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Abstract. Organosulfates (OSs) are ubiquitously present in atmospheric aerosols and cloud droplets, and af-
fect aerosol-cloud-climate interactions via their distinct physicochemical properties. Although various forma-
tion pathways and transformation mechanisms have been proposed, the origins of many atmospheric OSs re-
main unclear or unexplained. In this study, we investigated the aqueous-phase oxidation of an α-pinene-derived
organosulfate (C10H17O5SNa, αpOS-249) by qOH radicals as a potential source of some uncharacterized at-
mospheric OSs by quantifying the kinetics and characterizing the reaction products. An aqueous-phase pho-
toreactor was used to conduct the aqueous-phase qOH oxidation of αpOS-249, revealing a rate constant of
(2.2± 0.2)× 109 L mol−1 s−1 and atmospheric lifetimes ranged from minutes to about 2 d under atmospheri-
cally relevant cloud conditions. The product analysis revealed that a variety of more oxygenated C10 OS prod-
ucts, smaller OS (<C10) products, and inorganic sulfates (e.g., bisulfate and sulfate) can be produced via func-
tionalization and fragmentation processes upon oxidation. Most of the OS products have been detected in the
atmosphere, with some of them whose sources and formation mechanisms are unknown thus far. Our study pro-
vides a new perspective that the chemical transformation of larger OSs via aqueous-phase oxidation can proceed
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efficiently to yield a variety of new OSs, serving as a source for atmospheric OSs, particularly smaller OSs. These
findings would be useful in field data interpretation and model simulations regarding the abundance, formation,
transformation, and atmospheric fates of OSs.

1 Introduction

Organosulfates (OSs) have been identified as ubiquitous
components in secondary organic aerosol (SOA) originated
from volatile organic compounds (VOCs) in the presence of
sulfur species, as evidenced by laboratory studies and atmo-
spheric observations (Surratt et al., 2007, 2008; Brüggemann
et al., 2020; Fan et al., 2022). OSs have also been proven to
constitute a significant fraction of the organic matter of atmo-
spheric fine particulate matter (PM2.5), contributing approxi-
mately 5 %–30 % (Hettiyadura et al., 2019; Chen et al., 2021;
Hughes et al., 2021; Wang et al., 2022; Yang et al., 2024). In
addition, atmospheric OSs possess numerous physiochemi-
cal properties including viscosity, acidity, morphology, hy-
groscopicity, toxicity, and surface activity, that are closely
linked to their molecular structures (Hansen et al., 2015; Riva
et al., 2019; Bain et al., 2023). Notably, Bain et al. (2023)
demonstrated that OSs exhibit intermediate properties be-
tween inorganic sulfates (e.g., bisulfate (HSO−4 ) and sulfate
(SO2−

4 ) ions) and structurally similar alkyl organics contain-
ing functional groups other than the sulfate group (e.g., al-
cohols and carboxylic acids). They further reported a clear
positive relationship between the carbon chain length of alkyl
sulfates and surface activity. These distinctive properties ulti-
mately govern the different environmental behaviors of OSs
compared to their inorganic sulfate counterparts. Despite the
potentially significant influence of aerosol physicochemical
properties, the sources, formation and transformation mech-
anisms of OSs are still not well understood and are poorly
constrained in current atmospheric model simulations (Shri-
vastava et al., 2017; Brüggemann et al., 2020).

Various mechanisms have been proposed for OS forma-
tion, with the acid-catalyzed ring-opening of epoxides in
the presence of sulfate ions being the most widely recog-
nized mechanism for OS formation from the photochemical
reactions of various VOCs such as isoprene, monoterpenes
(e.g., α-pinene, β-pinene, and limonene), and aromatic com-
pounds (e.g., toluene and benzene) (Iinuma et al., 2007; Sur-
ratt et al., 2010; Zhang et al., 2012; Barbosa et al., 2017;
Brüggemann et al., 2020; Jiang et al., 2022). In addition,
heterogeneous reactions of gas-phase SO2 with unsaturated
hydrocarbons (e.g., oleic acid and linoleic acid) in the ab-
sence of gas-phase oxidant (e.g., O3 and qOH) have been
identified as another important contributor to OS formation
in both laboratory experiments and field observations (Shang
et al., 2016; Passananti et al., 2016; Zhu et al., 2019). Other
proposed mechanisms include sulfate esterification reactions
(Minerath et al., 2008; Perri et al., 2010), nucleophilic sub-

stitution of alcohols or epoxides with sulfuric acid (Surratt et
al., 2007; Darer et al., 2011), and reactions facilitated by sul-
foxy radicals (e.g., SO

q−
3 and SO

q−
4 ) (Nozière et al., 2010;

Szmigielski, 2016; Wach et al., 2019). However, the pro-
posed reaction mechanisms cannot fully explain the sources,
formation and composition of OSs detected in atmosphere.
For instance, a review paper summarized the global overview
of OS concentrations and identified various sources, includ-
ing isoprene, monoterpenes, anthropogenic and unassigned
sources (Brüggemann et al., 2020). The field observations
revealed that OSs with unknown sources constituted 4.7 %
to 99.8 % by mass in different regions (Brüggemann et al.,
2020). Furthermore, a field study indicated that a significant
fraction of organosulfur compounds, in particular OSs, re-
mained unknown at the molecular level, accounting for 67 %
to 79 % by mass in the eastern and western US (Chen et al.,
2021). These findings suggest that while hundreds of OSs
have previously been identified, a significant portion of at-
mospheric OSs remains uncharacterized, with unknown pre-
cursors and formation mechanisms.

