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Abstract. Ozone (O3) pollution has recently become the most critical air quality issue in China, yet its underly-
ing drivers related to climate change remain poorly understood. Here, we use a regional atmospheric chemistry
model, along with 10-year ground-level O3 measurements, and reanalysis data on low cloud cover (LCC) and
surface downward shortwave radiation (SSRD) to investigate the impacts of variations in LCC, SSRD, and
cloud–radiation interactions (CRIs) on O3 production. We design six numerical experiments and specifically
modify parameters related to cloud radiation effects in the chemistry module to find out the underlying cause for
O3 increase during the warm season of 2022 in the Yangtze River Delta (YRD), China. Results show that O3
production is strongly modulated by LCC and SSRD. CRI plays a significant role in regulating O3 concentra-
tion; i.e., reduced LCC, increased SSRD, and a weakened CRI are primarily responsible for the sharp increase
in warm-season O3 concentration observed in 2022 in the YRD, China. Moreover, climate warming is likely to
exacerbate future O3 pollution via weakening CRI due to fewer clouds and more SSRD. To mitigate O3 pollu-
tion, we thus propose implementing more stringent emission reduction measures on O3 precursors, along with
proactive strategies to address climate change.

1 Introduction

Over the past decade, high concentrations of ground-level
ozone (O3) have increasingly been a major air pollution is-
sue in China. These O3 pollution events are characterized by
extensive spatial coverage and prolonged duration during the
warm season; i.e., from 22–29 September 2019, a severe O3
pollution event in eastern China covered an area of approx-
imately 3.2× 106 km2 (Zhang and Zheng, 2022). Another
notable aspect is that high O3 concentration often coincides
with high-temperature weather, and their co-occurrence fre-
quency has increased at a faster rate than either alone in re-

cent years (Xiao et al., 2022), posing serious risks to human
health, climate change, and food security.

Ground-level observations show that each 1 °C increase
results in an 8–10 µgm−3 rise in O3 concentrations during
heatwaves in eastern China, when air temperature varies be-
tween 28 and 38 °C (Pu et al., 2017; Wang et al., 2023).
This is largely attributed to O3 sensitivity to the precursors.
In the volatile organic compound (VOC)-limited regime, an
increase in air temperature can enhance biogenic VOC emis-
sions, providing more O3 precursors (Liu and Wang, 2020a).
However, the response of O3 concentration to air tempera-
ture is nonlinear. As the temperature further increases and
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exceeds 38.5 °C, chemical and biophysical feedbacks of veg-
etation are suppressed, and consequently, biogenic emissions
and related O3 formation are reduced (Meehl et al., 2018; Pu
et al., 2017; Steiner et al., 2010). Thus, extreme high tem-
perature cannot fully explain high O3 concentration. What
exactly causes the highest daytime O3 concentration in the
hottest summer?

Several recent review studies have identified multiple
factors to explain ground-level O3 formation (Fu et al.,
2019; Jiang et al., 2022; Lu et al., 2019a; Wang et al.,
2022a), including precursor emissions and their proportion
(Mousavinezhad et al., 2021; Wang et al., 2019b; Xue et al.,
2014; Zeng et al., 2018, 2023); climate patterns (Creilson
et al., 2005; Gao et al., 2023; Hong et al., 2019; Shen and
Mickley, 2017; Xu et al., 2017); synoptic-scale circulation
systems (Dong et al., 2020; Ji et al., 2024; Jiang et al., 2021;
Li et al., 2018; Mao et al., 2020; Shu et al., 2016; Yin et al.,
2019; Zhao et al., 2010; Zhao and Wang, 2017; Zheng et al.,
2023; Zhou et al., 2013); meteorological parameters such as
temperature (Lu et al., 2019b; Mousavinezhad et al., 2021;
Pu et al., 2017; Wang et al., 2023; Zheng et al., 2023), hu-
midity (Mousavinezhad et al., 2021; Pu et al., 2017; Zhao
and Wang, 2017; Zheng et al., 2023), wind (Mao et al., 2020;
Pu et al., 2017; Zhao and Wang, 2017), and boundary layer
height (Mousavinezhad et al., 2021; Zheng et al., 2023), and
stratosphere–troposphere exchange (Lu et al., 2019a, b; Ver-
straeten et al., 2015).

However, ground-level O3 is inherently a photochemical
product, and anthropogenic emissions are source drivers that
determine its levels, while incident solar radiation acts as a
trigger for photochemical reactions, dominating photolysis
rates of O3 production. Currently, there are few studies on
the influence of changes in solar radiation on O3 formation.
Early studies reported that clouds have important impacts on
tropospheric photochemistry, which increases global mean
OH concentration by about 20 % (Tie et al., 2003). It was
also found that the prediction accuracy of clouds in the model
would significantly affect atmospheric chemical composition
near the surface layers, leading to an overestimation/under-
estimation of O3 concentration (Pour-Biazar et al., 2007).
During the Texas Air Quality Study II Radical and Aerosol
Measurement Project, the influence of clouds on photolysis
rate was evidently greater than that of aerosols (Flynn et al.,
2010), and the total reduction in the photolysis rate caused by
clouds and aerosols was almost linearly correlated with the
reduction in the net O3 production. These studies all indicate
that changes in clouds and solar radiation significantly influ-
ence the photolysis conditions, which is of great importance
to O3 formation. In China, the decline in PM2.5 concentra-
tion is considered one of the reasons for the increase in O3
levels in recent years due to the weakened aerosol–radiation
interactions (Yang et al., 2022). However, there is a lack of
field campaign evidence similar to that in the USA (Flynn
et al., 2010), and only in recent years have few studies quali-
tatively described the influence of solar radiation on O3 con-

