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Table S1: WRF/CMAQ STAGE mapping of the dry deposition module LU categories (AQMEII4) from the
LSM LU categories (MODIS product MCD12Q1v6 for 2017 (Friedl and Sulla-Menashe, 2019) for the U.S. EPA
simulations over North America, MODIS (Friedl et al., 2002) + extended urban categories over the greater
London area for the University of Hertfordshire simulations over Europe)

Dry Deposition LU LSM LU
1: Water 17: water
2: Developed / Urban 13: Urban and Built-up

Additional urban categories over the greater London area for the

University of Hertfordshire WRF/CMAQ STAGE simulations

3: Barren 16: Barren or Sparsely Vegetated
4: Evergreen needleleaf forest  |1: Evergreen Needleleaf Forest
5: Deciduous needleleaf forest  |3: Deciduous Needleleaf Forest
6: Evergreen broadleaf forest 2: Evergreen Broadleaf Forest
7: Deciduous broadleaf forest 4: Deciduous Broadleaf Forest
8: Mixed forest 5: Mixed Forest
9: Shrubland 6: Closed Shrublands; 7: Open Shrublands
10: Herbaceous N/A
11: Planted / Cultivated 12: Croplands
14: Cropland-Natural Vegetation Mosaic
12: Grassland 10: Grasslands
13: Savanna 8: Woody Savanna
9: Savanna
14: Wetlands 11: Permanent Wetlands
15: Tundra 18: Wooded Tundra

19: Mixed Tundra

20: Barren Tundra

16: Snow and Ice 15: Snow and Ice




Table S2. GEM-MACH (Base) and GEM-MACH (Ops) mapping of the dry deposition module LU categories
(Makar et al., 2018) from the LSM LU categories (Zhang et al., 2003)

Dry Deposition LU LSM LU

1: Evergreen needleleaf forest ~ |4: Evergreen needleleaf trees

5: Evergreen broadleaf trees
2: Evergreen broadleaf forest
8: Tropical broadleaf trees

3: Deciduous needleleaf forest  |6: Deciduous needleleaf trees

7: Deciduous broadleaf trees
4: Deciduous broadleaf forest
9: Drought deciduous trees

5: Mixed Forest 25: Mixed Wood Forest
6: Grassland 14: Long grass
15:Crops
17: Sugar
7: Crops, mixed farming 18: Maize
19: Cotton

20: Irrigated Crops
8: Desert 24: Desert
9: Tundra 22: Tundra

10: Evergreen broadleaf shrubs
11: Deciduous shrubs

10: Dwarf trees, shrubs 12: Thorn shrubs

13: Short grass and forbs

26: Mixed Shrubs

11: Wetland with plants 22: Swamp

12: Ice caps and glaciers 2: Ice

13: Inland water 3: Inland Lake (Fresh)
14: Ocean 1: Water (Ocean)

15: Urban 21: Urban




Table S3. WRF/Chem (RIFS) mapping of the dry deposition module LU categories (USGS24) from the LSM
LU categories for the EUR domain (Coordination of Information on the Environment (CORINE) Land Cover,
EEA 2020)

Dry Deposition LU LSM LU
1: Urban and Built-Up Land 31: Low Intensity Residential

32: High Intensity Residential

33: Industrial or Commercial

2: Dryland Cropland and Pasture 2: Dryland Cropland and Pasture
3: Irrigated Cropland and Pasture 3: Irrigated Cropland and Pasture;
4: Mixed Dryland/Irrigated Cropland and Pasture 4: Mixed Dryland/Irrigated Cropland and Pasture
5: Cropland / Grassland Mosaic 5: Cropland/Grassland Mosaic;
6: Cropland / Woodland Mosaic 6: Cropland/Woodland Mosaic
7: Grassland 7: Grassland

8: Shrubland 8: Shrubland

9: Mixed Shrubland / Grassland 9: Mixed Shrubland / Grassland
10: Savanna 10: Savanna

11: Deciduous Broadleaf Forest 11: Deciduous Broadleaf Forest
12: Deciduous Needleleaf Forest 12: Deciduous Needleleaf Forest
13: Evergreen Broadleaf Forest 13: Evergreen Broadleaf Forest
14: Evergreen Needleleaf Forest 14: Evergreen Needleleaf Forest
15: Mixed Forest 15: Mixed Forest