Additionally, the transformation of OSs after formation
has also been noted in recent studies (Darer et al., 2011;
Hu et al., 2011; Kwong et al., 2018; Xu et al., 2022; Ng et
al., 2022; Lai et al., 2023; Xu et al., 2024; Lai et al., 2024;
Lai et al., 2025). The importance of OS transformation is
largely contingent upon the fate of either retaining the sulfate
moiety or releasing inorganic sulfates through subsequent
reactions. In the previous works on OSs (e.g., methyl sul-
fate, hydroxyacetone sulfate, and phenyl sulfate), aqueous-
phase qOH oxidation has been shown to be an efficient re-
moval pathway of OSs with rate constant between 108 to
109 L mol−1 s−1 (Lai et al., 2024; Gweme and Styler, 2024;
Lai et al., 2025). Therefore, in this study, aqueous-phaseqOH oxidation was applied to α-pinene-derived organosul-
fate (C10H17O5SNa, αpOS-249, sodium 2-hydroxy-2,6,6-
trimethylbicyclo[3.1.1]heptan-3-yl sulfate), a model com-
pound of monoterpene-derived OSs. αpOS-249 is the first
generation product of the qOH initiated photooxidation of α-
pinene in the presence of acidic sulfate aerosols and was se-
lected due to its global atmospheric presence (Surratt et al.,
2008), with its mass ratio to total OSs ranging from 0.1 %
to 17.7 % (Table S1 in the Supplement) (Kristensen and Gla-
sius, 2011; Yttri et al., 2011; Ma et al., 2014; Wang et al.,
2017; Wang et al., 2018; Wang et al., 2019). Particularly,
the objectives of this work are (1) to examine the kinetics of
the aqueous-phase qOH oxidation of αpOS-249, (2) to iden-
tify reaction products and propose reaction mechanisms, and
(3) to examine whether larger OSs can serve as precursors
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for smaller OSs through fragmentation processes upon oxi-
dation.

2 Experimental methods

2.1 Aqueous-phase oxidation

The synthesis of αpOS-249 was through the monosulfa-
tion of α-pinene diol with sulfur trioxide-pyridine com-
plex directly (Wang et al., 2017). The purity of αpOS-249
was higher than 99 % based on nuclear magnetic resonance
(NMR) spectra. Pure standard was stored in a freezer at
−20 °C prior to the experiments. The experimental overview
and conditions of aqueous-phase qOH oxidation of αpOS-
249 were summarized in Scheme S1 and Table S2, re-
spectively. The experiments included kinetic experiments
(αpOS-249+ reference compound (i.e., benzonic acid (BA))
+
qOH), product-capture experiments (αpOS-249 + qOH),

and control experiments (αpOS-249 + UV light only and
αpOS-249 + H2O2 only). All experiments were performed
in a photoreactor with a volume of 150 mL (Witkowski and
Gierczak, 2017; Witkowski et al., 2018; Witkowski et al.,
2023; Witkowski et al., 2024). A quartz plate covered the top
of the reactor and was sealed with flange clamps. The inner
layer of the reactor held the reaction mixture, and circulat-
ing cooling water flowed through the outer layer to main-
tain a temperature of 298± 1 K, regulated by a refrigerated
bath circulator (SD15R-30-A12E, PolyScience). The reac-
tion mixture was continuously stirred with a magnetic stir-
rer to ensure homogeneity during the oxidation. A 300 W
Xenon lamp (HSX-UV300, Beijing NBeT) equipped with a
quartz UV filter maintained peak emission at 313 nm, which
was used to generate qOH radicals through the photolysis of
H2O2. The photoreactor was housed in a dark box to prevent
interference from external light sources.

A typical kinetic experiment commenced (time zero) by
activating the Xenon lamp to irradiate the reaction solu-
tion containing αpOS-249, BA, and H2O2. BA was added
as a reference compound to track qOH. Under irradiation, a
steady-state concentration of qOH ([ qOH]ss) of around (4–
9)× 10−14 mol L−1 was generated, as calculated from the
simulations using a box model (Sect. S3) (Witkowski and
Gierczak, 2017; Otto et al., 2019). This concentration is in
good agreement with previously reported [ qOH]ss levels in
cloud and fog water (Choudhary et al., 2023). The reac-
tion progress was monitored by sampling 1.5 mL aliquots
from the reactor at regular time intervals over a total dura-
tion of 3 h (every 15 min in the initial hour and every 30 min
in the subsequent two hours). Each sample was instantly
mixed with 0.3 mL catalase solution (2 mg mL−1) to decom-
pose the residual H2O2 and stop further reactions (Witkowski
and Gierczak, 2017; Witkowski et al., 2018). These samples
were incubated at 298 K for 20 min and then filtered through
a PTFE syringe filter (45 mm, 0.2 µm pore size, Pall Cor-
poration) before subsequent chemical analysis. The pH val-

