 10.4; Pisso et al., 2019) LPDM,
but it could, in principle, be implemented in any LPDM. It
can also be applied to any satellite retrieval.

We demonstrate the use of this methodology in a case
study looking at CH4 using retrievals from TROPOMI
aboard the Sentinel-5P satellite. The case study region is
Siberia, which was chosen because it has significant CHy
emissions from both natural sources (e.g. peatlands) and an-
thropogenic sources (e.g. fugitive emissions from oil and gas
extraction and transportation as well as from coal mining).
We focus on the year 2020 and the months from March to
October, for which there are an appreciable number of re-
trievals available. We use FLEXPART to model XCHy and,
along with observed XCHy4, we derive estimates of CHy
fluxes using the FLEXINVERT (Thompson and Stohl, 2014)
Bayesian inversion framework. The fluxes from inversions
using TROPOMI XCHy are evaluated via comparison with
fluxes derived from inversions using ground-based obser-
vations from the JR-STATION (Japan—Russia Siberian Tall
Tower Inland Observation Network) in situ measurement net-
work (Sasakawa et al., 2010, 2012) as well as one in situ site
and two flask sampling sites available form the World Data
Centre for Greenhouse Gases (WDCGG).

2 Methodology

FLEXPART models atmospheric transport using virtual par-
ticles that are subject to transport and turbulent mixing as
determined from meteorological fields. FLEXPART can be
run in a backward-in-time mode, which is theoretically con-
sistent with the forward-in-time-mode calculations (Flesch et
al., 1995; Thomson, 1990), to calculate the residence time of
virtual particles in a surface layer within the boundary layer
and, thus, the influence of surface fluxes on these particles.
In this mode, Jacobian matrices representing the influence of
fluxes on an atmospheric observation can be derived, which
are termed “source—receptor relationships” (SRRs), or some-
times “footprints” (Seibert and Frank, 2004). The SRRs can
be integrated with flux fields to simulate mixing ratios and
can be used in atmospheric inversions to update a prior esti-
mate of the fluxes (e.g. Thompson and Stohl, 2014; Brioude
et al., 2012). However, as far as we are aware, LPDMs have
not been used before to model large numbers of satellite ob-
servations owing to the computational cost.

2.1 Modelling total column observations

Following Rodgers and Connor (2003), a modelled vertical
profile x of mixing ratios can be compared with a retrieved
profile using the following expression:

x5 =xPri+A(x —xpri>, €))
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where A is the averaging kernel matrix (an N x N dimen-
sional matrix), xP" is the a priori profile used in the retrieval,
and x™ is a smoothed version of the vertical profile x. For a
retrieval performed on N discrete pressure layers, the col-
umn average mixing ratio x?¢ is the weighted sum of N
sub-columns corresponding to the retrieval pressure layers
(Apituley et al., 2021):

N N _
P P 5 T1
xWVE = x2VePT E ApWyXy — Zanwnxf,’ , 2)
n=1 n=1
where x?Y&P™ is the prior column average mixing ratio, a,

is the nth element of the column averaging kernel, w, is a
pressure-weighting term related to the thickness of the pres-
sure layer, and x,, is the modelled mixing ratio for the nth re-
trieval layer. For LPDMs, x,, can be modelled as the product
of the SRR for the nth retrieval layer H, (a 1 x g dimensional
matrix, where ¢ is the number of flux variables) and the es-
timate of the fluxes f (¢ x 1) as well as an estimate of the
so-called “background” mixing ratio. Following Thompson
and Stohl (2014), the background mixing ratio is modelled as
the product of the background-receptor relationship (BRR)
matrix calculated from the positions of the virtual particles
when they terminate (Hi,“i) and a 3D field of initial mixing
ratios (y'™). Note that chemical losses during the backward-
simulation period, e.g. from OH oxidation, can be taken into
account in the SRR and BRR matrices. The modelled mixing
ratio for the nth retrieval layer is thus

X, = H, f + HMy", 3)

By substituting Eq. (3) into Eq. (2), we obtain the following:

N
X8 — yavg.pri Za" <anwn + H;lmymlwn>
n=1

N .
ri
- E anwan . 4
n=1

Thus, the column average SRR can be expressed as follows:

N
H = ZanH,,w,,; (5)
n=1

a similar expression can be used for the column average BRR
(Hcol,ini)'

Equations (2)—(5) represent the approach that has pre-
viously been used to model satellite observations with an
LPDM, namely, the mixing ratio x, has been calculated for
each retrieval layer requiring calculation of the SRR H,, for
each layer (Ganesan et al., 2017; Wu et al., 2018). Equa-
tion (5) requires the maintenance of information about each
retrieval layer in order to calculate the column SRR. Our
method (as described below) departs from this approach and
is much more computationally efficient.
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In FLEXPART (and LPDMs generally), SRRs are calcu-
lated by sampling the particles on a regular 3D grid. In gen-
eral, for a grid cell i, the SRR for retrieval layer 7 is calcu-
lated as follows:

1 lp,i,nAtp,i,n

H;,=— . (6)
o Pnl; Pi

where [, ; , is the transmission function for particle p (and
represents the fraction of the mass remaining in the particle,
which can change after release in the case of atmospheric
chemistry), Az, ; , is the residence time of the particle in the
grid cell, p; is the air density in the grid cell, and P, is the
number of particles released in layer n (Seibert and Frank,
2004). (Note that, in Eq. 6, the number of particles summed
over is not specified, as this depends on the number of parti-
cles that reside in the grid cell i and is < P,.) Thus, the col-
umn SRR relationship is found by substituting Eq. (6) into

Eq. (5):

N
H;:Ol = lzanwnizlp,i,nAtp,i,n' @)
Pi n=1 Py =1
However, using Eq. (7) would still require the maintenance of
information about which retrieval layer a particle had origi-
nated from in order to calculate the column SRR; further-
more, if P, has the same value for all layers, this would
mean that all layers are sampled equally, even though par-
ticles originating in upper layers are much more unlikely to
reach the surface layer and, thus, contribute to the SRR.
Instead, we carry the information of a,w, by varying the
particle density in each layer, where the number of particles
released per layer, P,, is as follows:

Py, = Paywy, (®)

where P is the total number of particles released per retrieval.
By substituting a,w, for P,/P into Eq. (7), we derive the
following:

11 J
H?Ol = —; Z le,i,n Atp,i,rr )

Pi & 21 p=1

Equation (9) can be simplified further by noting that the sum
over N layers and the sum over particles in the grid cell i
originating from each layer is equivalent to summing over
the particles in the grid cell originating from all layers (hence
we omit the index n):

H@=—F LyiAty;. (10)

In Eq. (10), the information on the retrieval layer from which
a particle originated does not need to be kept (as it is taken
into account at the particle initialization via P,), and the
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equation is analogous to that for point observations. This im-
plementation was compared to calculating the SRRs for each
layer individually, and the results were the same within the
limits of numerical rounding errors. However, by implement-
ing the calculation this way, total column observations can be
simulated with the same computational cost as that for point
observations.

Similarly, the total column BRR for the grid cell i can be
obtained as follows:

le, (11)

Hcol 1n1

A further consideration when modelling satellite observa-
tions with a Lagrangian model is the geometry of the re-
trieval, as the ground-based pixels are not necessarily rect-
angular and can be rotated with respect to the meridians and
parallels. In FLEXPART (and LPDMs generally), an obser-
vation is represented by releasing virtual particles from a vol-
ume in which the particles are distributed randomly. How-
ever, the default is that this volume is rectangular and aligned
with the meridians and parallels. Therefore, we have imple-
mented an affine transformation on the particle positions so
that the volume which they represent matches the geometry
of the retrieval (see the Supplement for a complete descrip-
tion of the affine algorithm).

2.2 Averaging of retrievals

Even with the efficient modelling of total column measure-
ments using the method described above, current satellite
missions can provide on the order of 10000 to 100000 re-
trievals globally per day, making the cost of computing back-
ward trajectories for each retrieval still computationally ex-
pensive if the study region is large. For this reason, we aver-
age the retrievals to so-called “super-observations”. Averag-
ing retrievals also has the advantage that the random error in
the super-observation is reduced compared to each individual
retrieval.

However, in some areas where there is strong heterogene-
ity in the column average measurements, for instance, due
to large localized sources, it would be advantageous to keep
higher-resolution observations. Therefore, we developed an
optimal averaging routine in which the degree of averag-
ing is based on the standard deviation of the column aver-
age mixing ratios. The retrievals are averaged to rectangular
grid cells that are aligned with the meridians and parallels.
The user decides on the finest resolution grid cell to be used
(dmin) and the number of resolution steps (nsteps). The aver-
aging is first performed for the coarsest resolution (given as
dmin X 2"'°P~1) and is then refined stepwise (from nsteps — 1
to 0) by dividing grid cells into four where the standard de-
viation (recalculated at each step) is above a given threshold.
If there are any quarters of the grid cell (as defined for the
current step) where there are no retrievals, the grid cell is
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divided in the next iteration anyway to avoid having a super-
observation for a grid cell that is not fully represented by the
retrievals. Retrievals that are outside £2 standard deviations
of the grid cell mean are not included in the average to avoid
influence from large outliers. The averaging is redefined each
day based on the available retrievals.

