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Abstract. Tropical precipitation cluster area and intensity distributions follow power laws, but the physical
processes responsible for this macroscopic behavior remain unknown. We analyze global simulations at 10 km
horizontal resolution that are configured to have drastically varying degrees of realism, ranging from global
radiative–convective equilibrium to fully realistic atmospheric simulations, to investigate how dynamics influ-
ence precipitation statistics. We find the presence of stirring and large-scale vertical overturning, as associated
with substantial planetary- and synoptic-scale variability, to be key to having cluster statistics approach power
laws. The presence of such large-scale dynamics is reflected in steep vertical velocity spectra. Large-scale rising
and sinking modulate the column water vapor and temperature field, leading to a heterogeneous distribution of
moist and dry patches and regions of strong mass flux, in which large precipitation clusters form. Our findings
suggest that power laws in Earth’s precipitation cluster statistics stem from the robust power laws of atmospheric
motions.

1 Introduction

Atmospheric motions span all horizontal scales. Horizontal
kinetic energy is associated with geostrophically balanced
motions, gravity waves, and turbulence and follows robust
power laws when plotted against the horizontal wavenum-
ber κ (Gage, 1979; VanZandt, 1982; Nastrom and Gage,
1985). The spectrum is shallow at global scales, has a slope
of κ−3 at scales between 10 000–40 000 km, and has a slope
of κ−5/3 at shorter scales. The κ−3 portion of the spectrum
is explained by quasigeostrophic turbulence theory and orig-
inates from a downscale enstrophy cascade (Charney, 1971).
The mesoscale slope of κ−5/3 originates from a downscale
cascade of wave energy (Cho and Lindborg, 2001; Augier
and Lindborg, 2013; Li et al., 2023). Furthermore, in a
strongly stratified turbulent flow, one can expect nonlinear
interactions between waves and the vortical modes (Müller
et al., 1986; Waite and Bartello, 2006; Kitamura and Mat-
suda, 2010). In contrast to horizontal kinetic energy, the spec-
trum of vertical kinetic energy is relatively flat (Schumann,
2019), i.e., nearly white. Morfa Avalos and Stephan (2023)

showed that the vertical kinetic energy spectrum can be de-
rived from the horizontal kinetic energy spectrum using lin-
ear gravity wave theory at large scales and mesoscales and
an incompressible, isotropic scaling of the continuity equa-
tion at short scales. While the power laws of atmospheric
motions are relatively well understood, this is not the case
for moisture fields.

The majority of tropical precipitation clusters follow
scale-free frequency distributions for integrated rain rates
(Peters et al., 2010; Quinn and Neelin, 2017a) and cluster
sizes (Teo et al., 2017). High-resolution simulations (Quinn
and Neelin, 2017a) and Coupled Model Intercomparison
Project Phase 5 models (Quinn and Neelin, 2017b) also pro-
duce scale-free distributions across a wide range of scales.
The spectral range over which scale-free behavior (or power-
law scaling) applies tends to increase with warming. How-
ever, the physical origin of the cluster scaling laws remains
elusive and motivates our study.

Mathematically, the cluster scaling laws have been de-
scribed from the perspective of self-organizing criticality
(Teo et al., 2017) and percolation theory (Peters and Neelin,
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2006; Peters et al., 2009). While these concepts rest on sound
mathematical foundations, they do not provide insights on
underlying physical mechanisms. Previous studies tried to
elucidate the physical processes that matter for the clus-
ter scalings. For instance, Ahmed and Neelin (2019) devel-
oped a spatially two-dimensional model (horizontal plane)
that represented a number of processes, from the effects of
large-scale circulation to internal dynamics associated with
storm systems. This model combined the weak-temperature-
gradient energy equations with an empirically motivated pre-
cipitation parameterization and thus allowed a large variety
of sensitivity tests. The model reproduced power-law scal-
ing for realistic model parameter ranges. In our study we use
a model that does not rely on empirical representations of
the crucial process of moist convection. We focus on explor-
ing the emergence of scaling laws across different planetary
configurations. We perform thirteen 1-year-long global sim-
ulations with the Icosahedral Nonhydrostatic model (ICON)
(Hohenegger et al., 2023). The configurations we investigate
range from global radiative–convective equilibrium (RCE)
simulations to more complex simulations with prescribed sea
surface temperatures (SSTs) and land. A relatively coarse
horizontal resolution of 10 km allows for long integrations,
a requirement for sampling the tails in the distributions. We
turn convective parameterizations off to explicitly model the
main processes responsible for the evolution of the column
water vapor (CWV) field.