ues of the reaction mixtures were monitored using an elec-
trochemical meter (Orion Versastar Pro, Thermo Scientific)
pre-calibrated with pH buffer solutions. The procedure for
product-capture experiments was the same as the kinetic ex-
periments, except that BA was not added. Two sets of control
experiments were conducted. One involved irradiating a so-
lution of αpOS-249 alone to examine the effects of light only.
The other set combined αpOS-249 and H2O2 in the dark to
isolate the effects of H2O2.

2.2 Chemical characterization with LC-ESI-Orbitrap MS

The decay of αpOS-249 and BA upon oxidation was quan-
tified by a UHPLC system (Dionex Ultimate 3000, Thermo
Fisher Scientific) coupled with an Orbitrap mass spectrome-
ter (IQ-X Tribrid, Thermo Fisher Scientific) employing cal-
ibration curves. The calibration curves were established us-
ing the synthesized αpOS-249 and commercially available
BA as standards. The uncertainties in the measurements of
αpOS-249 and BA were determined by the reproducibility
of integrated peak areas across multiple measurements at
the same concentration. In addition, reaction products (e.g.,
OS products) formed upon oxidation were detected by the
same system. Experimental details can be found in previous
publications (Brüggemann et al., 2019; Wang et al., 2022).
Briefly, chromatographic separation was performed by an
Acquity UPLC HSS T3 column (2.1 mm× 100 mm, 1.8 µm;
Waters) with a gradient elution program as follow: mobile
phase consisting of eluent A (H2O with 0.1 % formic acid)
and eluent B (acetonitrile with 0.1 % formic acid), at a flow
rate of 0.3 mL min−1. Eluent B was initially set at 5 % for
1.0 min, gradually increased to 99 % in 8.0 min, held at 99 %
for 2.0 min, and then rapidly decreased back to 5 % within
0.1 min, and maintained at 5 % for the final 2.9 min, result-
ing in a total run time of 13.0 min. The injection volume was
3 µL. The Orbitrap MS detection was performed in negative
electrospray ionization mode, under the following settings:
spray voltage at 2300 V, sheath gas at 40 Arb, auxiliary gas
at 10 Arb, sweep gas at 2 Arb, RF Lens of 30 %, ion trans-
fer tube temperature of 300 °C, and the vaporizer temper-
ature of 320 °C. The analysis began with a full MS scan.
For MS/MS data acquisition, the MS was operated in data-
dependent acquisition mode with stepped HCD collision en-
ergy of 15 %, 25 %, and 40 %. The intensity threshold for
triggering MS/MS data acquisition was set at 1× 105. The
MS resolution was configured to 120 000 and 30 000 for full
MS scan and MS/MS scan, respectively. The m/z range for
the full MS scan was 50–1200 and 50–500 for the MS/MS
scan. The data were analyzed using Xcalibur (version 4.1)
as well as the open-source software package MZmine 2.38,
following the workflows and methods previously described
(Brüggemann et al., 2019; Wang et al., 2022).
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2.3 Quantification of inorganic sulfates with Ion
Chromatography

The formation of inorganic sulfates (HSO−4 /SO2−
4 ) dur-

ing the aqueous qOH oxidation of αpOS-249 was deter-
mined using ion chromatography (IC). The details have been
given in previous studies (Xu et al., 2022; Lai et al., 2023).
Briefly, the samples were analyzed with a Dionex ICS-1100
IC system (Thermo Fisher Scientific). Inorganic sulfate an-
ions were separated using an IonPac AS11-HC analytical
column (4 mm× 250 mm) and an IonPac AG11-HC guard
column (4 mm× 50 mm). The IC system operated in nega-
tive mode with 15 mmol L−1 NaOH as the eluent at a flow
rate of 0.8 mL min−1. Moreover, the concentration of SO2−

4
anions quantified by IC represents the total amount of HSO−4
and SO2−

4 (Xu et al., 2022; Lai et al., 2023). In this work,
the quantity of inorganic sulfates was measured based on its
peak area in the chromatogram and quantified using a cal-
ibration curve based on Na2SO4 standard, with a retention
time (RT) of 4.0 min. The uncertainty of inorganic sulfate
measurements was found to be 2.5 % from repeated measure-
ments.

3 Results and discussion

3.1 Oxidation kinetics

Control experiments were conducted to account for any nonqOH losses, including αpOS-249 photolysis due to UV ra-
diation alone and the reaction of αpOS-249 with H2O2
in the absence of light (Sect. S4). Figure S1 reveals that
αpOS-249 neither photolyzes nor reacts with H2O2 unless
light is present to generate qOH. Furthermore, as discussed
in Sect. S5, the aqueous-phase qOH oxidation kinetics of
αpOS-249 is likely insensitive to solution pH under typical
atmospheric conditions.

