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Abstract. Using co-located satellite observations from the Aqua Moderate Resolution Imaging Spectrora-
diometer, the Aqua Cloud and the Earth Radiant Energy System, the Special Sensor Microwave Imager/Sounder,
and the Ozone Monitoring Instrument, we investigated changes in absorbing aerosol direct radiative forcing
(ADREF) in the spring through fall Arctic from 2005-2020 through an observation-based method, assisted by
a neural network for estimating aerosol-free sky top-of-atmosphere (TOA) radiative fluxes, and an innovative,
Monte Carlo-based method for estimating uncertainties in derived ADRF values. This study suggests that Arctic
ADREF is a strong function of observing conditions, and changes in Arctic sea ice concentration (SIC) and cloud
properties introduce a complex scenario for estimating ADRF. For example, the TOA ADREF reverses sign from
negative (cooling) to positive (warming) for SIC above 60 % for a region with a relatively cloud-free scene.
ADREF trends over Arctic land surfaces are primarily negative. Strong negative ADRF trends of up to —4 W m ™2
were found over northern Russia and northern Canada in the summer months. Both positive and negative ADRF
trends were found over the Arctic Ocean in the boreal summer, though these trends are much weaker than the
over-land trends. Positive ADRF trends in the Arctic Ocean north of northeastern Russia and northern Canada
are as high as +1.0 Wm™2 per study period. The trend results suggest that increasing amounts of absorbing
aerosols in the Arctic have a cooling effect from TOA that could act to counter Arctic warming.

of absorbed solar energy and fueling further warming and

The Arctic is a complex and changing region, especially due
to recent drastic decreases in summertime Arctic sea ice cov-
erage (Comiso, 2012; Kwok and Rothrock, 2009). Warm-
ing in the Arctic over the past few decades has been much
stronger than the global average, with this phenomenon being
referred to as “Arctic amplification” (Dai et al., 2019; Serreze
and Barry, 2011; Serreze and Francis, 2006). As the Arctic
warms, bright ice- and snow-covered surfaces are convert-
ing to darker ocean and land surfaces, increasing the amount

ice melt (Dai et al., 2019; Kashiwase et al., 2017; Perovich
et al., 2007). One factor complicating the changing Arctic is
the intrusion of significant aerosol plumes, primarily biomass
burning (BB) smoke from lower latitudes, into the Arctic re-
gion. Such intrusions of BB smoke into the Arctic region
have become more frequent over the past 2 decades (Soren-
son et al., 2023; Xian et al., 2022a, b). Aerosol particles are
well known to impact the climate directly through absorption
and scattering of shortwave solar radiation and absorption
of earth-emitted longwave radiation. Indirectly, aerosol parti-
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cles affect the climate through their interactions with clouds.
Aerosol particles can act as cloud condensation nuclei, lead-
ing to the formation of smaller cloud droplets that increase
cloud albedo (Twomey, 1977) and affect cloud lifetime (Al-
brecht, 1989). Over the Arctic region, light-absorbing aerosol
particles can also be deposited on snow- and ice-covered
surfaces (e.g., Khan et al., 2023), reducing surface reflec-
tivity and accelerating snow/ice melt, causing positive (i.e.,
warming) radiative forcing (Flanner et al., 2007; Hansen and
Nazarenko, 2004).

While it is well documented that the Arctic climate is sen-
sitive to aerosol particles (Feng et al., 2013; Flanner, 2013;
Samset et al., 2013; Shindell and Faluvegi, 2009), with the
detectable increases in aerosol events over the Arctic re-
gions for the past 2 decades (Sorenson et al., 2023; Xian et
al., 2022a, b), it is necessary to carefully quantify the im-
pact of aerosol particles on Arctic climate. Many studies
have investigated aerosol—climate impacts in the Arctic re-
gion, primarily through the use of numerical climate models
and/or aerosol analyses (Breider et al., 2017; DeRepentigny
et al., 2022; Feng et al., 2013; Markowicz et al., 2017, 2021;
Oshima et al., 2020; Schacht et al., 2019). Similarly, previous
studies have investigated the interactions between aerosol
particles and snow- and ice-covered surfaces, with many us-
ing global climate models to determine how the deposition
of absorbing particles onto sea ice and snow impacts the
aerosol-radiation interactions (Bond et al., 2013; Flanner et
al., 2007; Gagné et al., 2015; Schacht et al., 2019; Shindell
and Faluvegi, 2009). Some studies have even investigated
how changes in sea ice coverage affect aerosol radiative forc-
ing in the Arctic. Using a global climate model, Struthers et
al. (2011) found that reductions in Arctic sea ice extent led to
increased emissions of sea spray/salt aerosol particles, with
the associated increase in total aerosol optical depth leading
to stronger aerosol radiative cooling effects and a negative
feedback on the Arctic climate.

