Supplement of Atmos. Chem. Phys., 25, 12037–12049, 2025 https://doi.org/10.5194/acp-25-12037-2025-supplement © Author(s) 2025. CC BY 4.0 License.





## Supplement of

## Measurement report: simultaneous measurement on gas- and particlephase water-soluble organics in Shanghai: enhanced light absorption of transported Asian dust

Zheng Li et al.

Correspondence to: Gehui Wang (ghwang@geo.ecnu.edu.cn) and Can Wu (cwu@geo.ecnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

## Text S1 Detailed description of the instruments

1

2 The ambient air was sampled and separated by a PM<sub>2.5</sub> sharp cut cyclone with a flow 3 rate of 16.7 L/min. Then, the air was drawn through the passageway between the inner and outer Pyrex glass tubes in wet annular denuder (WAD) system. In WAD system, 4 gaseous samples were wetted with pure water and collected. Scrub and Impact Aerosol 5 6 Collector (SIC) was placed downstream of the WAD for collecting aerosol phase 7 samples. The gas and aerosol samples were subsequently injected into the ion chromatography (ICS-5000+, Themo Scientific) for analysis of water-soluble inorganic 8 9 ions and small molecular organic acids after removing the insoluble species and bubbles. 10 The gas and particle-phase water-soluble organic carbon and water-soluble organic 11 nitrogen (WSOC/WSON) were simultaneous determined by using a TOC/TN analyzer 12 (TOC-L CPH, Shimadzu, Japan). The concentrations of WSOC were calculated as the 13 difference between water-soluble total carbon (WSTC) and water-soluble inorganic 14 carbon (WSIC). Similar, the concentrations of WSON were calculated as the difference between water-soluble total nitrogen (WSTN) and water-soluble inorganic nitrogen 15 16 (WSIN). 17 Organic carbon (OC) and elemental carbon (EC) were determined by DRI Model 2015 18 Carbon Analyzer (Atmoslytic, Inc., Calabasas, USA) with IMPROVE A protocol (Chow 19 et al., 2007). 20 Text S2 Absorption spectra of water-soluble BrC analysis 21 The light absorption spectra of the water-soluble BrC was measured by a UV-vis 22 spectrometer (T6 New Century, Persee) over a wavelength range of 200 – 900 nm (Wu et al., 2024). The light absorption coefficients (Abs<sub> $\lambda$ </sub>, M m<sup>-1</sup>) of the water extracts was 23 24 calculated by eq (1).

25 Abs<sub>$$\lambda$$</sub> =  $(A_{\lambda} - A_{700}) \frac{V_l}{V_a \times l} \times \ln(10)$  (1)

- where  $A_{\lambda}$  and  $A_{700}$  represent the light absorption at the wavelengths of  $\lambda$  and 700 nm
- 27 measured by the UV-vis spectrometer.  $V_1$  refers to the volume of solvent extract.  $V_a$  refers
- 28 to the sampling volume and *l* corresponds to the path length of the cell (1 cm).
- The mass absorption coefficient (MAC $_{\lambda}$ , m<sup>2</sup> g<sup>-1</sup>) of the extracts at the wavelength of  $\lambda$
- 30 can be quantified as eq (2)

31 
$$MAC_{\lambda} = \frac{Abs_{\lambda}}{M}$$
 (2)

- where M represent the concentration of WSOC.
- The MAC of IMs standards in the water solvent at a wavelength of  $\lambda$  can be calculated
- 34 as in Laskin et al (2015):

35 
$$MAC_{i,\lambda} = \frac{A_{\lambda} - A_{700}}{l \times C_{i}} ln(10)$$
 (3)

- where C<sub>i</sub> (mg L<sup>-1</sup>) is the concentration of the i compound standards in the water solvent.
- The light absorption contribution of IMs to BrC at a wavelength of  $\lambda$  can be obtained
- using eq (4):

39 
$$\operatorname{Cont}_{i/\operatorname{BrC},\lambda} = \frac{MAE_{i,\lambda} \times C_i}{Abs_{BrC,\lambda}}$$
 (4)