Relative rate method was adopted to determine the second-
order rate constants for qOH oxidation of αpOS-249 (kOS)
by comparing the measured rate constants to that of a refer-
ence compound (BA) with a well-known qOH reaction rate of
kRef = (5.5± 0.3)× 109 L mol−1 s−1 at a solution pH of 4.5
(Hems and Abbatt, 2018), a condition that is the same as our
experiments (Sect. S5). In the reaction mixture, qOH reacts
with both αpOS-249 (Reaction R1) and BA (Reaction R2) as
described in the reactions shown below (Hems and Abbatt,
2018). The second-order rate constants for the qOH oxida-
tion of αpOS-249 (kOS) were calculated using Eq. (1), where
[αpOS-249] and [BA] are the concentrations of αpOS-249
and BA, respectively, at the initial (time = 0) and intermedi-
ate (time = t) time:

q
OH+αpOS− 249

kOS
−→ products (R1)q

OH+BA
kRef
−→ products (R2)

ln
(
[αpOS− 249]0
[αpOS− 249]t

)
=
kOS

kRef
ln

(
[BA]0
[BA]t

)
(1)

Figure 1a illustrates the relative kinetic plot, yielding a kOS
value of (2.2± 0.2)× 109 L mol−1 s−1 at 298 K. The uncer-
tainty of kOS was calculated by propagating the two stan-
dard deviations (2σ ) from multiple experiments, the reported
uncertainty of the rate constant for the reference compound,
and the uncertainties from measurements of αpOS-249 and
BA (Witkowski and Gierczak, 2017). The rate constant is
compared with that predicted by the structure-activity rela-
tionship (SAR) model which has been widely used to esti-
mate the reactivity of various organic compounds towardsqOH radicals in aqueous phase (Monod and Doussin, 2008;
Doussin and Monod, 2013). Our recent laboratory work re-
vealed the strong deactivating effect of the sulfate group
(−OSO−3 ) on aqueous-phase qOH radicals oxidation kinet-
ics, and extended the SAR model to include OSs (Lai et
al., 2024), by introducing new interaction parameters for the
−OSO−3 group (F (α-position) = 0.22 and G(β-position)
= 0.44). Here, we predicted the second-order rate constant
for the aqueous-phase qOH oxidation of αpOS-249 to be
3.1× 109 L mol−1 s−1 (Sect. S6 and Fig. S2 in the Supple-
ment), which is higher than our measured value of (2.2±
0.2)× 109 L mol−1 s−1. This difference is within an accept-
able range when considering the performance of the SAR
model (58 % of simulated rates within± 20 % and 76 %
within± 40 % of experimental data) (Monod and Doussin,
2008; Doussin and Monod, 2013). This suggests that the
SAR model is a valuable tool for predicting the aqueous-
phase qOH oxidation rate constants of a variety of atmo-
spheric OSs.

We also assessed the significance of aqueous-phase qOH
oxidation in its atmospheric fate by estimating the atmo-
spheric lifetimes (Fig. 1b), τ = 1/(kOS× [ qOH]) (Wen et al.,
2021). The estimated lifetimes based on the newly obtained
experimental data varied from approximately 3 min in remote
aerosol conditions ([ qOH]= 3× 10−12 mol L−1) to about 2 d
in urban cloud conditions ([ qOH] = 3.5× 10−15 mol L−1)
(Herrmann et al., 2010). In addition, using SAR predic-
tions with higher rate constant yield shorter lifetimes, rang-
ing from about 2 min in remote aerosol conditions to about
1 d in urban cloud conditions. Given these relatively short
atmospheric lifetimes, the aqueous-phase qOH oxidation
could likely serve as a significant transformation pathway for
αpOS-249.
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3.2 Oxidation products formed upon oxidation

Figure S3 shows the total ion chromatograms (TICs) ob-
tained from the product-capture experiments. Before oxida-
tion (Fig. S3a, t0), a dominant peak corresponding to the [M–
H]− ion of αpOS-249 (m/z= 249.08, C10H17O5S−) is ob-
served at a retention time (RT) of 4.7 min. After 45 min ofqOH oxidation (Fig. S3b, t45), the intensity of αpOS-249
significantly decreases, accompanied by the emergence of
new product peaks with low intensities. After 3 h of oxida-
tion (Fig. S3c, t180), αpOS-249 is almost completely con-
sumed. Notably, some new product peaks observed at t45
exhibit a declining trend, suggesting their susceptibility toqOH oxidation. A number of new OS products were de-
tected based on two primary criteria: (i) their absence prior
to oxidation (t0), and ii) the presence of fragmentation pat-
terns in their MS2 spectra, primarily showing the bisul-
fate anion (HSO−4 , m/z= 96.96), and often accompanied
by other sulfur-containing ions such as the sulfite ion radi-
cal (SO

q−
3 ,m/z= 79.96), and bisulfite anion (HSO−3 ,m/z=

80.97) (Surratt et al., 2008; Huang et al., 2018; Xu et al.,
2022). These identified OS products were summarized in
Table S5 and were grouped into two categories: more oxy-
genated C10 OS products, formed through functionalization
processes via the addition of oxygenated functional groups,
and smaller OS (<C10) products, which result from frag-
mentation processes.