Focusing on the CWV field is inspired by the study of Li
et al. (2022). They performed an aquaplanet simulation and
obtained so-called “CWV islands” by cutting the CWV field
at the critical moisture value that triggers precipitation. The
“island area” is the number of connected pixels exceeding the
threshold. The “island volume” is the total CWV above this
threshold. They demonstrated that the areas of these islands
agree well with the areas of precipitation clusters, which is
of course expected. The same holds for the island volume
and area-integrated precipitation, as is also expected. Unex-
pected was that CWV islands followed scaling laws for a
wide range of moisture thresholds: even when cut at rather
dry thresholds where there is no precipitation, the island vol-
umes and areas followed similar scaling laws as if cut at
wet thresholds. From a mathematical point of view, this im-
plies that the CWV field must be approximately “self-affine”:
upon zooming in or out, it looks the same after rescaling the
overall amplitude. The height of a self-affine surface is de-
scribed by z(x)∼ b−hz(bx), where x is a location in space,
b is a rescaling factor, h is the “roughness exponent”, and
“∼” denotes statistical equivalence. The roughness expo-
nent h sets the slope of the scaling laws. In other words, it
determines how many big clusters should exist for a given
number of small clusters or vice versa. Previous work also
demonstrated scale-free behavior in water vapor variability
(Schemann et al., 2013).

As mentioned in the study of Li et al. (2022), the ob-
served h for precipitation clusters is close to the universal

prediction of the Kardar–Parisi–Zhang (KPZ) equation. Pel-
letier (1997) noticed this for statistics of cumulus clouds, and
both studies suggested that KPZ dynamics could be of rele-
vance. The KPZ equation describes the positive growth of a
surface z(x, t) in the presence of Gaussian white noise η(x, t)
with a positive mean value. In a frame moving with the sur-
face, the equation reads

∂z

∂t
= ν∇2z+

λ

2
(∇z)2

+ η, (1)

where ν and λ are constants. In two spatial dimensions plus
time, the solution to the KPZ equation is a surface with h≈
0.3867 (Kardar et al., 1986; Pagnani and Parisi, 2015). Even
though the modeling study of Ahmed and Neelin (2019),
discussed above, could not isolate a clear physical mecha-
nism to explain the cluster scaling laws, it demonstrated that
the observed scalings can be obtained in a spatially two-
dimensional model, i.e., without explicitly considering the
vertical dimension, which would be consistent with spatially
two-dimensional KPZ dynamics. Should the KPZ equation
be applicable to Earth’s atmosphere, then Earth’s motion
spectrum would have to match the required structure of the
noise term η. While a physical interpretation of the η term is
not the goal of our study, we want to test whether changes
in the atmospheric motion spectrum go along with changes
in the statistics of precipitation clusters. If this were system-
atically the case, then it would be strong evidence that the
characteristics of precipitation clusters result from the robust
scaling laws of atmospheric horizontal (or vertical) kinetic
energy.

In this study, we therefore consider atmospheres that differ
substantially in their dynamic characteristics. The planetary
configuration determines the scaling behavior of the atmo-
spheric motion field. Our main result is that self-affinity in
the CWV field and scaling laws in precipitation clusters only
emerge in atmospheres with large-scale mixing, which sug-
gests that precipitation clusters do indeed inherit their scal-
ings from atmospheric motion spectra.

Section 2 describes our data and methods, Sect. 3 presents
the results, and Sect. 4 contains a brief conclusion.

2 Data and methods

2.1 Numerical simulations

All simulations have 10 km horizontal grid spacing and
75 terrain-following height levels with a model top at 48 km.
A Rayleigh damping layer starts at 19 km. Microphysics,
radiation, and turbulence use the default sapphire physics
schemes (Hohenegger et al., 2023). Although a horizon-
tal resolution of 10 km may be generally thought to be too
coarse to explicitly represent convection, a number of studies
show that it better and more physically represents convective
processes than existing parameterizations (Holloway et al.,
2012; Vergara-Temprado et al., 2020; Takasuka et al., 2024).
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Bravo et al. (2024) tested the convergence of aquaplanet sim-
ulations using ICON with the same physics package as our
study. They refined the horizontal grid from 160 km down to
1.25 km and report that tropical precipitation and precipitable
water converge already at 10 km with only small changes to-
wards finer resolution.

CTL is the control simulation, which was initialized on
1 January 1979 from IFS operational analysis and
has daily varying prescribed SSTs interpolated from
the monthly SST and sea ice concentration bound-
ary conditions for AMIP II simulations (Taylor et al.,
2000). Globally and annually averaged concentrations
of greenhouse gases (Meinshausen et al., 2017) are
prescribed from values taken from the respective year.
Ozone is included with year 2014 values and varies
spatially on a grid with 2.5° resolution in longitude
and 1.675° resolution in latitude and on a monthly
timescale, based on input4MIPs data (“input datasets
for Model Intercomparison Projects”). Aerosols are
specified from a climatological data set (Kinne, 2019),
which provides monthly data on a 1° grid. External
physical parameters for the land surface are based on
Hagemann and Stacke (2015). The CTL simulation is
a member of one of three classes of simulations. The
remaining 12 simulations differ as follows.

