Supplement of Atmos. Chem. Phys., 25, 12615–12628, 2025 https://doi.org/10.5194/acp-25-12615-2025-supplement © Author(s) 2025. CC BY 4.0 License. ## Supplement of ## Acid-catalyzed hydrolysis kinetics of organic hydroperoxides: computational strategy and structure-activity relationship Qiaojing Zhao et al. Correspondence to: Rujing Yin (yinrj@dlut.edu.cn) and Hong-Bin Xie (hbxie@dlut.edu.cn) The copyright of individual parts of the supplement might differ from the article licence. **Figure S1.** Structures of selected four ROOHs for screening protonated water cluster model (Qiu et al., 2020; Enami, 2022; Hu et al., 2022). Structure (**a**) is C_{13} α-AH derived via α-terpineol derived CIs and 1-propanol, (**b**) is C_{12} α-AH₍₁₎ derived via α-terpineol derived CIs and ethylene glycol, and (**d**) is C_{10} α-HH derived via α-terpineol derived CIs and water. The corresponding chemical formulas and molecular weights (MW, amu) are labelled. **Figure S2.** Minimum-energy structures of protonated water cluster (a) $H^+(H_2O)_1$, (b) $H^+(H_2O)_2$, (c) $H^+(H_2O)_3$, (d) $H^+(H_2O)_4$. The atoms in red and white represent oxygen and hydrogen atoms, respectively. **Figure S3.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of C_{13} α-AH in four different cases at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_n$ (n = 1, 2, 3, 4) are set to zero (reference state, R). RC, TS_x (x = a, b, c, d, e), PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S4.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of C_{12} α-AH₍₁₎ in four different cases at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)_n (n = 1, 2, 3, 4) are set to zero (reference state, R). RC, TS_x (x = a, b, c, d, e), PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S5.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of C_{12} α-AH₍₂₎ in four different cases at the SMD/M06-2X/6-31++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)_n (n = 1, 2, 3, 4) are set to zero (reference state, R). RC, TS_x (x = a, b, c, d, e), PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S6.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of C_{10} α-HH in four different cases at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)_n (n = 1, 2, 3, 4) are set to zero (reference state, R). RC, TS_x (x = a, b, c, d, e, f), PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S7.** Two-step acid-catalyzed hydrolysis pathway of four ROOHs for screening protonated water cluster model. The reaction pathways (a) for C_{13} α -AH, C_{12} α -AH₍₁₎, and C_{12} α -AH₍₂₎, and (b) for C_{10} α -HH. **Figure S8.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of CH_3CH_2OOH and $CH_2(X)OOH$ ($X = NH_2$, OCH_3 , OH, $CH=CH_2$, SH, PH_2 , F, Cl and CHO) at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state, R). RC, TS, PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S9.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of $CH(CH_3)_2OOH$ and $CH(CH_3)(X)OOH$ ($X = NH_2$, OCH₃, OH, CH=CH₂, SH, PH₂, F, Cl and CHO) at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state, R). RC, TS, PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S10.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of $C(CH_3)_3OOH$ and $(C(CH_3)_2(X)OOH)$ ($X = NH_2$, OCH₃, OH, CH=CH₂, SH, PH₂, F, Cl and CHO) at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state, R). RC, TS, PC and IM represent pre-reactive complexes, transition states, post-reactive complexes and intermediates, respectively. **Figure S11.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of $C(CH_3)_2(CH_2CH_3)OOH$ and $C(CH_3)_2(CH_2(X))OOH$ ($X = NH_2$, OCH₃, OH, CH=CH₂, SH, PH₂, F, Cl and CHO) at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)₂ are set to zero (reference state, R). RC, TS and IM represent pre-reactive complexes, transition states and intermediates, respectively. **Figure S12.