Figure 2a shows the time-dependent evolution of inten-
sities for more oxygenated C10 OS products from different
generations. These products were grouped according to the
number of added oxygen atoms (e.g., +1×O, +2×O, etc).
The highest intensity of first-generation products (+1×O)
peaked at 45 mins into the reaction, followed by a noticeable
decrease, while the second-generation products (+2×O)
showed a gradual increase, lagged their peak at 90 min before
gradually declining. Third (+ 3×O) and fourth-generation
(+4×O) products followed a similar pattern, with a rel-
atively lower intensity compared to the first and second-
generation products. They showed a slow increase, peak-
ing at 120 min with a minimal decrease. Additionally, fifth-
generation (+5×O) products had even lower intensity, peak-
ing at 150 min, while sixth-generation (+6×O) products
showed the lowest intensity and a continued slow increas-
ing trend. This evolution pattern can be well described as
multi-generation sequential oxygenation processes (Kroll et
al., 2015).

The intensities of smaller OS (<C10) products are cat-
egorized by their carbon atoms (e.g., C9, C8, C7 etc), and
their time-dependent evolutions are shown in Fig. 2b. C9 OS
products show the highest intensity, peaking at 120 min be-
fore a slight decrease. Meanwhile, C7 OS products show the
second highest intensity, but significantly lower than C9 OS
products, displaying a consistent upward trend. The other
OS groups all demonstrate a continued increasing trend with
low intensities. Unlike more oxygenated C10 OS products,

the evolution of smaller OS products always keep increas-
ing with reaction time, suggesting that fragmentation likely
begins to gain increased significance as oxidation proceeds.

Figure 2c shows the variation in absolute intensity of
αpOS-249 and its oxidation products with different carbon
atoms before (t0) and after (t45 and t180) oxidation. The to-
tal intensity of C10 OS products initially exhibits a signifi-
cant increase followed by a decline. Meanwhile, the intensity
of smaller OS (<C10) products steadily increases through-
out the reaction. This implies that functionalization processes
likely dominate over the fragmentation processes in the early
oxidation stages (e.g., within the initial hour). However, as
oxidation proceeds, fragmentation processes begin to gain
comparable significance (Fig. S4). It is important to note that
this simple comparison assumes that OS products have the
same ionization efficiency as αpOS-249. However, differ-
ences in ionization efficiency among OS products relative to
the parent OS are not well understood. As a result, the find-
ings from this simple analysis should be interpreted with cau-
tion. Authentic standards are important for accurately quan-
tifying more oxygenated C10 OS products and smaller OS
products. In the absence of these standards, quantification
becomes challenging, and both overestimation and under-
estimation are possible depending on the specific molecular
structures involved. Furthermore, this observed trend agrees
with the hypothesis that as oxidation continues, the addition
of functional groups to the parent compound increases, lead-
ing to a higher probability of alkoxy radicals’ formation with
functional groups on the β-carbon (Kroll et al., 2011; Kessler
et al., 2012; Lambe et al., 2012; Wiegel et al., 2015; Hems
and Abbatt, 2018; Jiang et al., 2023). This, in turn, enhances
the fragmentation processes, as the addition of oxygenated
functional groups on the β-carbon plays an activating role
and reduces the energy barrier for decomposition (Wiegel et
al., 2015). Furthermore, other factors such as higher O/C ra-
tios and increased polarity can enhance the alkoxy decom-
position, thereby favoring the fragmentation process at later
stages of oxidation (Wiegel et al., 2015).

3.3 Reaction mechanisms

Upon oxidation, the qOH radical can initially attack differ-
ent reaction sites. Table S4 and Fig. S2 show the partial rate
constants for hydrogen abstraction at various reaction sites,
as derived from the SAR model. The model predicts that the
relative reactivity ranges from 2.3 % at 5-C to 21.2 % at 3-C.qOH radicals do not exhibit an overall strong preference for
specific carbon types (primary carbons: 34.8 %, secondary
carbons: 29.7 %, and tertiary carbons: 32.6 %) (Table S4).
For simplicity and clarity, we proposed the mechanisms in-
volving the three types of carbon atoms with the highest pre-
dicted partial rate constants in Scheme 1. A generic reaction
scheme outlining the formation of the identified OS products
was shown in Scheme S2, based on well-established reaction
pathways reported in the literatures (Russell, 1957; Bennett
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Figure 1. (a) Relative kinetic plot of aqueous-phase qOH oxidation of αpOS-249 in accordance with Eq. (1) using benzoic acid as the refer-
ence compound. (b) Atmospheric lifetimes of αpOS-249 against the aqueous-phase qOH oxidation was calculated under various scenarios
using rate constant obtained from this study (measurement data) and the SAR model. The concentrations of qOH in the aqueous phase under
four different scenarios were obtained from the modeling study (Herrmann et al., 2010).