CTLzm is like CTL except that it uses constant and zonally
averaged SSTs, which correspond to the time-averaged
zonal-mean SSTs of CTL, i.e., SSTs of 1979. Land is
like in CTL. CTL and CTLzm are the only simulations
with a diurnal and annual cycle. By comparing to CTL
we can assess the importance of SST variability for
shaping the water vapor and precipitation fields.

RCE is a radiative–convective equilibrium (RCE) simula-
tion, i.e., nonrotating with constant insolation. It follows
the 300 K RCEMIP protocol (Wing et al., 2018). RCE
simulations have been employed for decades as a stan-
dard idealized setup to study processes in the tropical
atmosphere (e.g., Bretherton et al., 2005).

RCEs is like RCE but has the meridionally varying “Qobs”
SST profile (Neale and Hoskins, 2000) with a maximum
SST of 27 °C at the Equator that decreases to a mini-
mum SST of 0 °C, which is held fixed poleward of 60°
in each hemisphere. This simulation lets us test the im-
pact of a more realistic meridional SST profile on the
distribution of moisture.

RCEr is like RCE but rotates at the angular velocity of
Earth. This type of simulation is described in detail in
Shi and Bretherton (2014). We conduct this simulation
to test the effect of a varying Coriolis parameter, which
would, among other phenomena, allow the generation
of cyclones in the extratropics.

RCEf is like RCE but rotating with the Coriolis parameter
set globally to its value at 45° N. A simulation of this
type, albeit with a Coriolis parameter for 10° N, is de-
scribed in Reed and Chavas (2015). In such a simulation
cyclones form everywhere. We thus expect a distribu-
tion of moisture and precipitation that is quite different
from reality. We here ask if some properties of precipi-
tation clusters still persist in this extreme setup.

AP is an aquaplanet (AP) simulation that combines RCEr
and RCEs: it rotates like Earth, and the SST is pre-
scribed following RCEs. This experiment is relatively
close to CTLzm except it lacks land and has a constant
insolation. By comparing with CTLzm we can test the
importance of the additional heterogeneity in CTLzm.
Since the AP setup is the idealized experiment closest
to Earth, we perform six additional AP simulations.

APt+ and APt− are like AP but with +5 or −5 K added to
the SST everywhere, including the poles. We here test
how precipitation cluster statistics depend on temper-
ature. Based on Quinn and Neelin (2017b) we would
expect the spectral range over which power-law scaling
applies to increase with warming.

APg+ and APg− have gravity increased or decreased, re-
spectively, by 20 % relative to 9.81 m s−2. This changes
the dry adiabatic lapse rate dT/dz=−g/cp, with
T temperature, z height, and cp the isobaric specific
heat capacity. APg− will thus be warmer. The APg+ and
APg− experiments are an alternative way of changing
the temperature and moisture content of the atmosphere
without changing the SST.

APfg+ and APfg− are like APg+ and APg− except that the
square of Earth’s angular velocity is also changed by
plus or minus 20 %, respectively, so that the centrifugal
force partly compensates the increase in gravity.

The model output consists of instantaneous fields, written
at daily intervals (00:00 UTC), of precipitation, temperature,
CWV, and vertical velocity at 5 km. The first 100 d of the
simulations is discarded for spinup. After 100 d, global mean
outgoing longwave radiation, CWV, and precipitation fluc-
tuate around their equilibrium. The last 260 d is subject to
the analysis. Although the characteristics of the precipitation
clusters are stable during these 260 d, we need this amount
of data to sample the tails of the distributions.

2.2 Observations

We analyze instantaneous CWV at hourly intervals from
the ERA5 reanalysis (C3S, 2017) and reprocessed and bias-
corrected 30 min accumulations of precipitation at hourly in-
tervals from CMORPH (Xie et al., 2019) from 1998 to 2021.
We use hourly data for the observations, as unlike in the ma-
jority of our numerical simulations, there is a diurnal cycle in
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reality. ERA5 is provided on a 0.28125°×0.28125° latitude–
longitude grid with a resolution of 31 km at the Equa-
tor. CMORPH is provided on a 0.0727°× 0.0727° latitude–
longitude grid. which corresponds to a resolution of 8 km
at the Equator; 30 min is the shortest available accumula-
tion time for CMORPH. For the model output we chose to
analyze instantaneous fields to facilitate the interpretability
when connecting different variables, since each variable has
a different decorrelation timescale. For simplicity and to bet-
ter emphasize the difference with the modeling results, we
refer to ERA5 as observations.

2.3 Cluster and island properties

This study focuses on the tropical regions, so only output
between 25° S and 25° N is analyzed and for this purpose
regridded from the native 10 km grid to a 0.1°×0.1° latitude–
longitude grid. We process ERA5 and CMORPH in the same
way.