While numerical models have been used extensively to
study the impact of aerosol particles on Arctic climate, the
observation-based study of Arctic aerosol—climate impact,
which can prove valuable for evaluation of model-based
studies, remains a very challenging research topic. Observ-
ing Arctic aerosol particles from traditional, passive-based
sensors such as the Moderate Resolution Imaging Spectrora-
diometer (MODIS) or the Visible Infrared Radiometer Suite
(VIIRS) is difficult due to the bright ice and snow sur-
faces that frequently cover the Arctic (Martin, 2008). Fur-
ther, active-based sensors such as the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) have much smaller
fields of view than passive imagers, have orbits that only ex-
tend to 82° N and miss a large part of the Arctic, and are also
at times sensitive to reduced signal to nose over bright sur-
faces (Toth et al., 2018).

Attempts have been made in recent years to detect aerosol
features over the bright surfaces in the Arctic from passive-
based satellite sensors, with methods developed using com-
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bined Aqua and Terra MODIS data (Mei et al., 2013a) and
others with observations from the Advanced Along-Track
Scanning Radiometer (AATSR) (Mei et al., 2013b, 2020;
Swain et al., 2024). These methods have limitations, though,
with the AATSR-based method focusing on coarse-mode
aerosol particles. Additionally, Arctic aerosol retrievals from
those methods have data records that are too short for a
long-term trend analysis (e.g., Mei et al., 2013a) and/or lack
a companion sensor providing broadband observations en-
abling an observation-based aerosol direct radiative forcing
(ADRF) study (e.g., Swain et al., 2024). As an alternative,
the Ozone Monitoring Instrument (OMI) ultraviolet aerosol
index (UVAI), through detection of UV-absorbing aerosols
by comparing observed radiance and computed radiance as-
suming a Rayleigh atmosphere at the 354nm channel, is
able to detect aerosols over bright surfaces such as desert
and cloud and over bright snow- and ice-covered surfaces
(Alfaro-Contreras et al., 2014, 2016; Hsu et al., 1999; Torres
et al., 2012). Furthermore, with the combined use of OMI
UVALI and broadband observations from the Cloud and the
Earth Radiant Energy System (CERES), Feng and Christo-
pher (2015) studied the direct radiative effect of BB aerosols
over marine stratocumulus clouds, further showing the util-
ity of OMI UVAI measurements to study aerosol radiative
forcing over bright surfaces. Recent work has even demon-
strated how the OMI UVAI parameter may be used to study
instantaneous and climatological Arctic aerosol patterns over
both dark and bright surfaces (Sorenson et al., 2023; Zhang
et al., 2021). Thus, with the combined use of observations
from OMI and Aqua CERES, which are both included in the
A-train constellation and have near-coinciding observations
within 30 min, it is feasible to quantify absorbing aerosol
direct radiative forcing (ADRF) from an observation-based
analysis.

Quantifying ADRF from observations, while feasible, is
nevertheless daunting. Frequent and significant changes in
surface properties due to the retreat and expansion of sea
ice make the Arctic a uniquely difficult region to study
the ADRF from observations. In addition to decreasing sea
ice, observation-based studies also found increases in Arc-
tic summertime cloud cover over the last few decades on
the order of 10 % per decade (Abe et al., 2016; Philipp et
al., 2020; Schweiger, 2004; Schweiger et al., 2008), adding
another layer of complexity to observation-based aerosol
forcing analyses. The impact of sea ice change and the be-
havior of Arctic clouds on the radiative effect of an aerosol
plume in the Arctic can be seen in Fig. 1. Aqua MODIS
true-color imagery (Fig. 1a) and OMI UVAI (Fig. 1b) re-
veal a plume of BB smoke from central Russia that extends
north from the mainland, over the exposed Arctic Ocean wa-
ter and eventually over the sea ice. The Aqua CERES top-
of-atmosphere (TOA) shortwave flux (SWF) measurements
(Fig. 1c and with OMI UVAI overlaid in Fig. 1d) within
the plume region over the ocean water exhibit higher up-
welling SWF than in the surrounding regions over the wa-
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ter. In this case, the aerosols have a brightening effect, caus-
ing more upwelling TOA radiation than in clear-sky regions.
In the second case, however, Aqua MODIS true-color im-
agery (Fig. le) and OMI UVAI (Fig. 1f) show a dense smoke
plume over northeastern Russia, extending north over both
Arctic sea ice and cloud. The visible imagery and CERES
SWF measurements (Fig. 1g and with OMI UVAI overlaid
in Fig. 1h) show that the same smoke plume has both a dark-
ening and a brightening effect: brightening over the landmass
of northeastern Russia and darkening over the sea ice. These
two cases illustrate the complex factors that affect Arctic
aerosol radiative effects.