centration. For example, enhanced solar radiation during hot
and dry weather can increase O3 production (Mousavinezhad
et al., 2021; Xia et al., 2022; Yin et al., 2019; Zhao and Wang,
2017). Some of these studies have also mentioned that cloud
cover can alter solar radiation, thereby affecting O3 forma-
tion (Xia et al., 2022; Zhao and Wang, 2017). Nonetheless,
these studies lack quantitative analysis and systematic expla-
nations of mechanisms for the contributions of clouds, solar
radiation, and their variability to O3 formation, and none of
them further investigate the impact of cloud–radiation inter-
actions (CRIs) on O3 formation. Moreover, with the increas-
ingly persistent impact of climate change, how this factor
may affect O3 concentration remains unclear.

In this study, we establish correlations between daytime
O3 concentration and downward solar radiation as well as
low clouds, based on measurements and reanalysis data dur-
ing the past decade. Using numerical models, we analyze the
causes of high O3 concentration and, in particular, assess the
dependence of O3 change on the variabilities of clouds, solar
radiation, and CRI. Furthermore, we project the potential im-
pacts of these factors on high O3 concentration under climate
change.

2 Data and methods

2.1 Measurements and reanalysis data

We collect in situ measurements on hourly mass concen-
trations of gaseous pollutants in the Yangtze River Delta
(YRD), China, during the warm season of the past decade
(2014–2024). The gaseous pollutants include O3, CO, and
NO2, which are measured by the Model 49i UV Photo-
metric Ozone (O3) Analyzer, Model 48i Gas Filter Cor-
relation Carbon Monoxide (CO) Analyzer, and Model 42i
Chemiluminescence NO–NO2–NOx Analyzer, respectively.
These analyzers are equipped with built-in calibration sys-
tems that accurately linearize the instrument outputs. The
missing data have been eliminated. The flat YRD region,
located in eastern China, is one of the largest urban ag-
glomerations in the world, consisting of three provinces
(Jiangsu, Zhejiang, and Anhui) and one municipality (Shang-
hai) (Fig. 1a). This region is densely populated, with highly
developed economies and transportation networks, and con-
currently, anthropogenic emissions of O3 precursors, includ-
ing nitrogen oxides (NOx) and volatile organic compounds
(VOCs), are significantly higher than those in other regions
of China (Fig. 1b and c). Moreover, the region has abun-
dant vegetation, resulting in a moderate level of biogenic
VOC emission in China (Fig. 1d). Thus, this region is one
of China’s hotspots for O3 pollution. The warm season in
mid-latitude regions of Northern Hemisphere often refers to
the April–September period. In this period of 6 consecutive
months within a single calendar year, the highest mean O3
concentration is observed, defined as the warm-season O3.
The YRD belongs to the mid-latitude region (Fig. 1a) and is
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facing an environment issue of high O3 concentration during
the warm season.

Meteorological reanalysis data used here consist of sur-
face downward shortwave radiation (SSRD) and low cloud
cover (LCC) from the European Centre for Medium-Range
Weather Forecasts ERA5, with an hourly resolution and a
0.25°× 0.25° spatial resolution. SSRD and LCC data are se-
lected from 07:00–18:00 Beijing time (BJT) due to O3 photo-
chemical formation occurred during the daytime. Hourly ob-
servations on 2 m temperature (T2 m), relative humidity (RH),
wind speed (WS), and wind direction (WD) observed at four
weather stations are from the National Oceanic and Atmo-
spheric Administration, available at https://www.ncei.noaa.
gov/maps/hourly/ (last access: 12 September 2025).

2.2 Model and experiments

We use the state-of-the-art regional Weather Research and
Forecasting Model online coupled with chemistry (WRF-
Chem model) to investigate the causes of high O3 concen-
tration during the warm season of 2022. The WRF-Chem
model is a regional atmospheric chemistry transport model
that can assess how the physical and chemical processes
including transport, vertical mixing, aerosol–cloud interac-
tions, cloud–radiation interactions, emissions, and gas-to-
particle conversion affect air quality. The detailed model in-
formation refers to Grell et al. (2005), and model configura-
tions used in this study are as follows. The physical mech-
anisms include the Goddard longwave and shortwave ra-
diation schemes (Dudhia, 1989), the WSM 6-class graupel
microphysics scheme (Hong and Lim, 2006), the Mellor–
Yamada–Janjić (MYJ) planetary boundary layer scheme
(Janjić, 2002), the unified Noah land-surface model (Chen
and Dudhia, 2001), and the Monin–Obukhov surface layer
scheme (Janjić, 2002). The chemical mechanisms include a
new flexible gas-phase chemical module and the Community
Multiscale Air Quality (CMAQ, version 4.6) aerosol mod-
ule developed by the United States Environmental Protection
Agency (U.S. EPA) (Binkowski, 2003), gas-phase reactions
of volatile organic compounds (VOCs) and nitrogen oxide
(NOx) by the SAPRC-99 (Statewide Air Pollution Research
Center, version 1999), and a non-traditional volatility basis
set (VBS) approach to calculate secondary organic aerosol
(SOA) formation (Li et al., 2011b). In addition, HONO pro-
duction by NO2 heterogeneous reaction is added to improve
HOx (OH+HO2), NOx, O3, and SOA simulations (Li et al.,
2010). Inorganic aerosols use the ISORROPIA mechanism
(version 1.7) (Nenes et al., 1998), in which a SO2 hetero-
geneous reaction to sulfate formation on aerosol surfaces is
considered (Li et al., 2017a). A fast Tropospheric Ultravio-
let and Visible (FTUV) radiation transfer model is used to
calculate the photolysis rates (Tie et al., 2003), which can
also calculate the impacts of aerosols and clouds on the pho-
tochemistry processes (Li et al., 2011a). The wet deposition
uses the method in CMAQ (Byun and Ching, 1999), and the