We define grid points as precipitating when precipitation
rates exceed a threshold of 2 mm h−1. Li et al. (2022) used
0.7 mm h−1 but report that their results were not sensitive
to varying the threshold between 0.1 and 2.5 mm h−1. Their
study also differs in that they considered 3-hourly averages.
Models with an explicit representation of moist convection
at what is still a rather coarse resolution tend to heavy rain
(Becker et al., 2021). We thus select 2 mm h−1 closer to the
upper bound reported by Li et al. (2022). As we show later,
this threshold also produces the expected scalings in observa-
tions. A cluster is then defined as all pixels that are connected
by at least one common edge; i.e., touching corners do not
count. We give the area, A, in units of pixels, where 1 pixel
measures 0.1°×0.1°. Latitudinal distortions are small due to
confining the analysis to the tropics and hence ignored. For
the perimeter length λ we report the number of pixel edges
such that a single isolated precipitating pixel would have
a perimeter of 4. Precipitation cluster volume I is defined
as instantaneous precipitation rates integrated over a cluster,
i.e., total cluster precipitation, and thus has units of mm h−1

times pixel. We denote the exponent of the area frequency
distribution by α such that the probability to encounter a clus-
ter with areaA is given by P (A)∼ Aα . Similarly, for the vol-
ume I , P (I )∼ Iβ . Perimeter λ and volume I are related to
area through the fractal dimensions δλ and δµ: λ= Aδλ/2 and
I = Aδµ/2.

We also analyze areas (A) and volumes (V ) of CWV is-
lands. Note that we use the symbol I for the volume of pre-
cipitation clusters and V for the volume of CWV islands, as
these quantities have different units. The volume of a CWV
island is the total CWV above a threshold inside the corre-
sponding island area: for each CWV island we sum the CWV
of all pixels above the threshold after subtracting the thresh-
old value. We cut the CWV field at three different thresholds:
the 40th and 80th percentiles of the tropical CWV frequency
distribution of each data set and the critical threshold, defined

as the CWV where precipitation rates reach 2 mm h−1 on av-
erage. These critical threshold values are discussed below in
Sect. 3.2. We confine our analysis to columns over the ocean
to increase the chance of finding universal behavior across
the domains, many of which do not have land, but this only
influences the analysis of the CTL simulations and the obser-
vations. Areas of CWV clusters are defined in the same way
as for precipitation.

To estimate the scaling exponents α and β and the fractal
dimensions δλ and δµ, we bin the area and volume data into
logarithmic bins and perform a linear regression in log–log
space. The logarithmic binning reduces noise in the tails of
the distributions. The start and end values of the regression
range are chosen to maximize the linear correlation coeffi-
cient between the data and the fit, but for a valid fit we re-
quire the linear correlation coefficient to be at least 0.999.
Additionally, the fit must use at least a quarter of the loga-
rithmic bins. If these criteria cannot be fulfilled, no spectral
slope is determined. In the corresponding plots we highlight
data points when they fall within 10 % of the best-fit line.

3 Results

3.1 Dynamics on different scales

Figure 1 shows the global CWV field on day 100 of the sim-
ulations and on a randomly chosen date in ERA5 (denoted as
Obs.). It documents substantial differences in planetary- and
synoptic-scale variability and in the associated stirring and
vertical overturning (macroturbulence) of the atmosphere. In
the following we will first discuss the patterns in the CWV
fields and then quantify how the simulations differ in their
tropical vertical motions.

The control simulation (CTL) with realistic SSTs, land,
and a diurnal cycle shows some characteristics that are also
seen in observations, such as enhanced moisture above the
warm SSTs of the western tropical Pacific. As expected, this
local maximum is absent when zonal mean SSTs are pre-
scribed (CTLzm). The aquaplanet simulation (AP) has less
variability compared to CTL and CTLzm. Still, the effects of
planetary- and synoptic-scale disturbances on the CWV field
of AP visibly define a tropical margin.

Moist and dry patches form globally in the radiative–
convective equilibrium simulation RCE, indicative of con-
vective self-aggregation (Muller and Held, 2012). RCEs,
which has a meridional SST gradient, produces a band of
high CWV at the Equator where SSTs are at a maximum.
The CWV band in RCEs has structures on finer scales com-
pared to RCE. RCEr, which rotates like Earth, and RCEf,
where the Coriolis parameter is globally set to its value at
45° N, produce tropical storms where the Coriolis force is
nonzero (Held and Zhao, 2008). In RCEr the CWV field is
relatively smooth in the tropics, where the Coriolis parame-
ter is not large enough to support the formation of tropical
storms. The CWV field of RCEr shows planetary- and (to
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Figure 1. Global maps of CWV. Data from ERA5 (Obs.) show
1 March 2011 at 00:00 UTC, and the seven experiments show
day 100 of the simulations (after spinup). Short lines at the right
and left edge of each map mark the tropics (±25°).

a lesser extent) synoptic-scale variability in the zonal direc-
tion. This is consistent with the study of Arnold and Ran-
dall (2015), who contrasted tropical variability in a rotating
setup similar to our RCEr simulation with a nonrotating sim-
ulation. Chavas and Reed (2019) examined the sensitivity of
such simulations to rotation rate and Earth’s radius. We do
not show the extra AP simulations in Fig. 1, because their
structures look very similar to AP. Differences between the
AP experiments are discussed in Appendix A.