With OMI UVALI being capable of detecting UV-absorbing
aerosols over snow, ice, and clouds, the data provide a unique
pathway for studying the complicated ADRF in the Arctic. In
this study, we seek to use OMI UVAI and colocated CERES
observations to derive a first-of-its-kind, observational esti-
mate of absorbing aerosol direct radiative forcing trends in
the Arctic. This analysis focuses on the radiative forcing of
absorbing aerosols, so the radiative cooling impacts of sul-
fates or other scattering aerosol particles are not included in
this study. Additionally, as this study focuses on only the di-
rect radiative impacts of absorbing aerosols, we do not in-
clude the impacts of aerosol-cloud interactions or the radia-
tive impacts of aerosol-cryosphere interactions (such as the
deposition of absorbing aerosol particles onto bright snow-
and ice-covered surfaces). In Sect. 2, we describe the data
sources and variables analyzed in this study. In Sect. 3, we
develop methods for estimating aerosol-free TOA upwelling
SWF in smoky regions using a neural-network-based ap-
proach. In Sect. 4, we estimate observation-based, long-term
trends in ADRF using a look-up table (LUT) of aerosol forc-
ing properties and applying Monte Carlo simulations for es-
timating uncertainties in the trend analyses.

2 Data

To perform an observational study of ADRF in the Arctic,
observations of aerosol loading, TOA upwelling shortwave
flux, surface type (including sea ice concentration (SIC)), and
cloud condition are needed. Satellite-based sensors from the
A-train constellation provide observations of the needed at-
mospheric variables (aerosol loading proxied by UVAI from
OMI, shortwave flux from Aqua CERES, and cloud con-
ditions from Aqua MODIS) within 15min of each other
(Schoeberl, 2002). While not part of the A-train constella-
tion, SSMIS daily SIC retrievals can provide surface type
information for the analysis. The long data record of the A-
train satellite sensors and the SSMIS instruments allow for a
long-term analysis of Arctic ADRF.

2.1 OMI UV aerosol index data

The Ozone Monitoring Instrument (OMI), on board the Aura
satellite, measures reflected solar energy from the ultravi-
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olet (UV) to the visible spectrum (270-500nm) (Levelt et
al., 2006). Aura orbits the Earth in a sun-synchronous or-
bit at 705 km of altitude, an orbital inclination of 98.2°, and
an equatorial crossing time of ~ 13:45 local time. In this
study, UV-absorbing Arctic aerosol particles are detected us-
ing OMI ultraviolet aerosol index (UVAI) data, which relate
the observed UV radiance at 354 nm to a calculated UV radi-
ance assuming a purely Rayleigh atmosphere using Eq. (1):

obs
UVAI = —100log Iical , (1)

where 7% is the observed 354nm radiance and IS is
the calculated 354 nm radiance assuming a Rayleigh atmo-
sphere. Level-2 OMI OMAERUYV V003 data from April to
September of each year from 2005 through 2020 were ob-
tained from the Goddard Earth Science (GES) Data and In-
formation Services Center (DISC) archive (Torres, 2006).

Arctic OMI UVAI data needed to be extensively quality-
controlled and corrected to enable a study as is presented
here. We followed the methods described by Sorenson et
al. (2023), where the raw UVAI data are converted to Arc-
tic UVAI perturbations relative to a climatological UVAI that
is binned by viewing geometry and surface condition, thus
removing substantial viewing-geometry-related and surface-
condition-related uncertainties in the Arctic UVAI data. The
OMI sensor has also suffered from the row anomaly prob-
lem, a dynamic and changing problem in which certain sen-
sor rows become contaminated and unusable, since 2007
(Torres et al., 2018). The number of contaminated rows var-
ied from 2007 to the present, with about 50 % of the OMI
rows currently being contaminated, so we applied the row
anomaly quality control flag in the OMI dataset to exclude
all flagged, row-anomaly-affected rows from our analysis.
Sorenson et al. (2023) also identified additional OMI sensor
rows in the data record that are affected by the row anomaly
problem in the Arctic but are not flagged accordingly in the
L2 OMAERUV data files; in this analysis, those additional
unflagged, contaminated rows were excluded from this anal-
ysis.