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of $C(CH_3)_2(OY)OOH$ ($Y = CH_2CH_3$, $CH_2CH_2CH_3$, $CH(CH_3)_2$, $C(CH_3)_3$, $CH=CH_2$, and CHO) at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state, R). RC, TS, PC and IM represent pre-reactive complexes, transition states, post-reactive complexes and intermediates, respectively. **Figure S13.** Calculated free-energy surfaces for carbocation formation during the acid-catalyzed hydrolysis of $C(CH_3)_2(X)OOH$, where $X = NH_2$, OH, OCH₃, CH=CH₂, SH, or PH₂. Free energies are computed at ωB97X-D/6-311++G(3df,2pd)//ωB97X-D/6-31+G(d,p) levels with the SMD solvation model, with ROOH and H⁺(H₂O)₂ set as the reference state at 0 kcal mol⁻¹. Transition states (TS) and intermediates (IM) are labelled. **Figure S14.** Changes in reaction energetics for carbocation intermediate formation during acid-catalyzed hydrolysis of $C(CH_3)_2(OCH_3)OOH$ under (a) implicit solvation only vs. (b) explicit monohydration. Free energies (*G*) computed at SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. R and IM denote the reactant and carbocation, while R ·· H₂O and IM ·· H₂O are their monohydrated forms. Figure S15. Correlations between the logarithms of the acid-catalyzed hydrolysis second-order rate constants (log k_A) and the sum of Taft constants ($\Sigma \sigma^*$) of the selected α-substituted ROOH model compounds, including CH₂(X)OOH, CH(CH₃)(X)OOH, C(CH₃)₂(X)OOH, and C(CH₃)₂(X)OOH, where $X = -NH_2$, -OH, -OCH₃, -CH=CH₂, -SH, -PH₂, -F, -Cl, -CHO, and $Y = -CH_2$ CH₃, -CH₂CH₃, -CH(CH₃)₂, -C(CH₃)₃, -CH=CH₂, -CHO. Figure S16. Correlations between the logarithms of the acid-catalyzed hydrolysis second-order rate constants (log k_A) and the sum of Taft constants ($\Sigma \sigma^*$) for C(CH₃)₃OOH and β-substituted C(CH₃)₂(CH₂(X))OOH, where $X = -NH_2$, -OH, -OCH₃, -CH=CH₂, -SH, -PH₂, -F, -Cl, -CHO. **Figure S17.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of isoprene-OOH at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state). RC, TS_x (x = a, b), PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S18.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of α-pinene-OOH₍₁₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state). RC, TS, PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S19.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of α-pinene-OOH₍₂₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state). RC, TS, IM and P represent pre-reactive complexes, transition states, intermediates and products, respectively. **Figure S20.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of α-pinene-OOH₍₃₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and $H^+(H_2O)_2$ are set to zero (reference state). RC, TS, IM and P represent pre-reactive complexes, transition states, intermediates and products, respectively. **Figure S21.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of trimethylamine-OOH₍₁₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)₂ are set to zero (reference state). RC, TS, PC, IM and P represent pre-reactive complexes, transition states, post-reactive complexes, intermediates and products, respectively. **Figure S22.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of trimethylamine-OOH₍₂₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)₂ are set to zero (reference state). RC, TS_x (x = a, b), IM and P represent pre-reactive complexes, transition states, intermediates and products, respectively. **Figure S23.