dry deposition follows Wesely (1989). The anthropogenic
emission inventory used was the Multi-resolution Emission
Inventory for China (MEIC), developed by Tsinghua Univer-
sity (Li et al., 2017b), consisting of industrial, power, trans-
portation, agricultural, and residential sources. The biogenic
emissions are calculated by the Model of Emissions of Gases
and Aerosol from Nature (MEGAN) (Guenther et al., 2006).
The model horizontal resolution is 6 km, with 200 grids in
the longitude and 200 grids in the latitude. There are 35
vertical sigma levels, with intervals ranging from 50 m near
the surface to 500 m at 2.5 km above ground level and more
than 1 km above 14 km. Initial and boundary meteorological
fields in the model are driven by 6 h 1°× 1° Final Analy-
ses data from National Centers for Environmental Prediction
(NCEP FNL). Chemical initial and boundary fields are from
the Community Atmosphere Model with chemistry (CAM-
Chem) 6 h output. The spin-up time of the model is 2 d. A
brief introduction on the schemes used in this study is shown
in Table S1 in the Supplement.

We perform four groups of model experiments, with a
total of six simulations (Table 1). The baseline experiment
(BS_Exp.) reflects the real situation of high O3 concentra-
tion. BS_Exp. uses real emissions and meteorological con-
ditions in July 2022. The rationality for selecting July as
the representative month of the warm season is as follows.
Firstly, July is typically the most representative month for
the warm season in Northern Hemisphere. Moreover, the
observed interannual variation in daytime O3 concentra-
tion in July is fully consistent with the interannual varia-
tion in warm-season mean O3 concentration in recent years
(Figs. S1 in the Supplement and 2a). Most importantly, day-
time O3 concentration in July 2022 is the highest in re-
cent years, significantly higher than the lowest in July 2021,
and another identical feature is that daytime O3 concentra-
tion in July 2024 is the second highest. BS_Exp. is also
used to validate the model performance by comparing with
the measurements. Another two groups of control experi-
ments (CTRL_Exp.) are used to assess the impacts of in-
terannual variability of meteorology and emission change
on O3 formation. The first group of control experiments se-
lects the year of 2021 with the lowest daytime O3 concen-
tration in recent 5 years, using the same emissions as the
BS_Exp. but different meteorological conditions (defined as
CTRL_Exp.1). Differences between the CTRL_Exp.1 and
BS_Exp. can illustrate the impacts of interannual variabil-
ity of meteorological conditions on O3 concentration. The
second group uses the same meteorological conditions as the
BS_Exp. but different emissions (CTRL_Exp.2). Emission
changes in CTRL_Exp.2 are based on the emissions in 2021,
and the difference between CTRL_Exp.2 and the BS_Exp.
can explain the impact of emission changes of precursors on
O3 formation. In addition, we perform a background exper-
iment (BG_Exp.) with zero anthropogenic emissions to cal-
culate the background O3 concentration.
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Figure 1. Location of the YRD, China and spatial distributions of emissions. (a) The flat YRD is located in eastern China, marked by the
blue line. (b) Anthropogenic NOx emission rate in July 2022 based on the MEIC. (c) Same as panel (b) but for anthropogenic non-methane
VOCs. Panels (b) and (c) represent human-induced emissions of precursors for O3. (d) Biogenic isoprene emission rate is calculated by
MEGAN, representing biogenic VOC emissions.

Table 1. Setup of model experiments.

Experiment Anthropogenic emission Meteorology Cloud–radiation
interactions (CRIs)

BS Exp._CRI Emission 2022 Meteorology 2022 Yes
BS Exp._noCRI Emission 2022 Meteorology 2022 No
CTRL Exp.1_CRI Emission 2022 Meteorology 2021 Yes
CTRL Exp.1_noCRI Emission 2022 Meteorology 2021 No
CTRL Exp.2 Emission 2021 Meteorology 2022 Yes
BG Exp. No Meteorology 2022 Yes

Based upon the BS_Exp. and CTRL_Exp.1, we partic-
ularly examine the contribution of CRI intensity to O3
formation via considering and not considering the impact
of CRI on atmospheric photochemistry. The BS_Exp. ex-
periments with CRI considered or not are designated as
BS_Exp._CRI and BS_Exp._noCRI, respectively, while the