Figure 2. Time-dependent evolution of absolute intensities for αpOS-249 decay and reaction products formed during the aqueous-phaseqOH oxidation of αpOS-249, (a) more oxygenated C10 OS products, (b) smaller OS (<C10) products, and (c) total intensity.

Atmos. Chem. Phys., 25, 12569–12584, 2025 https://doi.org/10.5194/acp-25-12569-2025



D. Lai et al.: Rapid Aqueous-Phase Oxidation of An α-Pinene-Derived Organosulfate by Hydroxyl Radicals 12575

and Summers, 1974; Hearn et al., 2007; Smith et al., 2009;
George and Abbatt, 2010; Kroll et al., 2015).

3.3.1 C10 OS products

As shown in Scheme 1 and Table S5, a number of more-
oxygenated C10 OS products were detected during oxidation,
likely formed through functionalization processes. These
processes initiate with hydrogen abstraction by qOH radi-
cals from αpOS-249, leading to the formation of an alkyl
radical (R q). The alkyl radicals then rapidly combine with
O2 to yield peroxyl radical (RO q

2). The subsequent self-
reactions of RO q

2 could lead to the formation of diverse prod-
ucts, incorporating oxygenated functional groups (e.g., hy-
droxyl (−OH), and carbonyl (=O) groups) into the parent
molecule (i.e., αpOS-249) without breaking the C-C bonds
(Kroll et al., 2009; Lambe et al., 2012). Generally, the addi-
tion of n number of oxygenated functional groups to αpOS-
249 represents the nth generation of oxygenation (Wilson
et al., 2012; Ng et al., 2022). For example, as shown in
Scheme 1, first-generation products are formed by adding ei-
ther one hydroxyl group or one carbonyl to αpOS-249, yield-
ing compounds such as C10H17SO−6 (m/z= 265.07) and
C10H15SO−6 (m/z= 263.06). These OS products show an in-
crease of one oxygen atom (+1×O) compared to the parent
compound. Different structural isomers of C10H17SO−6 and
C10H15SO−6 can be formed depending on different initial re-
action sites. The presence of multiple peaks with different
retention times during LC-MS analysis for a given OS ion
supports the presence of the isomeric products (Table S5).

Upon oxidation, first-generation products can transform
into second-generation products. These second-generation
products arise from the addition of an extra oxygen atom,
continually incorporating carbonyl or hydroxyl groups into
the first-generation products, thereby adding two oxygen
atoms to the parent compound (+2×O). Three combina-
tions of this transformation are possible: the addition of two
hydroxyl groups, one carbonyl and one hydroxyl group, or
two carbonyl groups. For example, as shown in Scheme
1, C10H17SO−7 (m/z= 281.07) represents the first case
through the addition of two hydroxyl groups. C10H15SO−7
(m/z= 279.05) represents the second case, formed by in-
corporating both carbonyl and hydroxyl groups into parent
compound. This compound can result from carbonyl addition
to first-generation hydroxyl products, or hydroxyl addition
to first-generation carbonyl products. Lastly, C10H13SO−7
(m/z= 277.04) represents the third case, involving the ad-
dition of two carbonyl groups. Furthermore, the progres-
sion towards more oxygenated C10 OS products can be sus-
tained, enabling the continual incorporation of new func-
tional groups into parent compound. Among the identified
OS products (Table S5), the most oxygenated C10 OS prod-
ucts were found to be C10H15SO−11 (m/z= 343.03), inferring
the addition of six oxygenated functional groups.

3.3.2 Smaller OS (<C10) products

Smaller OS (<C10) products were also detected, ranging
from C3 to C9 OS products. Detailed molecular information
about these OS products is summarized in Table S5. Unlike
more oxygenated C10 OS products, the formation of frag-
mentation products is likely occurred through multiple path-
ways across various oxidation generations. For simplicity, we
proposed in Scheme 1 several possible mechanisms, involv-
ing three specific carbon atom types and focusing on RO q
decomposition through C-C bond scission (George and Ab-
batt, 2010).

Upon oxidation, the fragmentation processes initiate with
the same mechanisms as the functionalization processes until
the alkoxy radicals (RO q) form following the self-reactions
of RO q

2. For example, for tertiary carbon 3-C, with the high-
est partial rate constant, three scission pathways (path a,
b, and c, Scheme 1) from RO q radicals generate smaller
OS products such as C7H9SO−7 (m/z= 237.01), C9H15SO−7
(m/z= 267.05), and C9H13SO−7 (m/z= 265.04). These C9
OS products can also be formed during initial hydrogen ab-
straction from primary (9-C) and secondary carbon sites (7-
C) with different structures. We acknowledge that various
reaction pathways can potentially lead to the same smaller
OS products, with Scheme 1 outlining certain possible path-
ways. For example, C9H15SO−6 (m/z= 251.06) could origi-
nate from the decomposition of RO q following initial hydro-
gen abstraction from the primary (9-C) carbon site or from
the subsequent oxidation of C10H17SO−6 (m/z= 265.07).