In the algorithm, the column average mixing ratio corre-
sponding to the average of M retrievals is calculated as fol-
lows:

e

m=1

prl pri
+ § Smm,nWm,n (xm n— Xm n))

n=1

12)

where X is the total column mixing ratio corresponding to

the average, x}, is the prior column average mixing ratio of
the mth retrieval, N is the number of vertical layers in the
retrievals, s, is the surface area, and S is the total surface
area of all retrievals. By rearranging Eq. (12), we obtain the
following:

pri
X = E Smxm + E E Smm,nWm,nXm,n

m In=
__Zzsmam nWm, nxmna (13)
m=1n=

and this can be written as

_ ri
X=X pr]+§ xnanwn__E E Smamnwmnxp

mlnl

(1fallxm,,, =xn), (14)

where xP" is the area-weighted average prior column mixing
ratio, and a,w, and X, are, respectively, area-weighted av-
erage column averaging kernel and pressure weighting and
the mixing ratio corresponding to the nth layer. Note that the
condition “if all x,, , = X;;”” is met when the particle release
is made for the area over which the M retrievals are averaged.
The uncertainty in the super-observation is calculated as the
quadratic sum of the uncertainties in the individual retrievals
weighted by the ground-pixel area of the retrievals.

For FLEXPART users, we include a description of the
changes to the v10.4 code for the implementation of this
methodology in the Supplement. In addition, we include a
brief description of how these developments could be used
with the recently released FLEXPART v11.

3 Case study on methane sources in Siberia

We demonstrate the use of FLEXPART for modelling col-
umn average mixing ratios, as well as the averaging algo-
rithm, in a case study looking at CH4 emissions in Siberia.
Siberia was chosen because it is a region with significant
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Figure 1. Map of the inversion domain indicating oil and gas ex-
traction and coal mining locations and the ground-based sites used
in the inversion. The oil and gas and the coal mining data were ob-
tained from Global Energy Monitor (https://globalenergymonitor.
org, last access: 17 September 2025).

CH4 emissions from both natural sources (e.g. peatlands) and
anthropogenic sources (e.g. fugitive emissions from oil and
gas extraction and transportation as well as from coal min-
ing). It was also in Siberia that one of the largest point source
emissions of CH4 was detected by GHGSat (from a coal
mine in the Kemerovo region; https://www.bbc.com/news/
science-environment-61811481, last access: 17 September
2025), and significant CH4 sources have also been detected
in this region by TROPOMI (Trenchev et al., 2023). On the
other hand, Siberia is a challenging region to study, as there
are no observations available north of around 50°N in the
winter and the region is often cloudy, further limiting the
number of available retrievals. Our inversion domain covers
western and central Siberia (50— to 115° E and 40-80° N) and
includes the West Siberian Plain, major oil and gas fields, and
important coal mining regions such as Kemerovo (Fig. 1). We
limit the period of our study to March to October — months
during which there are observations available north of 50° N
— and focus on the year 2020.

To evaluate the inversions using TROPOMI XCH4, we
make use of the JR-STATION ground-based network of CHy4
measurements. JR-STATION consists of nine sites with in
situ measurements of CH4, with the first sites having data
from 2004 (Sasakawa et al., 2010, 2012).

https://doi.org/10.5194/acp-25-12737-2025
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3.1 Case study methodology
3.1.1 Inversion method

For the inversion, we use the FLEXINVERT Bayesian inver-
sion framework as described by Thompson and Stohl (2014).
In this framework, the optimal fluxes are those that minimize
the cost function:

1 1
J@)=5— ) B Nz —zp) + S Hz— e
R~ (Hz—y), (15)

where B is the prior error covariance matrix and describes
the error and error correlation of the prior fluxes, R is the
observation error covariance matrix and describes the uncer-
tainty in the observations, z;, is the prior state vector, z is the
optimal (or posterior) state vector, and y is the observation
vector. The minimum of the cost function is found using the
MI1QN3 quasi-Newton algorithm (Gilbert and Lemaréchal,
1989). This algorithm does not provide an estimate of the
Hessian matrix V2J (z); therefore, the posterior uncertainty
was calculated instead using a Monte Carlo ensemble, fol-
lowing Chevallier et al. (2007).