CTRL_Exp.1 experiments with and without CRI are desig-
nated as CTRL_Exp.1_CRI and CTRL_Exp.1_noCRI. The
setup information for all simulation experiments is provided
in Table 1. The impacts of clouds on solar radiation are
calculated by adjusting three key parameters in the chem-
ical module related to cloud radiative effect: cloud optical
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Figure 2. Observed relationships between O3, SSRD, and LCC.
(a) Annual variation in mean daytime O3 concentration (black),
SSRD (orange), and LCC (green) during the warm season of
the past decade (2014–2024) in the YRD, China. (b) Correla-
tion between O3 concentration and SSRD. (c) Correlation be-
tween O3 concentration and LCC. The colored lines in panels (b)
and (c) represent the linear fits through the data in panel (a); i.e.,
[O3] = −32.20+0.35×[SSRD]with r = 0.85 and [O3] = 142.49−
173.87×[LCC] with r =−0.90. O3 concentration is significantly
positively (negatively) correlated with SSRD (LCC), with confi-
dence levels exceeding 99.9 %. Sample sizes N , correlation coef-
ficients r , and confidence levels p by Student’s t test are shown in
panels (b) and (c).

depth, single scattering albedo, and asymmetry factor. This
approach confines the CRI impact within photochemical re-
actions, only altering the photolysis rates of photochemical
substances directly associated with O3 formation. Addition-
ally, it avoids the original meteorological fields in the physi-
cal module being perturbed by the CRI, which would other-
wise complicate the study.

To evaluate the model performance, we use three com-
mon statistical indices involving mean bias (MB), root mean
square error (RMSE), and index of agreement (IOA) (Will-
mott, 1981). The formulas are as follows:

MB=
1
N

∑N

i=1
(Pi −Oi) (1)

RMSE=
[

1
N

∑N

i=1
(Pi −Oi)2

] 1
2

(2)

IOA= 1−
∑N

i=1(Pi −Oi)2∑N
i=1(|Pi −O| + |Oi −O|)2

, (3)

where Pi and Oi represented the simulated and observed
variables, respectively. N is the total sample number of the
simulation, and O denotes the average of the observation.

The IOA ranges from 0–1. The closer it is to 1, the better the
simulation.

2.3 Climate scenarios

Using 41-model results from Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) (Table S2), we analyze the
long-term trends of monthly surface downwelling shortwave
radiation (SSRD), total cloud cover percentage (TCC), and
daily maximum air temperature (Tmax) in July during 2025–
2099 under three Shared Socioeconomic Pathways (SSPs).
These three SSPs narrate the Green Road with a sustain-
able development paradigm (SSP1-1.9), middle-of-the-road
scenario along a historical development pattern (SSP2-4.5),
and a highway road with a fossil-fueled development pat-
tern (SSP5-8.5) that represent high, moderate, and low cli-
mate mitigation pathways, respectively (Riahi et al., 2017).
Finally, we project the potential influence of the solar radia-
tion on the occurrence of high O3 concentration under these
climate scenarios.

3 Results and discussion

3.1 Observed linkage between O3, incident solar
radiation, and low clouds

Over the past decade, the warm-season mean daytime O3
concentration (hereafter O3 concentration) in the YRD has
shown a distinct rising–falling pattern before 2021, with a
turning point in 2017 (Fig. 2a). From 2013–2017, O3 con-
centration increased by 5.9 µgm−3 yr−1, while it decreased
by 2.5 µgm−3 yr−1 during 2017–2021. Due to the Action
Plan on Prevention and Control of Air Pollution since 2013,
China’s anthropogenic NOx emissions were substantially re-
duced (Zhang et al., 2019), whereas VOC emissions in-
creased slightly during 2013–2017 (Zheng et al., 2018). The
disproportionate emission reductions largely contributed to
the continuous increase in O3 concentration from 2013–2017
(Jiang et al., 2022; Wang et al., 2022a, 2019a; Liu and Wang,
2020b). Since 2017, as VOC emissions have begun to decline
(Jiang et al., 2022; Simayi et al., 2022), along with the ongo-
ing reduction in NOx (Li et al., 2024; Zhang et al., 2019),
O3 concentration has begun to decline (Lu et al., 2019b).
In addition to precursor emissions, O3 trends during this pe-
riod were also influenced by meteorological conditions and
PM2.5 reductions. The meteorological conditions play an im-
portant but not dominant role in ozone trends (Liu et al.,
2023; Li et al., 2020), and the continued PM2.5 reduction en-
hances ozone production due to the weakened aerosol uptake
of hydroperoxyl (HO2) radicals (Li et al., 2019a). Neverthe-
less, O3 trends were primarily driven by changes in precur-
sor emissions (Wang et al., 2022a; Liu and Wang, 2020b).
Unexpectedly, during the warm season of 2022, O3 concen-
tration suddenly increased to the highest, even surpassing the
turning point of 2017 by 3.4 µgm−3. Subsequently, O3 con-
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centrations dropped during the warm seasons of 2023–2024
compared to the same period of 2022 but still remained at rel-
atively high levels. This is seemingly paradoxical to emission
reductions in O3 precursors mentioned above.