Recall that we aim at establishing a link between the sta-
tistical properties of the CWV field and those of atmospheric
motions. For this reason we compute how vertical kinetic
energy is distributed as a function of the zonal wavenum-
ber κ . A steep slope (large negative values) indicates that
motions on large horizontal scales (small κ) are more ener-
getic than motions on short horizontal scales (large κ). When
the slope is shallow (small negative values), then motions on
short scales become relatively more energetic. Hence, verti-
cal velocity spectra are useful for comparing the prevalence
of different scales of vertical motion between the simula-

Figure 2. Meridionally averaged power spectral density in units
of m2 s−2 of vertical velocity at 5 km height for CTL. The slope
shown inside the panel is computed for zonal wavenumbers 8<
κ < 300, shown in black.

tions. The spectrum of CTL is shown in Fig. 2. The spectra of
the other simulations look similar, differing only in the spec-
tral slope (Appendix B). The slopes of the simulated verti-
cal velocity spectra at zonal wavenumbers 8< κ < 300 vary
between −0.05 (RCE and RCEs) and −0.24 (RCEf). Thus,
coherent large-scale overturning is most ubiquitous – relative
to other scales – in RCEf, followed by the CTL simulations
(CTL: −0.19, CTLzm: −0.17), followed by the AP simula-
tions (between −0.09 and −0.16). The remaining RCE ex-
periments have flatter slopes, which is consistent with a pref-
erence for overturning on short horizontal scales and rela-
tively weak large-scale dynamics. Next, we examine what
these differences imply for the scaling of precipitation clus-
ters.

3.2 Mass flux and cluster size

Figure 3 shows a snapshot of a random scene taken from
the different configurations. In Fig. 3a we can clearly see
the difference between, for instance, RCE and RCEf, the
two simulations that differ most in the slope of vertical ki-
netic energy. RCE contains either dry regions without pre-
cipitation or moist regions with isolated convection. Here,
vertical velocity has most energy on short scales. RCEf, on
the other hand, forms tropical storms and generates strong
vertical motions on large scales. In general, in the simula-
tions with less pronounced large-scale dynamics, isolated,
small-scale convection prevails. Figure 3b shows the prod-
uct of CWV and vertical velocity at 5 km height for the same
time as in Fig. 3a. As expected, the product correlates well
with the CWV field itself; i.e., ascent occurs predominantly
in moist regions. Large positive values in Fig. 3b are indica-
tive of strong mass flux. Stronger mass flux can be realized
either through stronger ascent within same-sized convective
areas or through an increase in area coverage. Previous stud-
ies demonstrated that nature follows the second option due
to microphysical constraints (Doneaud et al., 1984; Nuijens
et al., 2009; Parodi et al., 2011; Fildier et al., 2017). We will
now investigate whether this is also the case in our simula-
tions.
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Figure 3. Snapshots of moisture fields. Panel (a) shows CWV and cluster-mean precipitation rate on day 100 of the simulations and on
1 March 2011 at 00:00 UTC in observations. The y axis shows latitude in ° N, and the x axis shows longitude in ° E. Panel (b) shows for the
same times CWV multiplied by the vertical velocity at 5 km height. Before multiplication both fields were smoothed with a 390 km boxcar
filter. Values between −0.1 and 0.1 kg s−1 are colored white.

Figure 4. For each data set symbols mark CWVcrit, corresponding
to the most frequently occurring bulk temperature bin Tm.

Because warmer air can hold more moisture, the CWV
threshold for the onset of precipitation depends strongly on
tropospheric bulk temperature (Tb), which is defined as mass-
weighted temperature between 1 and 10 km height. In each
simulation, Tb varies in space and time, but due to the dif-
ferent setups of the experiments, the average Tb is also dif-
ferent from experiment to experiment. The most frequently
occurring value of Tb, the mode Tm, is shown on the y axis
of Fig. 4. The corresponding x axis shows the critical CWV,
defined as the CWV where precipitation rates reach on aver-
age 2 mm h−1 at points with the respective Tm. Since we are
not interested in the values of Tb and CWV themselves but
want to focus on the structure of the CWV field and its rela-
tionship to dynamics, we rescale Tb and CWV to achieve a
better comparability of the simulations. We rescale tempera-
ture by subtracting Tm from Tb, and we define reduced CWV
as (CWV−CWVcrit)/CWVcrit, following Peters and Neelin
(2006), who showed that precipitation onset curves collapse
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Figure 5. Precipitation onset curves. In (a) and (c) an open or filled circle marks the average CWV at which precipitation rates reach
2 mm h−1 for each bulk temperature Tb (y axis). Lines along the axes mark the range covered by the respective 2 mm h−1 isoline of a
simulation. Panels (b) and (d) repeat (a) and (c) in the phase space of reduced CWV and relative temperature Trel = Tb− Tm.