The state vector variables include offsets to the prior
fluxes, which are resolved at a 14 d temporal resolution and
at varying spatial resolutions from 0.5 to 2.0°, depending on
how strongly the fluxes influence the observations (Thomp-
son and Stohl, 2014). The spatial resolution of the state vec-
tor was calculated separately for the TROPOMI and for the
ground-based observations (see Supplement Fig. S1 for maps
of the spatial grid). For each 14d interval, this resulted in
2619 flux variables for the TROPOMI inversions and 5920
flux variables for the ground-based observation inversions.
Note that only land fluxes were optimized in the inversions,
as the observations have little sensitivity to fluxes over the
ocean. In any case, the contribution from ocean fluxes to
the modelled mixing ratios was accounted for (only these
fluxes were fixed to the prior values and not optimized). The
state vector also includes scalars of the boundary conditions
(i.e. the initial mixing ratios in 3D space represented by the
vector y™™ in Eq. 3). The scalars are defined for four latitu-
dinal bands, 90-30° N, 30-0° N, 0-30° S, and 30-90° S, and
for three vertical layers, from 0 to 2000, 2000 to 10000, and
10000 to 70000 m a.g.1. (above ground level), and are opti-
mized for 28 d averages. The uncertainty in the scalars was
set at 5 % for the TROPOMI inversions and at 1 % for the
ground-based observation inversions. A larger uncertainty
was chosen for the TROPOMI inversions after initial tests
showed that lower uncertainties did not allow sufficient free-
dom to correct erroneous prior background mixing ratios (see
Sect. 3.2.2).

For the case study, FLEXPART was run using the
European Centre for Medium-Range Weather Forecasts
(ECMWF) ERAS5 meteorological reanalysis data at a
0.5° % 0.5° and hourly resolution. Backward trajectories
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were made using 30 000 particles for each TROPOMI super-
observation. The trajectories were calculated for 20 d back-
ward in time from the time of the observation. The SRRs
were calculated at 0.5° over the inversion domain and at 2.0°
globally. In addition, the BRR (Hi" in Eq. 3) was calculated
at the termination of the particles. For comparison with the
inversions using TROPOMI retrievals, we also performed in-
versions using ground-based observations. The FLEXPART
runs for these observations used the same set-up as that for
the retrievals but with only 20 000 particles per observation,
which was deemed sufficient to represent a point observation.

The so-called background mixing ratio for each column
average observation was calculated as HCLM yini (gee
Egs. 3-5), where y™ is a 3D field of CH; mixing ratios
(resolved daily) and was taken from the Copernicus At-
mosphere Monitoring Service (CAMS) data assimilation
product, EGG4  (https://ads.atmosphere.copernicus.eu/
datasets/cams- global-ghg-reanalysis-egg4 7tab=overview,
last access: 17 September 2025). In addition, we have
used 3D mixing ratio fields from the CAMS greenhouse
gas inversion product TMS-4DVAR (https://atmosphere.
copernicus.eu/greenhouse- gases-supplementary-products,
last access: 17 September 2025) in a sensitivity test.

3.1.2 Observations

In this case study, we use the Weighting Function Modified
Differential Optical Absorption Spectroscopy (WFMD) re-
trieval product (version 1.8) from the University of Bremen
(Schneising et al., 2019, 2023). We selected retrievals that
had a quality flag of O (where the quality value is either O
(good) or 1 (bad)). The retrievals were averaged to super-
observations, as described in Sect. 2.2, using two resolution
steps with grid cell sizes of 0.25 and 0.5°. Uncertainties for
the super-observations were calculated as the quadratic sum
of the uncertainty for each retrieval weighted by the area of
the ground pixel of the retrieval. The full observation-space
uncertainty was the quadratic sum of the super-observation
uncertainty and an uncertainty estimated for the background
column average mixing ratio. The resulting observation-
space uncertainties were typically in the range of 14-20 ppb
with a median value of 16 ppb. The square values of these un-
certainties were used as the variances in the observation error
covariance matrix, and we assumed that errors in the super-
observations were uncorrelated. On average, there were 3781
super-observations per day (see Fig. S2 for an overview of
the number of super-observations by latitude and state vector
time step).

For validation, we used ground-based observations from
the JR-STATION network (Sasakawa et al., 2010, 2012,
2025) (Fig. 1 and Table 1). It is comprised of nine (cur-
rently six operating) tower sites in Siberia where simulta-
neous multi-point semi-continuous observations of CO, and
CH4 have been made. The CH4 mixing ratios were mea-
sured using a modified SnO, semiconductor sensor and de-
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termined against the NIES 94 CHy scale. The NIES 94 CHy
scale ranges approximately 5ppb higher than the WMO-
CH4-X2004A scale; thus, we adjusted the CH4 mixing ra-
tios to the WMO scale for use in the inversions. The JR-
STATION system measures the air at each intake height on
the tower for 3 min at a time before switching the airflow to
the next height. The 3 min values for each height are averaged
to obtain a representative value for each hour. In addition, we
used observations from the flask sampling sites Ulaan Uul
in Mongolia (UUM) and Teriberka in Russia (TER) and in
situ observations from the Global Atmospheric Watch site
Cholpon-Ata in Kyrgyzstan (CPA), which were all obtained
from the World Data Centre for Greenhouse Gases (WD-
CGQG). These data were filtered to remove observations that
were flagged as “invalid”, and for the flask data, pairs of
flasks were averaged to one observation. The observation-
space uncertainties were typically in the range of 11-14 ppb
with a median value of 12 ppb.