According to the principle of O3 formation, it is influenced
not only by changes in precursor emissions but also by the
solar radiation intensity. Observational evidence reveals that
interannual variability of warm-season downward solar radi-
ation is highly consistent with the interannual variation of O3
concentration in the YRD during the past decade. A signifi-
cant positive correlation between them (r = 0.85, p < 0.001,
Fig. 2b) suggests that O3 concentration indeed strongly de-
pends on the SSRD intensity. Low clouds with small and
compact liquid droplets can significantly reflect the solar ra-
diation by their considerable optical thickness (Kang et al.,
2020), thereby diminishing photolysis rate and the loadings
of tropospheric oxidants (Tie et al., 2003, 2019). We ex-
amined the relationship between daytime LCC and O3 con-
centration and found that O3 concentration is more signifi-
cantly negative with LCC (r =−0.90, p < 0.001, Fig. 2c).
This suggests that low clouds are of great importance to O3
concentration. Liu and Wang (2020a) suggested that the re-
duction in cloud cover plays a dominant role in increasing
daily maximum 8 h (MDA8) O3 concentration in China dur-
ing 2014–2017 summer. Similarly, daytime LCC in the warm
season of 2022 dropped to the lowest (LCC= 0.2) during the
past decade, with a 23.6 % reduction relative to the multi-
year mean, while SSRD was significantly more than the
multi-year mean by 28.9 Wm−2 (Fig. S2). Thus, solar radia-
tion is vital to O3 formation, by which an increase (decrease)
in LCC intensifies (weakens) the reflection of solar radiation,
and decreases (increases) SSRD, unconducive (conducive) to
O3 formation. The favorable solar radiation is likely crucial
to the sudden increase in O3 concentration during the warm
season of 2022, though O3 precursors from anthropogenic
emissions have been slashed.

3.2 Model validation

Observations at weather stations in four provinces and mu-
nicipality are used to validate the model performance on
meteorological fields. Results show that the model captures
spatiotemporal variability of meteorological parameters well
(Fig. S3). For example, the simulated T2 m is in good agree-
ment with the observation, with the IOAs in the range of
0.88–0.92. The MBs are within 0.7 °C, and the RMSEs are
around 2.0 °C. Followed by the RH, with IOAs of 0.83–0.89.
Most importantly, the model successfully captures the WD
shift, with the IOAs of 0.79–0.89, which is crucial for ac-
curately simulating atmospheric transport and re-distribution
of the spatiotemporal variations in pollutants. There are also
some biases between the simulations and observations. The
model generally overestimates the WS, with the IOAs be-
tween 0.60 and 0.73, lower than those of the three parame-
ters mentioned above. These discrepancies are partly due to

the systematical bias of the WRF-Chem model, which often
overestimates the ground-level WS. Additionally, the obser-
vation data on WS are recorded only as integers, with no dec-
imal fractions. This lack of precision in observations reduces
the temporal variability of the WS, compared to the simula-
tions, thereby resulting in a lower IOA.

For pollutants, the model also reproduces the temporal
variation of O3 well, with an MB of 2.4 µgm−3 and an RMSE
of 17.7 µgm−3 (Fig. S4a). This means the simulation is ap-
proximately 2.8 % higher than the observation, with an ac-
curacy of 79.3 %. The IOA between the simulated O3 hourly
variation and the observation exceeds 0.90 (IOA= 0.94), im-
plying for a better performance of the model on chemical re-
actions. The simulated NO2 concentration is also in a good
agreement with the observation (IOA= 0.83), with an MB
of 0.9 µgm−3 and an RMSE of 5.3 µgm−3 (Fig. S4b). In-
evitably there are also some discrepancies between the simu-
lation and the observation; i.e, the amplitude of the simulated
CO concentration is remarkably greater than the observed
(Fig. S4c). This is largely related to the emission inventory
that fails to depict an accurate diurnal cycle of CO emission.
The IOA between the simulated and observed CO concen-
trations is thus relatively lower (IOA= 0.63). However, the
simulated mean CO concentration is extremely close to the
observation (MB= 0.0µgm−3), suggesting that the model
accurately captures the variability of atmospheric transport.
Generally, the model reproduces temporal variations in me-
teorological fields, O3, and related gaseous pollutants well
(Figs. S3 and S4), providing sufficient evidence for the ratio-
nality of the model.

3.3 Modeling evidence on O3 increase

To verify this hypothesis, we separately distinguished contri-
butions of background fields, anthropogenic emissions and
their changes, as well as changes in meteorological fields
to O3 concentration. Meteorological and chemical lateral
boundary inputs and biogenic emissions approximately pro-
duce 57.7 µgm−3 of O3 concentration in the YRD in the
warm season of 2022, accounting for 55.1 % of O3 concen-
tration (Fig. 3). Another study also found that background
inputs contribute 39–58 µgm−3 to summertime MDA8 O3
concentration in this region (Li et al., 2019b). These results
reveal a relatively high level of background O3 concentra-
tion in the YRD, which provides a favorable environmen-
tal basis for the occurrence of O3 pollution. When anthro-
pogenic emissions are included, O3 concentration increases
by 47.1 µgm−3, suggesting that human emissions remain a
key contributor to O3 formation.

We further investigated the impact of changes in anthro-
pogenic emissions on O3 concentration. Based upon the in-
terannual variations in anthropogenic emissions, NOx and
VOC emissions in the summer of 2022 are approximately re-
duced by 5 % and 4 %, respectively, compared to the summer
of 2021 (Jiang et al., 2022; Li et al., 2024). Consequently, O3
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Figure 3. Simulated O3 concentrations under different model ex-
periments. Contributions of background input (blue) and anthro-
pogenic emissions (orange minus blue) to summer O3 concentra-
tions in the YRD. Contributions of emission change (orange minus
red) and meteorology change (orange minus green) to O3 change.

concentration decreased by 1.5 µgm−3 (Fig. 3), meaning that
current emission reductions definitely lead to a decline in O3
concentration. As summertime O3 sensitivity changes from
a VOC-limited regime to a transitional regime in the YRD
(Wang et al., 2019a; 2022b; Yin et al., 2019), simultaneous
reductions in VOC and NOx emissions have become an ef-
fective way to reduce O3 concentration. Nonetheless, the O3
drop through emission cuts is not as significant as expected.
Therefore, the changes in anthropogenic emissions are not
responsible for the increase in O3 concentration in the warm
season of 2022, and more stringent measures on emission re-
ductions are needed to achieve a desired O3 decline.