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of dimethyl sulfide-OOH₍₁₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH and H⁺(H₂O)₂ are set to zero (reference state). RC, TS, IM and P represent pre-reactive complexes, transition states, intermediates and products, respectively. **Figure S24.** Calculated free-energy surfaces for acid-catalyzed hydrolysis of dimethyl sulfide-OOH₍₂₎ at the SMD/M06-2X/6-311++G(3df,2pd)//M06-2X/6-31+G(d,p) level. The free energies of ROOH, H⁺(H₂O)₂, and H₂O/NO₃⁻/SO₄²⁻ are set to zero (reference state). RC, TS, PC and P represent pre-reactive complexes, transition states, post-reactive complexes and products, respectively. **Table S1.** Taft (σ^*) constants of different substituents (Perrin et al., 1981). | Substituents | σ^* | Substituents | σ^* | |---|------------|-------------------------------------|------------| | -Н | 0.49 | -CH ₃ | 0.00 | | $-NH_2$ | 0.62 | -CH ₂ NH ₂ | 0.50 | | $-N(CH_3)_2$ | 0.32 | -CH ₂ OH | 0.62 | | -OH | 1.34 | -CH ₂ OCH ₃ | 0.66 | | -OCH ₃ | 1.81 | -CH ₂ SH | 0.62 | | -OCH ₂ CH ₃ | 1.68 | -CH ₂ PH ₂ | _ | | -OCH ₂ CH ₂ CH ₃ | 1.68 | -CH ₂ CH=CH ₂ | 0.00 | | -OCH(CH ₃) ₂ | 1.62 | -CH ₂ F | 1.10 | | $-OC(CH_3)_3$ | _ | -CH ₂ Cl | 0.94 | | -OCH=CH ₂ | _ | -CH ₂ CHO | 0.62 | | -ОСНО | _ | | | | -SH | 1.68 | | | | -SCH ₃ | 1.56 | | | | -PH ₂ | _ | | | | -CH=CH ₂ | 0.56 | | | | -F | 3.21 | | | | -Cl | 2.96 | | | | -СНО | 2.15 | | | **Table S2**. Sum of Taft σ^* constants ($\Sigma \sigma^*$) of the selected 45 ROOHs model compounds. | Model compounds | X/Y | ∑ σ * | Model compounds | X/Y | ∑ σ * | |--------------------------------------|---|--------------|---------------------------------------|--------------------|--------------| | CH ₃ CH ₂ OOH | _ | 0.00 | CH(CH ₃) ₂ OOH | _ | 0.49 | | C(CH ₃) ₃ OOH | _ | 0.98 | | | | | | NH ₂ | 1.60 | | NH ₂ | 1.11 | | | ОН | 2.32 | | ОН | 1.83 | | | OCH_3 | 2.79 | | OCH_3 | 2.30 | | | SH | 2.66 | | SH | 2.17 | | $\mathrm{CH}_2(X)\mathrm{OOH}$ | CH=CH ₂ | 1.54 | $CH(CH_3)(X)OOH$ | CH=CH ₂ | 1.05 | | | PH_2 | _ | | PH_2 | _ | | | F | 4.19 | | F | 3.70 | | | Cl | 3.94 | | Cl | 3.45 | | | СНО | 3.13 | | СНО | 2.64 | | | NH ₂ | 0.62 | | NH ₂ | 0.50 | | | ОН | 1.34 | | ОН | 0.62 | | | OCH_3 | 1.81 | | OCH_3 | 0.66 | | | SH | 1.68 | | SH | 0.62 | | $C(CH_3)_2(X)OOH$ | CH=CH ₂ | 0.56 | $C(CH_3)_2(CH_2(X))OOH$ | CH=CH ₂ | 0.00 | | | PH_2 | _ | | PH_2 | _ | | | F | 3.21 | | F | 1.10 | | | Cl | 2.96 | | Cl | 0.94 | | | СНО | 2.15 | | СНО | 0.62 | | | CH ₂ CH ₃ | 1.68 | | | | | G(GIV.) (Q(IV.)QQIV | CH ₂ CH ₃ CH ₃ | 1.68 | | | | | | $CH(CH_3)_2$ | 1.62 | | | | | $C(CH_3)_2(O(Y))OOH$ | C(CH ₃) ₃ | _ | | | | | | CH=CH ₂ | _ | | | | | | СНО | _ | | | | **Table S3.** Calculated acid-catalyzed hydrolysis second-order rate constants (k_A) and the corresponding lifetimes ($\tau_{1/e}$) of selected 45 ROOHs model compounds under two selected scenarios (Inland regions, China (pH 3.8) and Southeastern United States (pH 0.9)). | Model compounds | X/Y | $k_{\rm A}$ (L mol ⁻¹ s ⁻¹) | <i>T</i> 1/e, pH 3.8 | 7 1/e, pH 0.9 | |---------------------------------------|--------------------|--|------------------------|------------------------------| | CH ₃ CH ₂ OOH | _ | 1.58×10^{-21} | $4.6 \times 10^{19} d$ | $5.8 \times 10^{16} d$ | | CH(CH ₃) ₂ OOH | _ | 1.12×10^{-14} | $6.5 \times 10^{12} d$ | $8.2 \times 10^9 \mathrm{d}$ | | C(CH ₃) ₃ OOH | _ | 5.50×10^{-7} | $1.3 \times 10^5 d$ | $1.7\times\!10^2d$ | | | NH ₂ | 1.01×10^{3} | 6.3 s | < 1 s | | | ОН | 1.94×10^{-5} | $3.8 \times 10^3 d$ | 4.7 d | | | OCH_3 | 4.45×10^{-8} | $1.6 \times 10^6 d$ | 2.1×10^3d | | | SH | 6.77×10^{-16} | $1.1 \times 10^{14} d$ | $1.4 \times 10^{11} d$ | | $CH_2(X)OOH$ | CH=CH ₂ | 8.11×10^{-18} | $9.0 \times 10^{15} d$ | $1.1 \times 10^{13} d$ | | | PH_2 | 