3.1.3 Prior information

In the case study inversion, we optimize the total net CHy
flux. A prior estimate for the total net flux was prepared
using the following input datasets: (i) EDGAR-v8 for an-
thropogenic emissions (Crippa et al., 2023); (ii) the LPX-
Bern land-surface model for natural fluxes from peatlands,
wet and inundated soils, and the soil sink; (iii) Etiope et
al. (2019) for geological emissions; (iv) GFED-v4.1s for
biomass-burning emissions (van der Werf et al., 2017); and
(v) the observation-based climatology of Weber et al. (2019)
for ocean fluxes. An overview of the flux estimates used in
the prior is given in Table 2. The input data are given at dif-
ferent temporal and spatial resolutions and, thus, were aver-
aged/interpolated to the same spatial resolution as the SRRs
for the inversion domain, i.e. 0.5° and interpolated to 14 d to
match the state vector temporal resolution.

For the inversion using ground-based observations, prior
uncertainties were calculated for each grid cell as 50 % of the
prior estimate but with a lower limit of 1 x 107" kgm~—2h~!,
which is approximately the 10th percentile value of all
fluxes over the inversion domain. For the inversions using
TROPOMI, after a first inversion was run with the same
uncertainties as for the ground-based inversion, and which
showed very little change in the posterior versus the prior
fluxes, the prior uncertainty was increased to 100 %. The
prior error covariance matrix, B, was calculated using the
square of the prior uncertainties in each grid cell as the vari-
ances and the co-variances were calculated assuming that the
correlation between two grid cells decays exponentially with
a correlation scale length of 200 km, and the correlation be-
tween flux time steps decays exponentially with a correlation
scale length of 28 d.
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Table 1. Ground-based atmospheric observation sites. The altitude refers to that of the air intake.

Station ID  Station name, country Measurement  Latitude Longitude  Altitude  Network/institute
type °N) (°E) (ma.s.l.)
UUM Ulaan Uul, Mongolia Flask 44 .45 111.09 1007 NOAA
TER Teriberka, Russia Flask 69.20 35.10 40  Voeikov Main Geophysical
Observatory
CPA Cholpon-Ata, Kyrgyzstan  In situ 42.64 77.07 1613  Agency on Hydrometeorology
under Ministry of Emergency
Situations of the Kyrgyz Republic
AZV Azovo, Russia In situ 54.71 73.03 110  JR-STATION
BRZ Berezorechka, Russia In situ 56.15 84.33 168  JR-STATION
DEM Demyanskoe, Russia In situ 59.79 70.87 63 JR-STATION
KRS Karasevoe, Russia In situ 58.25 82.42 76  JR-STATION
NOY Noyabrsk, Russia In situ 63.43 75.78 108  JR-STATION
VGN Vaganovo, Russia In situ 54.50 62.32 192 JR-STATION
Table 2. Overview of flux estimates used in the prior.
Source type Description Resolution Total for domain (Tg CHy)
Anthropogenic EDGAR-v8 0.1°, annual 12.8
Peatlands, wet and inundated LPX-Bern 0.5°, monthly Peatlands, 11.5; wet and inundated
soils, and soil sink soils, 5.8; and soil sink, —2.8
Biomass burning GFED-v4.1s 0.25°, monthly 1.2

Ocean
Geological

Weber et al. (2019)
Etiope et al. (2019)

0.25°, monthly 0.5
1.0°, annual 1.6

3.2 Results and discussion

3.2.1 Inversion diagnostics

The TROPOMI inversion was run for 25 iterations, whereas
the ground-based observation inversion was run for 30 it-
erations. For the TROPOMI inversions, 25 iterations was
deemed a sufficient number for convergence based on the
change in the cost at each iteration, which was < 1% af-
ter 17 iterations. For the ground-based observation inversion,
the change in cost was only consistently < 1 % after 23 iter-
ations (the cost at each iteration for both inversions is shown
in Fig. S3).

Another inversion diagnostic that is often used to deter-
mine the appropriateness of the state space and observation-
space uncertainties is the reduced chi-square value, which is
twice the final cost (see Eq. 14) divided by the number of de-
grees of freedom, which has an expected value of 1 (Taran-
tola, 2005). However, the reduced chi-square criterion can be
ambiguous, as pointed out by Chevallier et al. (2007). In any
case, here we report the reduced chi-square values for the
TROPOMI and ground-based inversions, which were 1.08
and 2.16, respectively.

https://doi.org/10.5194/acp-25-12737-2025

3.2.2 Modelled XCHg4

Column mixing ratios of CH4 were modelled for each of the
super-observations using the set-up described above. The ob-
servations for all months show high XCH4 values for the
southern part of the domain, especially in northern China.
This is also captured, although with lesser magnitude, in the
prior and posterior modelled XCHy (Fig. 2). In the summer
months (June—August), there is also elevated XCH4 in the
central part of the domain, corresponding to the location of
wetlands as well as to oil and gas fields. The posterior mod-
elled XCHy had a much closer agreement with the observa-
tions, as expected. For example, for March, the a posteriori
mean error (ME) and root-mean-square error (RMSE) were
2 and 16 ppb, respectively, compared to corresponding a pri-
ori values of 45 and 50 ppb. For July, the a posteriori ME and
RMSE were 3 and 13 ppb, compared to a priori values of 12
and 20 ppb. The differences between the posterior and prior
modelled XCHy4 are shown in Fig. S4.