Besides the impacts of human emissions, we examined the
influence of meteorology change because the change is of
great significance to the trend of O3 concentration, even ex-
ceeding the impact of changes in anthropogenic emissions
(Liu and Wang, 2020a). As a result, differences in meteoro-
logical fields alone lead to a 9.2 µgm−3 increase of O3 con-
centration in July 2022 relative to the same period of 2021
(Fig. 3). This is roughly consistent with Ji et al. (2024), who
suggested adjustments of meteorological fields lead to an in-
crease in O3 concentration by 13.0 µgm−3 in coastal cities of
the YRD in July 2022 compared to 2015–2021. Thus, mete-
orological conditions in the warm season of 2022 are more
favorable for O3 formation in the YRD. Noticeably, the neg-
ative effects of interannual variability of meteorological con-
ditions on O3 concentration have greatly exceeded the posi-
tive effects of precursor emission reductions.

Furthermore, we specifically assessed the impacts of
shortwave solar radiation, low clouds, and CRI on O3 con-
centration because the solar radiation is the direct meteo-
rological factor for O3 formation. The model also repro-
duces the interannual variability of LCC and SSRD well;
i.e., the calculated changes in LCC and SSRD are 0.07 and
83.5 Wm−2, respectively, close to the observed 0.09 and
82.7 Wm−2 (Fig. S5). These comparisons mean that the

calculated interannual variability of LCC is approximately
22.2 % lower than the observations, while SSRD variability
is overestimated by about 1.0 %. This may lead to a little un-
derestimation of the impact of LCC and SSRD variabilities
on O3 formation. Generally, the model evidence confirms the
observed linkage that an increase (decrease) in LCC and a
decrease (increase) in SSRD can suppress (enhance) O3 pro-
duction (Fig. S6). As LCC increases, the SSRD reduces sig-
nificantly at a rate of more than 40 Wm−2 per 0.1 increase
in LCC (Fig. S6a). In particular, the SSRD decreases more
rapidly in the early stage when low clouds appear. As a re-
sult, the photolysis rate rapidly drops and O3 production sig-
nificantly slows down. As LCC further increases, daily mean
SSRD falls below 400 Wm−2, resulting in a noticeable slow-
down in photolysis rates, falling to less than 4.0× 10−3 s−1

(Fig. S6b). Consequently, the rate of O3 production slows,
and O3 concentrations are not as high as what occurred in the
early stage (Fig. S6c). Noticeably, the correlation between
O3 concentration and SSRD is less significant than the corre-
lations in Fig. S6a and b, with a confidence level exceeding
95 % (whereas the first two panels show confidence levels ex-
ceeding 99.9 %). The data are also distributed more dispers-
edly. This is largely due to solar radiation being one key fac-
tor influencing O3 production. Precursor emissions and their
proportion are the other key factor. In addition, O3 concentra-
tion is also affected by atmospheric transport, deposition, and
stratosphere–troposphere exchange, mentioned in Sect. 1.

Unfortunately, current models are unable to fully isolate
the individual contribution of variability in LCC and SSRD
to O3 production. As a compromise, we managed to exam-
ine the response of O3 concentration to the CRI. In July 2022,
clear-sky weather dominates in the YRD, with monthly mean
daytime LCC noticeably lower than that in 2021 (Fig. 4a
and b). The regional average daytime LCC and SSRD are
0.04 and 583.20 Wm−2, respectively (Fig. 4a and c). Com-
pared to July 2021 (Fig. 4b and d), LCC decreases by 63.6 %,
while SSRD increases by 16.7 %. This clear and cloudless
weather favors O3 formation. Consequently, the magnitude
and spatial coverage of high O3 concentration are signifi-
cantly larger (Fig. 4e and f). Less LCC in July 2022 reflects
less incident solar radiation, resulting in less attenuation to
incident solar radiation and more solar radiation reaching the
surface. This minimal impact of clouds on incident solar radi-
ation is defined as a weak CRI. By comparison, more LCC in
July 2021 enhances the reflection of incident solar radiation,
and consequently, less incident solar radiation reaches the
surface, leading to a strong CRI. Whether the CRI is strong
or weak, it reduces SSRD and decelerates the photolysis rate,
thereby suppressing ground-level O3 production (Figs. 5a,
b, and S6). The stronger (weaker) the CRI, the more (less)
the O3 reduction. The change in O3 concentration (1O3) is
highly sensitive to the LCC when low clouds are fewer in
number (Fig. S6). A little increase in LCC can cause a sharp
decline in O3 production, resulting in a significant reduction
in O3 concentration. For example, when LCC is less than
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0.3, an increase of 0.1 in LCC approximately leads to a re-
duction of 3.5 µgm−3 in 1O3. When LCC is more than 0.3,
the photolysis rates decrease to a lower level (Fig. S6a and
b), and 1 O3 drops not as rapidly as that in the initial stage
of clouds’ occurrence, with a decline rate of 2.4 µgm−3 for
an additional 0.1 increase in LCC (Fig. S7). Such changes in
LCC and SSRD can lead to variations in the CRI, resulting in
significantly different impacts on O3 production. Compared
with the summer of 2021, the weaker CRI in the summer
of 2022 leads to a widespread and substantial increase in O3
change over the YRD, with the maximum increase exceeding
9 µgm−3 on a local scale (Fig. 5c). This implies that a weak-
ened CRI suppresses O3 formation less effectively, thereby
indirectly enhancing O3 production, with a regional mean O3
increase of 2.9 µgm−3 (Fig. S8).