when plotted against reduced CWV. This is also true for our
simulations. Figure 5 shows the precipitation onset lines in
the original phase space (CWV and Tb) and rescaled phase
space (reduced CWV and Trel = Tb− Tm). Except for dry or
moist outliers, the onset curves collapse onto the same line
in the normalized phase space. This is particularly clear for
the AP simulations (Fig. 5c and d). For the other simula-
tions (Fig. 5a and b) the change is less impressive because
these simulations differ widely in their temperature distribu-
tions (the range of simulated temperatures is shown as ver-
tical lines next to the y axis). Given that CWVcrit scales ap-
proximately linearly with Tm (Fig. 4), it may seem surpris-
ing that the onset curves collapse only in normalized phase
space. An explanation can be found in Fig. C1. For example,
from APt− to APt+ the temperature probability density distri-
bution shifts to higher values with little change to its shape.
In contrast, the CWV distribution not only shifts to higher
values, but also broadens. This results in a flatter slope of the
onset curve. Rescaling the CWV accounts for the width of
the CWV distribution.

Figure 6 shows the dependence of cluster area on the max-
imum reduced CWV inside a cluster for our data sets (black);
in addition it shows the average precipitation rate inside clus-
ters (blue), i.e., volume divided by area. With increasing
CWVcrit, area size increases more rapidly than the average
precipitation rate. However, the difference in growth rates
is much more pronounced in CTL and RCEf, whereas it is
substantially smaller in the other RCE simulations. This is
again due to the presence of stronger large-scale dynamics
and greater mass flux.

We now turn to the question to what extent different dy-
namics influence the area–size distributions of precipitation
clusters and CWV islands.

3.3 Cluster spectra

Figure 7 shows the occurrence frequency spectra of areas for
CWV islands at different thresholds and precipitation clus-
ters. The x axis is logarithmic, as is the y axis. The latter
is not shown, because we are only interested in the spectral
slope. The corresponding slopes of all data sets are summa-
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Figure 6. The average precipitation cluster area (black) and volume divided by area (blue) as function of the maximum reduced CWV value
inside a cluster.

rized in Fig. 8a whenever a fit was possible. The occurrence
frequency spectra for volumes are shown in Appendix D.

Focusing first on observations, CMORPH precipitation
follows a slope of −1.79 for area (gray star in the leftmost
column of Fig. 8a). The CWV islands of ERA5 cannot be
expected to follow any scaling law at fine scales, as ERA5’s
horizontal resolution is a factor of ∼4 coarser than that of
CMORPH. For the 40% and 80% thresholds, the area scal-
ings in ERA5 are flatter (40%: −1.62, 80%: −1.41) than
those of precipitation, but at the critical threshold the slope is
steeper (−1.87). Differences in the slopes of CWV and pre-
cipitation volumes (Fig. 8b) are similar to those in the area
distributions.

We now turn to the simulations, focusing first on the con-
trol simulations. By visual inspection of Fig. 7, CTL and
CTLzm show the best overall agreement of CWV and pre-
cipitation spectra with observations, when we consider all
scales. It should be noted that the cluster statistics for CTL
and CTLzm suffer from the fact that clusters touching land
have to be discarded. This causes noisy tails. In ERA5 this
effect is compensated by the amount of data spanning 24
years. It appears that the simulated spectra, particularly those
of precipitation, have a slight bias towards small scales. A
local maximum in the spectra can be seen even in CTL.
It is common that simulations tend to preferentially form

small precipitation clusters that rain too heavily when us-
ing an explicit representation of moist convection at what
is still a rather coarse resolution (Becker et al., 2021). Fig-
ure 3a also illustrates this point. It is conceivable that looking
at instantaneous data of the simulations versus 30 min aver-
aged data of CMORPH explains some of these biases. More-
over, precipitation is not directly measured by remote sens-
ing instruments but estimated from infrared measurements of
column condensate path, which might introduce some addi-
tional smoothing (Pradhan et al., 2022).

The curves for the CWV areas of all AP simulations re-
semble the CTL simulations, with precipitation areas follow-
ing steeper curves than CWV island areas, as in CTL.

Finally, the RCE simulations vary greatly in the degree of
similarity between spectra at different CWV thresholds and
those of precipitation.