The generally too high modelled XCH4 using the prior
state vector, especially in March, was primarily due to a
too high background estimate when this was based on ini-
tial mixing ratios from EGG4. Further simulations using
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Figure 2. Monthly mean XCHy from super-observations (in ppb) for March 2020 from (a) observations, (b) modelled values using prior
fluxes, and (c) modelled values using posterior fluxes and scalars of initial mixing ratios. Panels (d) to (f) are the same as panels (a) to (c¢) but
for the monthly mean XCHy4 for July 2020. Note that, for plotting, the super-observations were averaged to a regular grid of 0.25°.

the CAMS greenhouse gas inversion product (CAMSv20r1)
showed that the modelled XCHy is strongly sensitive to
the fields of the initial mixing ratio used, and the prior
modelled XCHy was considerably lower using CAMSv20r1
(see Fig. S5). The reason for this is the different verti-
cal distributions of CHy in CAMSv20r1 versus EGG4 (see
Fig. S6), which convolved with the averaging kernel and the
FLEXPART-calculated averaging matrix H™-¢°! Jead to quite
different values for the background column average mixing
ratio. A bias is also seen when XCHy is calculated directly
from the initial mixing ratio fields (by applying Eq. 2), with
EGGH4 resulting in significantly higher and CAMSv20r1 re-
sulting in significantly lower XCH4 compared to the obser-
vations in March, although with smaller biases in July (see
Fig. S7). For this reason, the boundary conditions (i.e. 3D
fields of initial mixing ratios) are optimized in the inversion
simultaneously with the fluxes.

In the inversion using EGG4, the posterior scalars of ini-
tial mixing ratios were decreased in the latitude band 30—
90° N at all altitude layers and time steps, the mixing ratios
in the 0-30° N band were increased slightly in the lowest al-
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titude layer and more strongly in the upper two layers, and
the scalars for the Southern Hemisphere did not differ signif-
icantly from the prior value of 1.0 (Fig. 3). In contrast, in the
inversion using CAMSv20r1, the scalars for 30-90° N were
decreased only for the lowest altitude layer, remained close
to the prior value for the mid-layer, and increased for the up-
permost layer (see Fig. S8). Despite the very different back-
ground estimates using EGG4 versus CAMSv20r1, the in-
versions resulted in very similar posterior fluxes, which indi-
cates that the optimization of the boundary conditions is suc-
cessful with respect to minimizing these biases (see Fig. S9).

Figure 4 shows the area-weighted mean XCHj4 for the do-
main for 2-weekly intervals from March to October. The
prior modelled XCHy follows the prior background estimate,
which is driven by variations in the boundary conditions
(based on EGG4) and differs considerably from the vari-
ation in the observed XCHy. After optimization, the mod-
elled XCH4 more closely follows the observations, which is
largely due to the improvement to the background estimate.
Both the prior and posterior modelled XCH4 remain close to
their respective backgrounds until late April, when fluxes in

https://doi.org/10.5194/acp-25-12737-2025
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Figure 3. Posterior scalars of the initial mixing ratios from the
TROPOMI inversion using 3D initial mixing ratio fields from
EGG4. In each sub-panel, the scalars are shown for each time step
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Figure 4. Area-weighted mean XCHy for 2-weekly intervals inte-
grated over the domain for the inversion using EGG4 for the bound-
ary conditions. The shading shows the area-weighted standard de-
viation of XCHy4 in each 2-weekly interval over the domain.

the domain start to increase and, thus, have a more signifi-
cant impact on XCHy and return towards their background
estimate after September.

3.2.3 Posterior fluxes and uncertainty reduction using
TROPOMI

Figure 5 shows the mean posterior fluxes estimated from the
inversion using TROPOMI observations as well as the pos-
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terior minus prior differences (flux increments). Overall, the
posterior fluxes remain very close to those of the prior, and
the total mean posterior source over the domain for March
to October is 30.3422.7 Tgyr~! compared to the prior es-
timate of 31.0424.5 Tgyr~!. The seasonal cycle also re-
mained close to the prior estimate, with a maximum in late
July to early August (Fig. 6). The inversion did, however, re-
duce emissions for a few hotspots in northwestern Siberia,
in grid cells with important oil and gas sources, and increase
emissions for a few hotspots in northern China, again in grid
cells with important oil and gas sources.