3.3.3 Inorganic sulfates

Previous studies on the heterogeneous qOH oxidation of var-
ious OSs, involving aliphatic, isoprene-derived, and pinene-
derived OSs, have reported the formation of inorganic sul-
fates (e.g., HSO−4 and SO2−

4 ) (Kwong et al., 2018; Chen
et al., 2020; Xu et al., 2022). We also investigated the sig-
nificance of this conversion from organosulfur in αpOS-
249 to inorganic sulfur upon aqueous-phase qOH oxidation
(Sect. S10). Figure S5 shows the ion chromatograms be-
fore (t0) and after (t45 and t180) aqueous-phase qOH oxida-
tion of αpOS-249. Before oxidation, a minor presence of in-
organic sulfates (3.2± 0.1 % of total sulfur molar) was de-
tected, likely due to αpOS-249 hydrolysis (Fig. S5) (Xu et
al., 2022). This amount has been corrected for the quantifi-
cation of inorganic sulfate formed upon oxidation. After oxi-
dation (Fig. S5), a continued increase in the inorganic sulfate
signal was observed. This inorganic sulfate formation was
not detected in any control experiments and inferring that
it is formed during aqueous-phase qOH oxidation of αpOS-
249. Figure 3 shows the temporal evolution of αpOS-249 and
inorganic sulfate (HSO−4 and SO2−

4 ) concentrations during
the aqueous-phase qOH oxidation of αpOS-249. Over the
3 h oxidation period, αpOS-249 was nearly full consumed,
while inorganic sulfate concentration steadily increased. The
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Scheme 1. Proposed mechanisms for the formation of C10 OS products and smaller OS (<C10) products through functionalization and
fragmentation processes during the aqueous-phase qOH oxidation of αpOS-249, using 3-C, 7-C, and 9-C as representative examples with the
highest predicted partial rate constants (For simplicity and clarity, we only proposed the mechanisms up to the second-generation products).
Grey and yellow base colours distinguish the C10 OS products and smaller OS products, respectively.

inorganic sulfate yield, calculated as the moles of inorganic
sulfate formed per mole of αpOS-249 reacted over reaction
time, reached of 46± 2 % at the end of experiment (Fig. S6).
These results suggest that within the timeframe of aqueous-
phase qOH oxidation, about half of the sulfur in reacted
αpOS-249 upon oxidation was converted to inorganic sul-
fate. We anticipate a continuous increase in inorganic sul-
fate concentration when the reaction further proceeds. Fu-
ture work is warranted regarding the dependence of inorganic

sulfate formation on the extent of OS oxidation in the atmo-
sphere.

Upon oxidation, the generation of inorganic sulfates in-
volves the formation and reactions of sulfate radical anion
(SO

q−
4 ) (Ng and Chan, 2023). This sulfur radical species

is likely derived from the cleavage of C-O bond, occurring
when a RO q is created with the –O q situated at the β posi-
tion of the –OSO−3 group (Ng and Chan, 2023). In the pres-
ence of H2O, SO

q−
4 can subsequently converted into HSO−4 ,
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D. Lai et al.: Rapid Aqueous-Phase Oxidation of An α-Pinene-Derived Organosulfate by Hydroxyl Radicals 12577

Figure 3. Concentrations of αpOS-249 and inorganic sulfates
(HSO−4 and SO2−

4 ) as function of reaction time during the aqueous-
phase qOH oxidation of αpOS-249.

which can exist in equilibrium with SO2−
4 . Both HSO−4 and

SO2−
4 contribute the yield of inorganic sulfates (Lai et al.,

2023). Based on SAR predictions (Fig. S2), hydrogen ab-
straction at the α-position 5-C reaction site, leading to the
direct formation of SO

q−
4 , shows the lowest relative reactiv-

ity (2.3 %) compared to other sites. This small reactivity can
be explained by the electron-withdrawing nature of –OSO−3
groups, which lower the electron density of the α C−H bond
and decrease the rate of hydrogen abstraction (Berruti et al.,
2022; Lai et al., 2024). Considering this low reactivity, the
generation of SO

q−
4 through C-O bond cleavage in the 5-C

alkoxy radical directly from αpOS-249, and its subsequent
conversion to inorganic sulfates (Scheme S3), may not be a
favorable reaction pathway.