We now turn to the question of whether changes in the at-
mospheric motion spectrum – in this case diagnosed as the
vertical velocity spectrum becoming shallower or steeper –
change the statistics of CWV islands and precipitation clus-
ters. This implicitly includes the question of whether or not
precipitation cluster statistics inherit their properties from the
statistics of the CWV distribution, as the study by Li et al.
(2022) proposed. From the above discussion of Fig. 7, we
see that curves of CWV at different thresholds of precipi-
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Figure 7. Occurrence frequencies of areas belonging to precip-
itation clusters (black) and CWV islands at the 40 % threshold
(brown), the 80 % threshold (blue), and the critical threshold (ma-
genta). All curves are compensated by A1.79. Thick dots mark the
intervals with the best power law (Sect. 2.3).

tation align better in some experiments than in others. This
says that precipitation does not inherit its statistics from uni-
versal CWV statistics in all experiments. However, in some
experiments the four colored curves in Fig. 7 have similar
shapes, which points to self-affinity of the CWV field.

It is straightforward to understand why the curves diverge
in some experiments. In RCE, RCEs, and RCEr, precipitation
occurs in moist patches as isolated, small-scale convection,
creating updrafts on small horizontal scales. These motions
do not require large-scale overturning but can be compen-
sated by downwelling on similarly small scales. Hence, in
RCE, RCEs, and RCEr, the small-scale dynamics decouple
from the large-scale distribution of the CWV field. Weak and
slowly varying overturning only shapes large-scale dry and
moist patches. In these experiments there is no self-affinity
of the CWV distribution.

Table 1. Scaling exponents and fractal dimensions. Rows list the
scaling exponents (α, β) and fractal dimensions (δλ, δµ) for differ-
ent roughness exponents (h) and those obtained for CMORPH and
the CTL simulation.

h= 0.4 h= 0.3 h= 0 h= 1 CMORPH CTL

α −1.80 −1.85 −2.00 −1.50 −1.79 −2.21
β −1.67 −1.74 −2.00 −1.33 −1.69 −2.03
δλ 1.30 1.35 1.50 1.00 1.36 1.45
δµ 2.40 2.30 2.00 3.00 2.26 2.28

Our results show that a better match between the scal-
ings of CWV islands at all thresholds and precipitation
goes along with steeper vertical velocity slopes. This also
holds for the AP experiments. The warmer AP simulations
have a better match and steeper slopes of vertical kinetic
energy (APg−: −0.15, APt+: −0.12, APfg−: −0.16) than
AP (−0.11) and the colder experiments, which have flatter
slopes (APg+: −0.09, APt−: −0.10, APfg+: −0.09).

Lastly, we now briefly turn to the roughness exponent h.
The KPZ equation (Eq. 1) predicts h≈ 0.3867. For self-
affine surfaces, the slopes for area and volume occurrence (α,
β) and the fractal dimensions (δλ, δµ) are related to h.
The area scaling exponent α is given by α = h/2− 2 (Pel-
letier, 1997). Li et al. (2022) derived for β the relation-
ship β =−4/(2+h). Kondev and Henley (1995) showed
δν = (3−h)/2, and Li et al. (2022) showed that δµ = 2+h.
Table 1 lists α, β, δλ, and δµ for different values of the rough-
ness exponent h. Plots of the fractal dimensions are shown in
Appendix D.

The area and volume scaling exponents (α, β) of
CMORPH precipitation clusters are consistent with a rough-
ness exponent of about 0.4. The fractal dimensions for
CMORPH are more consistent with h' 0.3. As we can al-
ready see from Fig. 8, CTL deviates from these values. In
general, Fig. 8 shows that observed and simulated precip-
itation clusters (star symbols) agree much better in terms
of their fractal dimensions than they do in terms of area or
volume distributions (see also Figs. D2 and D3). The bet-
ter agreement in δλ and δµ compared to α and β between
the simulations suggests that the fractal dimensions might be
controlled by turbulence, as was also proposed by previous
studies (Garrett et al., 2018; Siebesma and Jonker, 2000).

4 Conclusions

Based on simulations of Earth-like and un-Earth-like plan-
ets, we searched for ingredients that are required to have
precipitation clusters follow scaling laws. Key is the pres-
ence of stirring and large-scale vertical overturning as asso-
ciated with substantial planetary- and synoptic-scale variabil-
ity. The presence of such large-scale dynamics is reflected in
steep vertical velocity spectra. Large-scale rising and sink-
ing modulate the column water vapor (CWV) and temper-
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Figure 8. Slopes obtained from fitting a scaling law to the data shown in (a) Fig. 7, (b) Fig. D1, (c) Fig. D2, and (d) Fig. D3. Each column
shows a different data set identified by filled or unfilled colors as shown by the legend at the bottom. Each column can have four symbols,
where the star stands for precipitation, the downward-pointing triangle for the 40 % CWV threshold, the circle for the 80 % threshold, and
the plus for the critical threshold. A missing symbol implies that a fit could not be obtained.

ature field, leading to a heterogeneous distribution of moist
and dry patches and regions of strong mass flux, in which
large precipitation clusters form. The dearth of large-scale
structures, as reflected in flat vertical velocity spectra, is as-
sociated with a decoupling of the large-scale distribution of
CWV and precipitation. In this latter scenario, weak over-
turning shapes large-scale dry and moist patches, and only
weak mass flux is present in the moist patches. Precipitation
is then realized as unorganized isolated convection.