It must be noted, however, that the uncertainty reduction
on the fluxes (calculated as 1 minus the ratio of the posterior
to prior flux uncertainty) is quite small and mainly limited to
the areas of the West Siberian Plain and to the southern part
of the domain, where it reaches 20 %—50 % (Fig. 7). This is
similar to the results of Tsuruta et al. (2023), who likewise
found a limited uncertainty reduction for the high northern
latitudes using TROPOMI and little difference between the
prior and posterior fluxes for their region of Eurasia (which
included Fennoscandia). This is partly due to the poor ob-
servational coverage over Siberia, where (even outside of
the winter season) the number of observations is still lim-
ited (especially > 50°N) and can be due to frequent cloud
cover (Gao et al., 2023). (The low uncertainty reduction is
discussed further in Sect. 3.2.4.) The pattern of uncertainty
reduction in our study is persistent for all months and is
largely determined by the distribution of observations and of
the prior flux uncertainty. The more southern part of the do-
main is better covered by observations, especially over Kaza-
khstan and northern China, while the prior flux uncertainties
followed the distribution of the prior fluxes with larger un-
certainties in the area of the West Siberian Plain and for grid
cells with hotspot emissions (see Fig. S10).

3.2.4 Comparison with ground-based data inversions

Figure 5d and e show the posterior fluxes and flux incre-
ments, respectively, from the inversion with ground-based
observations. The mean posterior fluxes show large emis-
sions over the West Siberian Plain, and generally higher
emissions than in the prior estimate. They also indicate that
some of the hotspot emission sources in northwestern Siberia
are too large in the prior, which is consistent with the result
of the inversion using TROPOMI. Moreover, the posterior
fluxes indicate larger emissions for a few hotspots in southern
Siberia coinciding with grid cells where there are coal mines.
The mean posterior source over the domain from March to
October is 34.6 4 10.2 Tgyr~!. The difference between the
posterior fluxes from the inversion using ground-based obser-
vations versus that using TROPOMI (Fig. 5f) follows a very
similar pattern to the posterior minus prior flux increments
(Fig. 5d), as expected, because the posterior fluxes from the
inversion using TROPOMI are very close to the prior.
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Figure 6. Total CHy source for the domain shown on a 2-weekly
timescale for the prior estimate and for the posterior estimates from
the TROPOMI and ground-based observation inversions.
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The ground-based observation inversion indicates an ear-
lier and more intense summer maximum compared to the
prior estimate and to the estimate from the TROPOMI-based
inversion (Fig. 6). In the ground-based inversion, the maxi-
mum occurs in early July, versus late July to early August in
the prior, and it reaches a maximum of 51.8 Tgyr~! for the
mean of July versus 37.8 Tg yr~! in the prior.

Moreover, the inversion using ground-based observations
is better constrained than that using TROPOMI, and there are
uncertainty reductions of up to 50 % over a significant part
of western Siberia, corresponding to where the continuous
measurement sites are located, although some gaps remain
(Fig. 8). On the other hand, the southern and eastern parts of
the domain are not well constrained.

As a further check on the inversion using TROPOMI ob-
servations, we compared the mixing ratios modelled using
the prior fluxes, the posterior fluxes from the ground-based
inversion, and the posterior fluxes from the TROPOMI inver-
sion against observations at all ground-based sites (Fig. 9).
In this comparison, the optimized boundary conditions were
used to show only the differences due to the fluxes. Overall,
there is an improvement in the fit to the observations using
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based observations. The observation sites are indicated by the yel-
low circles.

the posterior fluxes from the ground-based inversion com-
pared to the prior fluxes, as would be expected, because these
observations were used in the inversion. The RMSE over all
observations was reduced from 37 ppb a priori to 24 ppb a
posteriori. However, employing the posterior fluxes from the
inversion using TROPOMI observations did not lead to an
improvement (nor a deterioration) in the fit to the observa-
tions, which is simply because, in this case, the posterior
fluxes remained very close to the prior.