Other satellite sensors provide measurements of
UVAL including the Tropospheric Monitoring Instru-
ment (TROPOMI), on board Sentinel-5p (Veefkind et
al., 2012). TROPOMI has a significantly higher resolution
than OMI (3.5 km x 7 km nadir pixel size for TROPOMI and
13 km x 24 km nadir pixel size for OMI) and does not suffer
from a row anomaly issue, but we do not include TROPOMI
data in this study for several reasons. First, the data record
for TROPOMI does not extend as far back as the OMI data
record, with Sentinel-5p being launched in 2017 and Aura
being launched in 2004. Second, spatially and temporally
colocated TROPOMI and space-borne broadband data (e.g.,
CERES) are very finite due to different orbiting patterns,
further limiting the use of TROPOMI data in this study.

Atmos. Chem. Phys., 25, 11867-11894, 2025
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Figure 1. Comparison of the radiative effect of Arctic biomass burning smoke plumes of a smoke plume over ocean water from the
22:11 UTC 11 August 2014 OMI swath (a—d) and of a smoke plume over ice- and snow-free land from the 22:13 UTC 5 July 2018 OMI
swath (e-h). (a, €) Aqua MODIS true-color image. (b, f) OMI UV aerosol index. (¢, g) Aqua CERES top-of-atmosphere (TOA) shortwave

flux (SWF). (d, h) CERES TOA SWF with OMI UVAI overlaid.

2.2 CERES data

The Aqua Cloud and the Earth’s Radiant Energy System
(CERES) instrument measures upwelling radiant energy in
the shortwave (0.3-5 um), window (8—12 um), and total spec-
tra (0.3—100 um) (Su et al., 2015a, b; Wielicki et al., 1996).
The spatial resolution for Aqua CERES is on the order
of 20km at nadir. In this study, we used upwelling top-
of-atmosphere (TOA) shortwave flux (SWF) data from the
Aqua CERES Level-2 Single Scanner Footprint (SSF) data
product to assess the direct radiative effects of the biomass
burning smoke in the Arctic. The CERES SSF data are
derived by colocating CERES observations with MODIS
aerosol and cloud data to provide aerosol information and
for cloud screening of observed CERES scenes. The CERES
SWF data are derived by converting from observed radiances
to fluxes using predetermined angular distribution models
(ADMs), with different ADMs applied for different surface
types (land, snow type, sea ice, ocean) and cloud conditions
(clear-sky, partly cloudy, and cloudy) (Su et al., 2015a, b).
CERES data have been used extensively for investigating
changes in Arctic radiative energy budgets for both TOA
(Duncan et al., 2020; Kay and L’Ecuyer, 2013; Riiheld et
al., 2013) and the surface (Boeke and Taylor, 2016; Hegyi
and Taylor, 2017). Previous studies have also worked to val-
idate Arctic CERES surface radiative fluxes (Di Biagio et
al., 2021; Riiheld et al., 2017) and TOA fluxes (Taylor et
al., 2022), with the latter seeking to validate CERES TOA ra-
diative fluxes against aircraft-based upwelling radiative flux
observations. While Taylor et al. (2022) noted some error
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in the Arctic CERES Level-2 SSF TOA upwelling SWF re-
sulting largely from errors in the imager-based SICs used in
the scene classification, the CERES observations compared
well overall with the aircraft observations (differences be-
tween the CERES and aircraft observations were within 2o
uncertainty). The authors concluded that CERES TOA radia-
tive flux data are suitable for polar climate studies (Taylor et
al., 2022).

2.3 MODIS data

Along with the Aqua CERES data, we used multiple data
products from the Aqua Moderate Resolution Imaging Spec-
troradiometer (MODIS), which measures spectral radiances
in 36 channels across the visible, near-infrared, and in-
frared spectra (Justice et al., 1998). Level-1B Aqua MODIS
2.1 um reflectance (1 km spatial resolution, from data prod-
uct MYDO021KM; MODIS Characterization Support Team
(MCST), 2017) and Level-2 cloud optical depth and cloud
top pressure (1km spatial resolution, from data product
MYDO06; Platnick et al., 2015a) were used in this study for
identifying the visible thickness and height of clouds around
the Arctic. Cloud detection in the Arctic is a challenging
problem, so we included the MODIS 2.1 um reflectance for
added confidence in cloud screening over Arctic sea ice. Un-
like clouds, which exhibit high reflectance from both the vis-
ible and 2.1 um channels, sea ice and snow look bright at the
visible channel but have a low reflectivity at the 2.1 um chan-
nel. Thus, reflectance data from the 2.1 um channel can be
further used to assist cloud clearing of CERES and OMI data
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over the Arctic region. For example, for the Aqua MODIS
granule over northeastern Russia and the Arctic Ocean, the
OMI UVALI data (Fig. 2a) and Aqua MODIS true-color im-
age (Fig. 2b) reveal dense smoke extending from northeast-
ern Russia out over the Arctic Ocean, as well as widespread
bright features (cloud and ice) over the Arctic Ocean. How-
ever, from the visible imagery, it is difficult to distinguish be-
tween clouds and sea ice, so we analyzed the MODIS 2.1 um
reflectance data in the same regions (Fig. 2¢). The 2.1 um re-
flectance values reveal a clear distinction between clouds and
sea-ice-covered surfaces.