The global motion spectrum is strongly shaped by the dis-
tribution of orography and the presence of rotation and dif-
ferential heating, with convection contributing mainly to the
mesoscale motion spectrum (Stephan et al., 2019a, b; Köhler
et al., 2023). Horizontal motion spectra follow robust scaling
laws (Stephan et al., 2022), which also determine the spec-
tra of vertical motion (Morfa Avalos and Stephan, 2023) and
horizontal divergence (Stephan and Mariaccia, 2021). Our
finding that the structure of Earth’s motion field is important
to have precipitation clusters follow scaling laws has an im-
plication for any potential applicability of the Kardar–Parisi–
Zhang (KPZ) equation to the problem of Earth’s CWV field:
the applicability would rely on the coincidence that the noise
term η in Eq. (1) agrees with the properties of Earth’s motion
spectra.

Our study shows that precipitation cluster statistics derive
their apparent universality from the robust spectral character-
istics of atmospheric wave and turbulence dynamics. This is
plausible because there has to be a global organization mech-
anism for precipitation clusters if they obey scaling laws.
While this result is new to the best of our knowledge, it is
only a qualitative statement, and future studies are needed to

address the causal chain of underlying mechanisms. Interest-
ing open questions that our study inspires are, for instance,
the following:

– What is the required slope in vertical velocity to achieve
self-similarity in the CWV distribution, and what would
happen if the slope were steeper?

– Is there an important feedback from convection; i.e., is
the generation of waves and vertical motions by conden-
sation relevant for the relationship between atmospheric
motions and the distribution of CWV?

– Why is the roughness exponent close to the prediction
of KPZ dynamics? Is it a coincidence or can we interpret
the η term of the KPZ equation in a physically meaning-
ful way?

We are confident that progress is possible with well-designed
numerical experiments. A starting point could be to prescribe
atmospheric motions and use water vapor as a passive tracer.

Appendix A: Aquaplanet simulations

In the extra aquaplanet simulations the SSTs were glob-
ally increased (APt+) or decreased (APt−), gravity was in-
creased (APg+) or decreased (APg−), and gravity together
with the Coriolis parameter was increased (APfg+) or de-
creased (APfg−). The zonal mean CWV of the AP simula-
tions is compared in Fig. A1. APt+ is warmer than AP and
therefore contains more CWV in the tropics. APt− behaves in
the opposite way. In addition, Fig. A1 shows that the CWV
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peaks are further apart in APt+, indicative of broader trop-
ics, and less apart in APt−. APg− and APfg− look nearly
the same. They contain almost as much CWV as APt+,
with CWV maxima closer to the Equator than AP. Similarly,
APg+ and APfg+ are colder than AP with peaks further away
from the Equator.

Figure A1. Zonal-mean time-mean CWV in the tropics as simulated by the aquaplanet simulations. Open or filled circles mark the respective
maximum in each hemisphere to facilitate the comparison.

Appendix B: Vertical velocity spectra

Figure B1. Meridionally averaged power spectral density in units of m2 s−2 of vertical velocity at 5 km height. Slopes shown inside the
panels are computed for zonal wavenumbers 8< κ < 300, shown in black. All displayed decimal places are 1 order of magnitude larger than
their 1σ uncertainty estimates.
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Appendix C: The phase space of temperature and
CWV

Figure C1. The top two rows show the joint probability density distributions of CWV (x axis) and bulk temperature (y axis). Pink lines
along the x axis show the probability density distribution of CWV, and pink lines along the y axis show the probability density distribution
of bulk temperature. All plots use linear axes with the same axis range and the same normalization for the pink lines. The blue shading marks
probabilities of 10−4, 10−3, 10−2, and 10−1 (in %). The bottom two rows are like the top two rows but display the space of reduced CWV
(x axis) and relative temperature (y axis). Pink lines show the precipitation onset curves. The observation panel contains lines for all years.
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Appendix D: Cluster properties

Figure D1. Occurrence frequencies of precipitation volume I or CWV volume V belonging to precipitation clusters (black) and CWV
islands at the 40 % threshold (brown), the 80 % threshold (blue), and the critical threshold (magenta). Thick dots mark the intervals with the
best power law. All curves are compensated by (I or V )1.69. Colors are as in Fig. 7.
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Figure D2. Fractal dimensions of precipitation clusters and CWV islands. Shown is circumference λ versus
√
A. All spectra are compensated

by
√
A
−1.36

. Colors are as in Fig. 7.
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Figure D3. Fractal dimensions of precipitation clusters and CWV islands. Shown is precipitation volume I or CWV volume V , respectively,

versus
√
A. All spectra are compensated by

√
A
−2.26

. Colors are as in Fig. 7.
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