Based on the above results, contributions of different fac-
tors to O3 increase over the YRD in the summer of 2022 are
shown in Fig. S8. Changes in meteorological conditions in-
cluding the reduction in LCC and the increase in SSRD lead
to an increase of 9.2 µgm−3 in O3 concentration. Here, the
weakened CRI due to the reduced LCC and the increased
SSRD contributes 2.9 µgm−3, accounting for 31.5 % of the
total O3 increase caused by favorable meteorological con-
ditions. In contrast, anthropogenic VOC and NOx emission
reductions lead to a decrease of 1.5 µgm−3 in O3 concentra-
tion, which is far less than the impact of the changes in pho-
tolysis conditions. This indicates that the reduction in LCC,
the increase in SSRD, and the weakened CRI are the major
drivers of the sudden increase in O3 concentration over the
YRD during the summer of 2022.

3.4 O3 pollution potential under global warming

We used CMIP6 products to analyze the long-term trends of
Tmax, SSRD, and TCC under SSP5-8.5, SSP2-4.5, and SSP1-
1.9 (Fig. 6). The projected climate change under each SSP
deviates significantly from the ERA5 reanalysis data, par-
ticularly in terms of the interannual variability, which is re-
markably larger in reality. This indicates that climate change
is highly uncertain. Nevertheless, the projected trend of Tmax
is generally consistent with the ERA5. The TCC pattern also
align well with the SSP2-4.5 projection in recent years, and
the SSRD pattern also closely matches the SSP2-4.5 projec-
tion. This consistency roughly corresponds with the develop-
ment pathway in China over the past decade. These compar-
isons suggest that the projections under different SSPs pro-
vide valuable information on understanding future climate
change and its implications for O3 pollution.

Ensemble mean Tmax will continue to rise during the 21st
century under any SSPs, whether the extreme or mean Tmax
values (Fig. 6a and b). Noticeably, until the end of the 21st
century, Tmax extreme values no longer increase significantly
and exhibit a fluctuation pattern under SSP1-1.9. However,
under the two alternative scenarios, Tmax will continuously
increase more significantly, with an annual mean rate of

0.3 °C per decade (Fig. 6a and b), while under SSP5-8.5, the
temperature will follow a linear increase trend at a faster rate
that is more than twice as that under SSP2-4.5. Although
there are some differences in the warming rates by models
and scenarios, the warming trend is highly consistent.

Observational evidence shows that climate warming has
increased the frequency of high temperatures and O3 ex-
tremes (Wang et al., 2023). Consequently, the frequency
of extreme high-temperature events coinciding with high
O3 concentrations, as observed in 2022, may also increase
(Hong et al., 2019; Xiao et al., 2022). Heatwaves are of-
ten accompanied by adiabatic subsidence, fewer clouds, and
stronger solar radiation. Cloud cover shows no significant
trend under SSP1-1.9, whereas it decreases significantly un-
der SSP2-4.5 and SSP5-8.5, with a faster decline rate under
SSP5-8.5 (Fig. 6c). Concurrently, SSRD exhibits a signifi-
cantly increasing trend under three SSPs (Fig. 6d). Though in
the second half of the 21st century, SSRD fluctuates within
a smaller magnitude under SSP1-1.9, it is still higher than
that in the first half of the 21st century. Under SSP2-4.5 and
SSP5-8.5, SSRD increases more rapidly at almost the same
rate (Fig. 6d).

There are some differences in the trends of radiation fac-
tors related to O3 formation under different scenarios in-
evitably. For example, the phases of SSRD and clouds un-
der SSP1-1.9 significantly differ from those under the other
two scenarios. However, all scenarios are highly favorable
for an increase in SSRD, suggesting that the potential risk of
high O3 concentrations may be increasing in the forthcoming
decades, even taking the Green Road. Fortunately, based on
recent emission inventories, pollutants in China have shown
a decreasing trend. In our study, by comparison with emis-
sions in the summer of 2021, VOC and NOx emissions in
the summer of 2022 decreased by 4 % and 5 %, respectively
(Jiang et al., 2022; Li et al., 2024), leading to a reduction in
O3 concentration by 1.5 µgm−3. According to these emission
reduction rates, we use a simple linear extrapolation method,
also in conjunction with China’s carbon neutrality goal, to
estimate VOC and NOx emissions in the future. By the 2030
carbon peak, VOC and NOx emissions will have been re-
duced by approximately 31 % and 37 %, respectively, relative
to 2021 levels. By the 2060 carbon neutrality goal, the re-
ductions are projected to reach 80 % and 87 %, respectively.
Actually, emission reductions may face challenges and are
unlikely to follow such a perfect pathway, and the response
of O3 concentration to precursor reductions is also nonlin-
ear. We thus assume that, if such an idealized scenario is fol-
lowed, O3 concentrations by 2030 and 2060 are estimated to
be reduced by 13.5 and 58.5 µgm−3, respectively, relative to
the levels in 2021. Therefore, in the long term, on the decadal
scale, the continued emission reductions are expected to sig-
nificantly reduce O3 concentration.