- where the  $C_i$  (µg m<sup>-3</sup>) is the atmospheric concentration of i compound, and the Abs<sub>BrC, $\lambda$ </sub> is
- 41 the absorption coefficient of water-soluble BrC at a wavelength of  $\lambda$ .
- 42 Text S3 Contribution of organic matter to aerosol liquid water content (ALWC)
- Here we used the ALWC calculation method reported by Lv et al (2022b; 2022a). The
- 44 contribution of organic matter (OM) to ALWC (ALWC<sub>org</sub>) were defined as the following
- 45 eq (3)

46 
$$ALWC_{org} = \frac{[OM]\rho_W}{\rho_{org}} \frac{\kappa_{org}}{\frac{1}{RH} - 1}$$
 (5)

where OM is the mass concentration of organics,  $\rho_w$  is the density of water,  $\rho_{org}$  is the

density of OM (1.4 g cm $^{-3}$ ).  $\kappa_{org}$  is the hygroscopicity parameter of OM (0.06).

Table S1. Relative abundances (%) of ammonium, nitrate, and sulfate in PM<sub>2.5</sub> or PM<sub>10</sub> during dust storm periods in different regions of China.

| Sampling site    |            | Sampling time | $NH_{4}^{+}$ | $NO_3^-$ | $SO_4^{2-}$ | Type              | Reference         |
|------------------|------------|---------------|--------------|----------|-------------|-------------------|-------------------|
| Desert<br>region | Tengger    | 03, 2023      | 0.03         | 0.5      | 4.1         | $PM_{10}$         | This study        |
|                  | Taklimakan | 04, 2008      | -            | 0.3      | 4.2         | $PM_{2.5} \\$     | (Wu et al., 2012) |
| Upwind region    | Xi'an      | 2017          | 0.3          | 0.9      | 1.8         | TSP               | (Wu et al., 2019) |
|                  | Wuhai      | 03, 2021      | 0.4          | 0.7      | 1.1         | $PM_{2.5}$        | (Li et al., 2023) |
| Downwind region  | Shanghai   | 10, 2019      | 3.8          | 10.1     | 6.4         | $PM_{2.5}$        | (Wu et al., 2020) |
|                  | Shanghai   | 03-04, 2023   | 3.3          | 8.1      | 5.3         | PM <sub>2.5</sub> | This study        |

Table S2. Concentrations of water-soluble inorganic ions and organic acids in Shanghai during spring of 2023.