The reason for the lower uncertainty reduction (and
smaller flux increments) using TROPOMI versus ground-
based observations is essentially twofold. First, the
TROPOMI column average observations have larger uncer-
tainties compared to the ground-based observations (in this
study, the median uncertainty used for ground-based obser-
vations was 12 ppb versus 16 ppb for TROPOMI) and the
model—observation errors are weighted by the inverse of the
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Figure 9. Taylor diagram for the comparison of modelled versus
observed CHy mixing ratios at ground-based sites. The angle gives
the Pearson correlation, and the x axis gives the normalized stan-
dard deviation for the comparison. Each point represents a site, and
the colour of the point indicates the modelled data used (prior: using
the prior fluxes; ground: using the posterior fluxes from the inver-
sion with ground-based observations; and tropomi: using posterior
fluxes from the inversion with TROPOMI observations). All model
simulations used optimized boundary conditions to compare differ-
ences solely due to the fluxes used.

square of the observation uncertainties (see Eq. 15). Sec-
ond, as satellite observations are of the total atmospheric
column, the air masses in the columns can have more di-
verse source regions, resulting in column SRRs that are more
spread out compared to those of point observations. This
tends to lead to smaller deviations over the background for
the satellite observations compared to the point observations,
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and, as the cost function depends on the square of the model—
observation differences, a few large differences have more
influence than a larger number of small differences. Thus,
to compensate for the weaker constraint of each individual
retrieval on the fluxes, many more retrievals are needed to
achieve a similar constraint as provided by the point obser-
vations. Although this applies for any region, this is more
notable at higher latitudes, where there are generally fewer
observations compared to mid-latitudes and where the back-
ground uncertainty is larger, meaning that even greater de-
partures in the modelled mixing ratios from the background
mixing ratio would be needed to constrain the fluxes.

4 Summary and conclusions

We have developed an efficient method to model total col-
umn observations, such as those from satellites, for La-
grangian particle dispersion models (LPDMs) and, further-
more, to compute Jacobian matrices describing the relation-
ship between fluxes and the change in the column average
mixing ratio, as needed in inverse modelling. This method
means that the computations are, in principle, no more costly
than those for point observations. The development will en-
able a more accurate representation of satellite observations
(especially high-resolution ones) via the use of LPDMs and,
thus, help to improve the accuracy of emission estimates ob-
tained via atmospheric inversions.

As LPDM backward calculations are still needed for
each observation, the computational cost is a limiting fac-
tor with respect to using this method on a global scale
for satellites providing a very large number of retrievals,
e.g. TROPOMI which provides ~ 100000 retrievals globally
each day. However, this limitation can be overcome using
super-observations, which are averages of retrievals and re-
duce the number of calculations required. On the other hand,
our method using an LPDM is well suited for regional in-
version studies, especially with observations from flux map-
ping satellites with a relatively high resolution, such as the
TROPOMI XCHy product with a resolution of 5.5 x 7km,
MethaneSAT with a resolution of 0.1 x 0.4 km, the recently
launched GOSAT-GW with a resolution of 1 x 1 to 3 x 3km
in Focus mode, and the future mission CO2M with a resolu-
tion of 2 x 2km.

We presented a case study using the methodology to es-
timate CH4 fluxes over Siberia using WFMD retrievals of
XCH4 from the TROPOMI instrument. We found that, for
this northern region, the boundary conditions have a strong
influence on the modelled column mixing ratios; however, by
optimizing the boundary conditions, any bias in the bound-
ary conditions does not contribute to a bias in the pos-
terior fluxes. Moreover, we compared the inversion with
TROPOMI to one using ground-based observations. The
ground-based observations provide a stronger constraint on
the fluxes and greater uncertainty reduction compared to
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TROPOMI for this northern region. Although the posterior
fluxes obtained using TROPOMI remained close to the prior,
there were some consistent results with those obtained us-
ing ground-based observations, namely, a decrease in hotspot
emissions in northern Siberia and an increase in a hotspot
emission in northern China compared to the prior emissions.

Based on these results, the caveats of using satellite re-
trievals in regional inversions at high latitudes are as follows:
(1) the strong dependence of the modelled column mixing
ratios on the boundary conditions and, hence, the need to set
large uncertainties for the optimization of the boundary con-
ditions, which has the effect of reducing the constraint of the
observed column average mixing ratios on the fluxes; (2) the
limited observational constraint of the column average mix-
ing ratios on surface fluxes in Siberia and, hence, low uncer-
tainty reduction from inversions.

Code and data availability. TROPOMI WFMD retrieval data
and the corresponding data documentation are available from
the University of Bremen: https://www.iup.uni-bremen.de/carbon_
ghg/products/tropomi_wfmd/ (last access: 19 September 2025)
(Schneising et al., 2019, 2023). The JR-STATION data are available
from the Global Environmental Database, hosted by ESD, NIES:
http://db.cger.nies.go.jp/portal/geds/index (last access: 19 Septem-
ber 2025) (Sasakawa et al., 2010, 2012, 2025). The other ground-
based observations are available from the World Data Centre for
Greenhouse Gases (WDCGG): https://gaw.kishou.go.jp (last ac-
cess: 19 September 2025). The FLEXINVERT and FLEXPART
codes used for this study are available from the GitLab reposi-
tory: https://git.nilu.no/flexpart/flexinvertplus/-/releases/v1.0.0 (last
access: 19 September 2025) (Thompson, 2025).
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