However, on an interannual scale, the projected SSRD
variability can reach several tens of Wm−2, which is con-
sistent with this study. Our study shows that interannual dif-
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Figure 4. Comparison of spatial distribution of monthly mean daytime O3 concentrations under different CRI intensities. (a, b) LCC in July
2022 and July 2021, respectively. (c, d) SSRD. (e, f) Daytime O3 concentrations. Panels (a) and (c) represent a weak CRI mechanism due to
less LCC and more SSRD, corresponding to higher O3 concentrations, with a larger spatial coverage. Panels (b) and (d) represent a strong
CRI mechanism due to more LCC and less SSRD, corresponding to lower O3 concentrations, with a smaller spatial coverage. The YRD is
enclosed by the red line in panel (a). The regional average of each variable is shown at the top-right corner of each panel.

ference in SSRD between the summers of 2022 and 2021
is more than 80 W m−2. Based on the linear relationship be-
tween O3 and SSRD shown in Fig. 2, such differences in
SSRD correspond to a change of 28 µgm−3 in daytime O3
concentration. According to the spatial distribution in Fig. 4,
the regional mean daytime O3 change due to meteorological
changes (including clouds and SSRD) is 9.2 µgm−3. Thus, a
sudden increase in SSRD may partially offset the benefits of
emission reductions. Given that coordinated VOC and NOx
emission reductions are in the early stage, the increasing pos-
sibility of highly favorable photochemical conditions under

climate change not only could counteract the effects of emis-
sion reductions but may even lead to a rebound in O3 concen-
trations in the short term. Moreover, fewer clouds and more
SSRD under SSPs will also weaken CRI and consequently
aggravate O3 pollution in the future. Based on SSP projec-
tions, the interannual differences of summer SSRD and cloud
cover could reach or even exceed those observed between
the summers of 2022 and 2021 (the interannual differences
in SSRD and LCC are 82.7 Wm−2 and 0.09, respectively).
It is reasonable to expect that the CRI interannual variabil-
ity will likely exert an influence on O3 changes that is no
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Figure 5. Influence of CRI on O3 change. (a) Difference in O3 concentrations including and excluding CRI in July 2022, indicating O3
change caused by a weak CRI. (b) Same as panel (a) but in July 2021, indicating O3 change caused by a strong CRI. (c) A result of panel (a)
minus (b), representing 1O3 change caused by the CRI intensity change.

Figure 6. Trends of multi-model ensemble mean radiation conditions projected by the CMIP6 under three SSPs during 2015–2099. (a) The
maximum daily Tmax and (b) the mean daily Tmax in July represent the extreme and mean status of high temperature, respectively. (c) TCC
and (d) SSRD together reflect the solar radiation conditions for O3 formation. The shading shows ±1.0 standard error, and the dashed lines
represent the linear trends of each variable under different SSPs. The black curve in each panel shows the real variation of each variable from
the ERA5 reanalysis data during 2014–2024.

less significant than the calculation presented in this study.
Though these factors related to climate change are highly
variable, based upon the past and present impacts on O3 con-
centration, their impacts on future O3 pollution control are
widely believable. Thus, we suggest that, if anthropogenic
emission reductions are insufficient, these changes in clouds
and SSRD linked to climate change will increase O3 concen-
tration during the warm season.

4 Conclusions and implications

High O3 concentration during the warm season has increas-
ingly been becoming a major air pollution issue in China;
however, whether it is closely connected to climate change
has not yet received sufficient attention. Our findings indi-
cate that the sudden increase in O3 concentration in the YRD
during the warm season of 2022 is closely linked to the weak
CRI characterized by lower LCC and higher SSRD. Less
LCC favors more solar shortwave radiation reaching the sur-
face, which significantly accelerates photochemistry, thereby
leading to a pronounced increase in O3 concentration.
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The notable increase in O3 concentration caused by weak-
ened CRI has significantly exceeded the O3 reduction caused
by the interannual decrease in precursor emissions during the
warm season of 2022, attenuating the benefits of precursor
emission reductions. We emphasize that the focus on LCC
and SSRD has significant implications for operational fore-
casts on O3 pollution; i.e., more stringent measures on pre-
cursor emission reductions are imperative under weaker CRI.

Our results suggest that climate warming will make O3
pollution control more challengeable via altering clouds and
SSRD and weakening the CRI. The high-level O3 is not only
influenced by changes in clouds and solar radiation related
with short-term synoptic-scale circulation adjustments but
also modulated by long-term climate change. The occurrence
likelihood of heatwaves (Chen et al., 2019; Ma et al., 2023),
accompanied by fewer clouds and more SSRD, will increase
under climate warming. Furthermore, if anthropogenic emis-
sions are not greatly reduced, human-induced forcing will
further amplify the probability (Faranda et al., 2023; King
et al., 2016; Lopez et al., 2018; Sun et al., 2017; Zhang et al.,
2024). Inevitably, the co-occurrence of extreme high temper-
ature and O3 concentration is likely to occur frequently, pos-
ing a greater threat to human health, crops, and vegetation.
Therefore, we would like to propose that more proactive hu-
man actions are vital to offset the penalty of climate change
to these issues.

Data availability. Hourly observation data on mass concentrations
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Ecology and Environment, China, are available at https://pan.baidu.
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Monthly mean low cloud cover and downward solar
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Range Weather Forecasts ERA5 reanalysis are obtained
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