16: Water Bodies 16: Water Bodies

17: Herbaceous Wetland 17: Herbaceous Wetland

18: Wooded Wetland 18: Wooded Wetland

19: Barren or Sparsely Vegetated 19: Barren or Sparsely Vegetated
20: Herbaceous Tundra 20: Herbaceous Tundra

21: Wooded Tundra 21: Wooded Tundra

22: Mixed Tundra 22: Mixed Tundra

23: Bare Ground Tundra 23: Bare Ground Tundra

24 Snow or Ice 24: Snow or Ice




Table S4: WRF/Chem (NCAR) mapping of the dry deposition module LU categories (USGS24) from the LSM

LU categories (MODIS product MCD12Q1vS5.1 as processed by Broxton et al., 2014)

Dry Deposition LU LSM LU
1: Urban and Built-Up Land 13 Urban and Built-Up
2: Dryland Cropland and Pasture N/A
3: Irrigated Cropland and Pasture N/A
4: Mixed Dryland/Irrigated Cropland and Pasture 12 Croplands
5: Cropland / Grassland Mosaic 14 cropland/natural vegetation mosaic
6: Cropland / Woodland Mosaic N/A
7: Grassland 10: Grasslands
8: Shrubland 6: Closed Shrublands
9: Mixed Shrubland / Grassland 7: Open Shrublands
10: Savanna 8: Woody Savannas
9: Savannas
11: Deciduous Broadleaf Forest 4: Deciduous Broadleaf Forest
12: Deciduous Needleleaf Forest 3: Deciduous Needleleaf Forest
13: Evergreen Broadleaf Forest 2: Evergreen Broadleaf Forest
14: Evergreen Needleleaf Forest 1: Evergreen Needleleaf Forest
15: Mixed Forest 5: Mixed Forests
16: Water Bodies 17: Water
17: Herbaceous Wetland 11: Permanent wetlands
18: Wooded Wetland N/A
19: Barren or Sparsely Vegetated 16: Barren or Sparsely Vegetated
20: Barren Tundra
20: Herbaceous Tundra N/A
21: Wooded Tundra 18: Wooded Tundra
22: Mixed Tundra 19: Mixed Tundra
23: Bare Ground Tundra N/A
24: Snow or Ice 15: Snow and Ice
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Figure S1: 2016 annual total O3 mixing ratio (ppb) for each model, the multi-model mean, and the normalized
multi-model standard deviation over the NA domain. Note that the plots for individual models are not clipped
to the domain common to all simulations and show the maximum spatial extent submitted for each model. The
multi-model mean and normalized standard deviations are calculated and shown over the common domain.
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Figure S2: 2016 annual total O3 mixing ratio (ppb) for each model, the multi-model mean, and the normalized
multi-model standard deviation over the EUR domain. Note that the plots for individual models are not clipped
to the domain common to all simulations and show the maximum spatial extent submitted for each model. The
multi-model mean and normalized standard deviations are calculated and shown over the common domain.
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Figure S3: Seasonal and diurnal variations in 2016 NA domain total O3 grid-scale dry deposition fluxes (in Tg).
Totals are calculated over all non-water grid cells in the analysis domain common to all models. Daytime values

are calculated from 10:00 LST to 14:00 LST while nighttime values are calculated from 22:00 LST to 02:00

LST. a) winter daytime, b) summer daytime, c) winter nighttime, d) summer nighttime
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Figure S9: Summer and winter effective conductances and ozone deposition velocities calculated by the grid
models for evergreen needleleaf forest grid cells and calculated by the corresponding subset of single point (SP)
models analyzed in Clifton et al. (2023) at the Hyytiili (HY) site. In the x-axis labels, results for the SP GEM-
MACH Wesely and Zhang simulations are shown as “SP GM Wesely” and “SP GM Zhang”, respectively, while
results for the SP WRF-Chem Wesely simulations are shown as “SP WC Wesely”. The evergreen needleleaf
forest grid cells selected for this analysis are those in which a given model had at least 85% coverage for this
LU category. The number of these grid cells differs across models due to underlying differences in LU (see
Section 3.3).
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Wesely and Zhang simulations are shown as “SP GM Wesely” and “SP GM Zhang”, respectively, while results
for the SP WRF-Chem Wesely simulations are shown as “SP WC Wesely”. The deciduous broadleaf forest grid
cells selected for this analysis are those in which a given model had at least 85% coverage for this LU category.
The number of these grid cells differs across models due to underlying differences in LU (see Section 3.3).