52

53

54 55

|                                                             | Whole campaign  | Dust storm      | Haze event      | Clean period    |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| I Gaseous pollutants                                        |                 |                 |                 |                 |  |  |  |  |  |  |
| Formic acid <sub>g</sub> <sup>a</sup> (µg m <sup>-3</sup> ) | $3.2 \pm 4.4$   | $1.5 \pm 2.6$   | $1.3\pm1.0$     | $3.4 \pm 6.7$   |  |  |  |  |  |  |
| Acetic acidg <sup>a</sup> (µg m <sup>-3</sup> )             | $1.2\pm2.3$     | $0.9\pm2.0$     | $0.5 \pm 0.4$   | $1.3\pm2.8$     |  |  |  |  |  |  |
| $NH_3 (\mu g \ m^{-3})$                                     | $4.9\pm1.6$     | $5.1\pm1.6$     | $4.0 \pm 0.8$   | $5.3\pm1.8$     |  |  |  |  |  |  |
| II Major components of PM <sub>2.5</sub>                    |                 |                 |                 |                 |  |  |  |  |  |  |
| $OC (\mu gC m^{-3})$                                        | $5.0 \pm 2.7$   | $6.0 \pm 5.0$   | $5.7\pm1.9$     | $3.8 \pm 3.2$   |  |  |  |  |  |  |
| WSOC <sub>p</sub> /OC                                       | $0.6 \pm 0.2$   | $0.5\pm0.2$     | $0.7 \pm 0.1$   | $0.7 \pm 0.1$   |  |  |  |  |  |  |
| $EC (\mu gC m^{-3})$                                        | $1.1\pm0.6$     | $0.7 \pm 0.4$   | $1.1\pm0.5$     | $0.7 \pm 0.5$   |  |  |  |  |  |  |
| Formic acid <sub>p</sub> <sup>a</sup> (µg m <sup>-3</sup> ) | $0.2\pm0.1$     | $0.1\pm0.1$     | $0.3 \pm 0.1$   | $0.2 \pm 0.1$   |  |  |  |  |  |  |
| Acetic acid <sub>p</sub> <sup>a</sup> (µg m <sup>-3</sup> ) | $0.06 \pm 0.04$ | $0.04 \pm 0.04$ | $0.1\pm0.04$    | $0.06 \pm 0.04$ |  |  |  |  |  |  |
| Oxalic acid <sub>p</sub> <sup>a</sup> (µg m <sup>-3</sup> ) | $0.3 \pm 0.3$   | $0.2\pm0.3$     | $0.5 \pm 0.4$   | $0.3\pm0.2$     |  |  |  |  |  |  |
| $Na^+(\mu g m^{-3})$                                        | $0.2 \pm 0.3$   | $0.4 \pm 0.1$   | $0.1\pm0.05$    | $0.2 \pm 0.2$   |  |  |  |  |  |  |
| $Mg^{2+} (\mu g m^{-3})$                                    | $0.08 \pm 0.06$ | $0.2\pm0.05$    | $0.04 \pm 0.01$ | $0.1\pm0.02$    |  |  |  |  |  |  |

 $<sup>^{\</sup>it a}$ Formic acid $_{\it g}$  and acetic acid $_{\it g}$  are the gas-phase organics while formic acid $_{\it p}$ , acetic acid $_{\it p}$  and oxalic acid $_{\it p}$  are the organics in PM $_{2.5}$ .



**Figure S1.** Comparison of measured ammonia and nitrate and predicted by ISORROPIA-II model.



**Figure S2**. Linear regression analysis for  $WSOC_p$  with (a) partitioning coefficient of WSOCs  $(F_p)$  and (b)  $PM_{2.5}$  during the haze event (HE) and dust storm (DS) event, respectively



**Fi** 

**Figure S3**. (a) Contributions of  $NH_4NO_3$ ,  $(NH_4)_2SO_4$  and OM to ALWC in the haze event (HE); (b) Particulate carboxylates as a function of  $TNH_x$  in the haze event (HE).



**Figure S4.** Factors affecting the gas-to-particle partitioning coefficients of formic and acetic acids in (a-c) HE and (d-f) DS periods in spring 2023 in Shanghai.



**Figure S5.** Partitioning coefficients of low molecular organic acids (formic and acetic acids) versus PM<sub>2.5</sub> during HE and DS periods.



**Figure S6**. Size distribution of (a) oxalic acid, (b) pyruvic acid and (c) methanesulfonic acid during the non-dust storm (NDS) and dust storm (DS) events in Shanghai. The dashed lines and filled areas are the measured size distribution and fitting results, respectively. C<sub>total</sub> is the sum of concentration on all the 9-stages.



**Figure S7**. The partitioning coefficients ( $F_p$ ) of WSOCs in the fine ( $<2.1\mu m$ ) and coarse ( $>2.1\mu m$ ) in the non-dust storm (NDS) and dust storm (DS) periods in Shanghai during spring of 2023.



**Figure S8**. Liner fit regression for the  $NH_4^+$  with (a)  $NO_3^-$  and (b) oxalic acid in coarse mode (>2.1 µm) of particles in the non-dust storm (NDS) and dust storm (DS) periods in Shanghai during spring of 2023.