Possible explanations the sulfur conversion from αpOS-
249 to inorganic sulfate could be: (1) enhanced likelihood of
α-position alkoxy radical decomposition to SO

q−
4 as oxida-

tion proceeds, altering site selectivity of qOH hydrogen ab-
straction when more oxygenated and functional groups are
added to the carbon backbone (e.g., different generations of
oxygenated C10 OS products), (2) increased production of
smaller OS products leading to easier C-O bond cleavage and
inorganic sulfate formation due to fewer carbon atoms, (3) in
addition to SO

q−
4 pathway, the formation of inorganic sul-

fates may also occur through the non-SO
q−

4 reaction path-
way. For example, a recent laboratory study proposed an
alternative mechanism for inorganic sulfate formation, sug-
gesting the involvement of sulfite radical anion (SO

q−
3 ) from

the cleavage of (C)O−S bonds, triggering a series of chain
reactions resulting in inorganic sulfate formation (Xu et al.,
2024), and (4) when oxidation proceeds, more tertiary OS
products are likely produced. This could increase the pos-

sibility of inorganic sulfates formed from the hydrolysis of
these tertiary OS products. For instance, the efficient hydrol-
ysis can occur for certain tertiary OSs, such as isoprene-
derived OSs, under relevant ambient acidities (Hu et al.,
2011). Further studies are warranted to better understand the
role of hydrolysis in OS transformation.

It is important to note that the formation of SO
q−

4 via C-
O bond cleavage in RO q can also lead to the formation of
non-sulfated products (Xu et al., 2022). For example, C10
products such as C10H18O2 (m/z= 170.13) and C10H16O2
(m/z= 168.12) can be formed (Scheme S3). Their pre-
dicted Henry’s law constants, calculated using HENRY-
WIN through the bond contribution method (Mackay and
Shiu, 1981), are 4.08× 103 and 9.17× 101 M atm−1, re-
spectively. These predicted values are lower than that of
αpOS-249 (1.35× 109 M atm−1). Given their low solubil-
ities, these two non-sulfated products are likely partition
to the gas phase and have not been detected in our prod-
uct analysis. Additionally, some non-volatile products could
be formed. For instance, C9H16O4 (m/z= 188.10) and
C9H14O4 (m/z= 186.09) can be produced alongside SO

q−
4

(Scheme S3), with predicted Henry’s law constants are
1.71× 108 and 9.52× 106 M atm−1, respectively, about one
to two orders of magnitude lower than αpOS-249 (Mackay
and Shiu, 1981). Among these two products, C9H14O4
(m/z= 186.09) was detected in our product analysis, but
C9H16O4 (m/z= 188.10) was not identified.

4 Atmospheric implications

We would like to note that as shown in Tables 1 and S5, 34
out of 40 OS products formed upon aqueous-phase qOH ox-
idation of αpOS-249 have been detected in ambient samples
with significant atmospheric abundance. Among the detected
OS products, the most prevalent OS product, C5H7SO−7
(m/z= 210.99), has been observed at concentrations up to
131 ng m−3 and was previously thought to originate primar-
ily from isoprene (Table S5) (Hettiyadura et al., 2019). Our
findings also suggest that this OS product could also origi-
nated from the aqueous-phase qOH oxidation of αpOS-249.
This can also apply to other smaller OSs (<C10), includ-
ing C3H5SO−5 , C7H9SO−7 , and C8H11SO−7 (Table 1), pre-
viously linked to isoprene as a precursor. This finding also
addresses that some atmospheric smaller OSs can also origi-
nate from the transformation of larger OSs (e.g., αpOS-249),
particularly in the regions where the monoterpene emissions
are significant. More importantly, among the identified OS
products, 13 out of 40 OS products have unknown sources
and 20 out of 40 OS products have unknown formation path-
ways (Table 1), suggesting that the aqueous qOH oxidation
of αpOS-249 could be a previously unrecognized formation
pathway of these ambient-detected OSs (Fig. S7).

Furthermore, the chemical aging of αpOS-249 during
aqueous-phase qOH experiments can significantly modify
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the composition and physiochemical properties of atmo-
spheric aerosols and cloud droplets. For example, qOH ox-
idation of αpOS-249 promotes the formation of inorganic
sulfates, which can enhance acidity. It also produces smaller
OS products that may reduce surface activity compared with
their parent αpOS-249 and larger OSs. These insights are
critical for accurately evaluating the role of such atmospher-
ically important organosulfur compounds in aerosol–cloud
interactions and their potential climate impacts.

5 Conclusions

Overall, the aqueous-phase qOH oxidation can serve as
an important sink for αpOS-249 with corresponding atmo-
spheric lifetimes ranged from minutes to about 2 d under rel-
evant atmospheric cloud conditions. This efficient oxidation
also highlights that the atmospheric abundance of αpOS-249
and potentially other structurally similar OSs (e.g., limonene
derived OSs) in field studies may be underestimated if their
transformation pathways are not properly considered. More-
over, aqueous-phase qOH oxidation of αpOS-249 can yield
a number of more-oxygenated C10 OS products, smaller
OS (<C10) products, and inorganic sulfates (e.g., bisulfate
(HSO−4 ) and sulfate (SO2−

4 )). Among these products, most
of the OS products have been detected in the atmosphere,
with some having previously unknown sources and forma-
tion mechanisms. Altogether, this study shows that the trans-
formation pathways of OSs (e.g., αpOS-249) via aqueous-
phase qOH oxidation can serve as sources for some unclassi-
fied OSs in the atmosphere.
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