18



Summer

ZAN

N

21

Cuticular

[\

A Soil

ﬁ
.

AN

0.0 —

0.6 -
05
0.4 —
£0.3 -
> 0.2 —
0.1 —

dd Alpsam OM dS
g3 Ajassp\ DM dS
(YVON) wayd-4um
(INdN) Wwayd—-44m

(S41Y) Wweya-494m

dg Bueyz Wo ds
g3 Bueyz Wo dS

(Bueyz) HOVYIN-INTD

dd Alesep WO dS
g3 Ajesapy ND dS
(sdQ) HOVYIN-WTD

(esed) HOVIN-INTD

dg 39VvIS dS
g3 39VIS dS

(IOVLS) OVIND/IHM

dg9 fagin ds
g3 Aagin ds

(Aiaen) DYIND/AEM

Winter

Cuticular

Soll

N
AN\

dg Alesepm OM dS
g3 Alessm DM dS
(4vDN) wayDd-48m
(NdN) wayd-4¥Mm

(S41Y) weyd-494m

da Bueyz No ds
g3 Bueyz WO dS

(Bueyz) HOVIN-INTD

ddg Alesepy WO dS
g3 Alesapy ND dS
(sdQ) HOVYIN-NTD

(eseg) HOVIN-INTD

dg 39VIS dS
g3 39VIS dS

(3OVLS) OVIND/IHM

dg faein ds
g3 Aacin ds

(Aiasn) OYIND/AHM

and ozone deposition velocities calculated by the grid

models for grassland grid cells and calculated by the corresponding subset of single point (SP) models analyzed

in Clifton et al. (2023) at the Easter Bush (EB) and Bugacpuszta (BP) sites. In the x-axis labels, results for the
differs across models due to underlying differences in LU (see

grassland grid cells selected for this analysis are those in which a given model had at least 85% coverage for
The number of these grid cells

SP GEM-MACH Wesely and Zhang simulations are shown as “SP GM Wesely” and “SP GM Zhang”,
respectively, while results for the SP WRF-Chem Wesely simulations are shown as “SP WC Wesely”. The

Figure S11: Summer and winter effective conductances

this LU category.

Section 3.3).
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Figure S12: Fractional coverage of the evergreen needleleaf forest LU category for each of the participating
models over the NA domain.
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Figure S13: Fractional coverage of the evergreen needleleaf forest LU category for each of the participating
models over the EUR domain.
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Figure S14: For each LU category, maps depicting the location of grid cells that i) do not share a common
dominant LU category across models (white cells), ii) share a common dominant LU category across models
but not all models have a fractional coverage > 85% for that LU category (blue cells), or iii) share a common
dominant LU category across models and all models have a fractional coverage > 85% for that LU category
(red). Results show are for the NA domain. The number of blue and red cells is shown as insert in each map.
No maps are shown for the deciduous needleleaf forest, herbaceous, and savanna LU categories because there
is not a single common dominant LU grid cell across models for these categories (see Table 5).
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Figure S15. For each LU category, maps depicting the location of grid cells that i) do not share a common
dominant LU category across models (white cells), ii) share a common dominant LU category across models
but not all models have a fractional coverage > 85% for that LU category (blue cells), or iii) share a common
dominant LU category across models and all models have a fractional coverage > 85% for that LU category
(red). Results show are for the EUR domain. The number of blue and red cells is shown as insert in each map.
No maps are shown for the deciduous needleleaf forest, evergreen broadleaf forest, mixed forest, shrubland,
herbaceous, savanna, wetlands, tundra, and snow and ice LU categories because there is not a single common
dominant LU grid cell across models for these categories (see Table 5).
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Figure S16. LU-specific annual domain-total dry deposition fluxes (Tg), LU-specific annual mean dry
deposition velocity (cm/s), and percentage LU category domain coverage (excluding water grid cells) for seven
selected LU categories over the EUR domain. For each LU category and model, the analysis considered grid
cells in the analysis domain common to all models in which a given model had at least 85% coverage for this
LU category. The number of these grid cells differs across models due to underlying differences in LU (see
Section 3.3).
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