- 103 References
- 104 Chow, J. C., Watson, J. G., Chen, L. W. A., Chang, M. C. O., Robinson, N. F., Trimble, D., and Kohl, S.:
- The IMPROVE\_A Temperature Protocol for Thermal/Optical Carbon Analysis: Maintaining
- 106 Consistency with a Long-Term Database, J Air Waste Manage, 57, 1014-1023,
- 107 <u>https://doi.org/10.3155/1047-3289.57.9.1014, 2007.</u>
- Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, Chem. Rev., 115,
- 109 4335-4382, https://doi.org/10.1021/cr5006167, 2015.
- Li, R., Zhang, M., Du, Y., Wang, G., Shang, C., Liu, Y., Zhang, M., Meng, Q., Cui, M., and Yan, C.: Impacts
- of dust events on chemical characterization and associated source contributions of atmospheric
- particulate matter in northern China, Environmental Pollution, 316, 120597,
- https://doi.org/10.1016/j.envpol.2022.120597, 2023.
- 114 Lv, S. J., Wu, C., Wang, F. L., Liu, X. D., Zhang, S., Chen, Y. B., Zhang, F., Yang, Y., Wang, H. L., Huang,
- 115 C., Fu, Q. Y., Duan, Y. S., and Wang, G. H.: Nitrate-Enhanced Gas-to-Particle-Phase Partitioning of
- Water- Soluble Organic Compounds in Chinese Urban Atmosphere: Implications for Secondary Organic
- Aerosol Formation, Environ. Sci. Tech. Let., 10, 14-20, <a href="https://doi.org/10.1021/acs.estlett.2c00894">https://doi.org/10.1021/acs.estlett.2c00894</a>,
- 118 2022a.

- 119 Lv, S. J., Wang, F. L., Wu, C., Chen, Y. B., Liu, S. J., Zhang, S., Li, D. P., Du, W., Zhang, F., Wang, H. L.,
- Huang, C., Fu, Q. Y., Duan, Y. S., and Wang, G. H.: Gas-to-Aerosol Phase Partitioning of Atmospheric
- Water-Soluble Organic Compounds at a Rural Site in China: An Enhancing Effect of NH3 on SOA
- Formation, Environ. Sci. Technol., 56, 3915-3924, <a href="https://doi.org/10.1021/acs.est.1c06855">https://doi.org/10.1021/acs.est.1c06855</a>, 2022b.
- Wu, C., Liu, X., Zhang, K., Zhang, S., Cao, C., Li, J., Li, R., Zhang, F., and Wang, G.: Measurement report:
- Formation of tropospheric brown carbon in a lifting air mass, Atmos. Chem. Phys., 24, 9263-9275,
- 125 http://doi.org/10.5194/acp-24-9263-2024, 2024.
- 126 Wu, C., Wang, G., Cao, C., Li, J., Li, J., Wu, F., Huang, R., Cao, J., Han, Y., Ge, S., Xie, Y., Xue, G., and
- Wang, X.: Chemical characteristics of airborne particles in Xi'an, inland China during dust storm
- episodes: Implications for heterogeneous formation of ammonium nitrate and enhancement of N-
- deposition, Environmental Pollution, 244, 877-884, <a href="https://doi.org/10.1016/j.envpol.2018.10.019">https://doi.org/10.1016/j.envpol.2018.10.019</a>, 2019.
- 130 Wu, C., Zhang, S., Wang, G. H., Lv, S. J., Li, D. P., Liu, L., Li, J. J., Liu, S. J., Du, W., Meng, J. J., Qiao, L.
- P., Zhou, M., Huang, C., and Wang, H. L.: Efficient Heterogeneous Formation of Ammonium Nitrate on
- the Saline Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm Periods, Environ.
- Sci. Technol., 54, 15622-15630, <a href="https://doi.org/10.1021/acs.est.0c04544">https://doi.org/10.1021/acs.est.0c04544</a>, 2020.
- Wu, F., Zhang, D., Cao, J., Xu, H., and An, Z.: Soil-derived sulfate in atmospheric dust particles at
- Taklimakan desert, Geophys. Res. Lett., 39, <a href="https://doi.org/10.1029/2012GL054406">https://doi.org/10.1029/2012GL054406</a>, 2012.