2.08×10^{-16} | $3.5 \times 10^{14} d$ | $4.4 \times 10^{11} d$ | | | F | 1.07×10^{-27} | _ | _ | | | Cl | 4.63×10^{-30} | _ | _ | | | СНО | 1.43×10^{-25} | _ | _ | | | NH_2 | 5.60×10^{4} | < 1 s | < 1 s | | | ОН | 3.20×10^{-1} | 5.5 h | 24.8 s | | | OCH_3 | 3.24×10^{-3} | 22.6 d | 40.9 min | | | SH | 1.40×10^{-9} | $5.2 \times 10^7 d$ | $6.6 \times 10^4 d$ | | CH(CH ₃)(X)OOH | CH=CH ₂ | 1.62×10^{-9} | $4.5 \times 10^7 d$ | $5.7 \times 10^4 d$ | | | PH_2 | 2.73×10^{-14} | $2.7 \times 10^{12} d$ | $3.4 \times 10^9 d$ | | | F | 1.05×10^{-25} | _ | | | | Cl | 2.88×10^{-29} | _ | _ | | | СНО | 3.73×10^{-25} | _ | _ | | | NH_2 | 3.10×10^{7} | < 1 s | < 1 s | | | ОН | 4.87×10^{2} | 13.0 s | < 1 s | | $C(CH_3)_2(X)OOH$ | OCH_3 | 3.93×10^{1} | 2.7 min | < 1 s | | | SH | 1.36×10^{-5} | $5.4 \times 10^{3} d$ | 6.8 d | | | CH=CH ₂ | 7.72×10^{-7} | $9.5 \times 10^4 d$ | $1.2 \times 10^{2} d$ | | | PH_2 | 2.42×10^{-8} | $3.0 \times 10^6 d$ | $3.8 \times 10^3 d$ | | | F | 1.62×10^{-14} | _ | _ | | | Cl | 6.65×10^{-16} | _ | _ | | | СНО | 2.54×10^{-19} | _ | _ | | | NH_2 | 7.38×10^{-8} | _ | _ | |-------------------------|---|------------------------|----------------------|---------------------| | | ОН | 1.49×10^{-8} | _ | _ | | | OCH_3 | 4.66×10^{-10} | _ | _ | | | SH | 3.03×10^{-9} | _ | _ | | $C(CH_3)_2(CH_2(X))OOH$ | CH=CH ₂ | 2.11×10^{-7} | _ | _ | | | PH_2 | 2.19×10^{-8} | _ | _ | | | F | 2.04×10^{-10} | _ | _ | | | Cl | 5.36×10^{-11} | _ | _ | | | СНО | 1.17×10^{-10} | _ | _ | | | CH ₂ CH ₃ | 2.17×10^{1} | 4.9 min | < 1 s | | | CH ₂ CH ₃ CH ₃ | 1.76×10^{1} | 6.0 min | < 1 s | | $C(CH_3)_2(O(Y))OOH$ | $CH(CH_3)_2$ | 4.16×10^{2} | 15.2 s | < 1 s | | | $C(CH_3)_3$ | 1.81×10^{3} | 3.5 s | < 1 s | | | CH=CH ₂ | 1.62×10^{-3} | 45.1 d | 1.4 h | | | СНО | 5.80×10^{-9} | $1.3 \times 10^7 d$ | $1.6 \times 10^4 d$ | **Table S4.** Calculated acid-catalyzed hydrolysis second-order rate constants (k_A) and the corresponding lifetimes ($\tau_{1/e}$) of 8 atmospheric ROOHs under two selected scenarios (Inland regions, China (pH 3.8) and Southeastern United States (pH 0.9)). | Compounds Name | k _A (L mol ⁻¹ s ⁻¹) | τ _{1/e, pH} 3.8 | τ _{1/e, pH 0.9} | |-------------------------------------|---|--------------------------|--------------------------| | trimethylamine-OOH ₍₁₎ | 1.56×10^{6} | < 1 s | < 1 s | | α -pinene-OOH $_{(1)}$ | 3.68×10^{-2} | 2 d | 3.6 min | | trimethylamine- $OOH_{(2)}$ | 2.05×10^{-6} | $3.6 \times 10^4 d$ | 45 d | | α -pinene-OOH ₍₂₎ | 1.90×10^{-7} | $3.8 \times 10^5 d$ | 484 d | | isoprene-OOH | 1.88×10^{-8} | $3.9 \times 10^6 d$ | $4.9\times10^3~d$ | | dimethyl sulfide-OOH(1) | 1.71×10^{-9} | $4.3 \times 10^7 d$ | $5.4 \times 10^4 d$ | | α -pinene-OOH $_{(3)}$ | 8.99×10^{-21} | $8.1\times 10^{18}d$ | $1.0 \times 10^{16} d$ | | dimethyl sulfide- $OOH_{(2)}$ | 8.66×10^{-26} | $8.4\times10^{23}~d$ | $1.0 \times 10^{21} d$ | ## References - Enami, S.: Proton-catalyzed decomposition of multifunctionalized organic hydroperoxides derived from the reactions of criegee intermediates with ethylene glycol in aqueous organic media, ACS Earth Space Chem., 6, 1937-1947, 10.1021/acsearthspacechem.2c00142, 2022. - Hu, M., Chen, K., Qiu, J., Lin, Y., Tonokura, K., and Enami, S.: Decomposition mechanism of α-alkoxyalkyl-hydroperoxides in the liquid phase: temperature dependent kinetics and theoretical calculations, Environ Sci Atmos, 2, 241-251, 10.1039/d1ea00076d, 2022. - Perrin, D. D., Dempsey, B., and Serjeant, E. P.: pKa prediction for organic acids and bases, Champman and Hall: New York, 1981. - Qiu, J., Tonokura, K., and Enami, S.: Proton-catalyzed decomposition of α-hydroxyalkyl-hydroperoxides in water, Environ. Sci. Technol., 54, 10561-10569, 10.1021/acs.est.0c03438, 2020.