The MODIS 2.1 um reflectance data also help in minimiz-
ing the number of dense smoke plumes that are mistakenly
classified as cloud. For example, in the dense biomass burn-
ing smoke plume over northeastern Russia shown in Fig. 2a
and b, the L1B Aqua MODIS cloud mask (Fig. 2d) classifies
about half of the plume as “cloudy” or “probably cloudy.”
However, the Aqua MODIS 2.1 pm reflectance (Fig. 2¢) in
the same plume region does not exhibit any higher values
that would indicate the presence of cloud (for example, the
higher 2.1 pm reflectance values across the lower half and left
third of the panel indicate clouds; note that this is reflected in
the MODIS L1B cloud mask shown in Fig. 2d). The 2.1 pm
reflectance in the plume region very closely matches the re-
flectance of the nearby clear regions, suggesting that there
are no clouds within the dense smoke plume and the MODIS
L1B cloud mask misclassified the dense smoke as cloud. The
MODIS cloud mask also misclassified smoke over ice and
ocean scenes as “cloud”, as shown in Fig. 2d.

Level-3 daily gridded Aqua MODIS cloud optical depth
(subsets of the daily MYDO8_D3 product; Platnick et
al., 2015b) data were also used when calculating daily
estimated Arctic ADRF. Level-3 monthly gridded Aqua
MODIS cloud fraction (from the MYDO08_M3 product; Plat-
nick et al., 2015¢) from April through September of 2005
through 2020 were used for qualitative comparisons between
Arctic-region cloud fraction trends and the observation-
based ADRF trend estimates.

2.4 SSMIS sea ice concentration (SIC) data

The Defense Military Satellite Program (DMSP) Special
Sensor Microwave Imager/Sounder (SSMIS) instruments are
linearly polarized passive microwave radiometers that mea-
sure upwelling microwave radiances in 24 channels (Kun-
kee et al., 2008). The first SSMIS instrument was launched
on board the DMSP F-16 spacecraft in 2003 (Kunkee et
al., 2008). Version-2 daily sea ice concentration (SIC) data
from DMSP SSMIS passive microwave data were obtained
from the National Snow and Ice Data Center (NSIDC) data
archive from April through September of 2005 through 2020
over the Arctic region on a 25 x 25 km polar stereographic
grid (DiGirolamo et al., 2022). We used SSMIS daily sea
ice data for determining surface types (ice, mixed ice/ocean,
ocean, and land) in the Arctic region. We also used monthly
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SSMIS SIC data from the NSIDC data archive for qualita-
tive comparisons between Arctic SIC trends and the ADRF
trends.

The SSMIS SIC dataset used in this study is one
of two key SIC datasets provided by the NSIDC and
has been used extensively in the scientific community
to study Arctic sea ice trends. The algorithm used in
the dataset, developed by NASA (Cavalieri et al., 1984),
has been included in several SIC validation studies
(Cavalieri et al., 1992; Ivanova et al., 2015; Kern et
al.,, 2019, 2020; Meier, 2005; Steffen and Schweiger,
1991). Overall, and as reported in the NSIDC dataset
user guide (https://nsidc.org/sites/default/files/documents/
user-guide/nsidc-0051-v002-userguide.pdf, last access: 1
November 2024), errors in the SIC dataset are less than 5 %
in the wintertime but can be as large as 15 % in the sum-
mertime (Cavalieri et al., 1992). Some recent studies have
reported that the SIC dataset may underestimate SIC by up
to 10% (Kern et al., 2019, 2020), with the underestima-
tion being partly caused by surface melt ponds in the sum-
mer months (Steffen and Schweiger, 1991). Additionally,
microwave-based sea ice concentrations have been found to
be sensitive to areas of thin ice (Ivanova et al., 2015). Nev-
ertheless, despite some limitations, the algorithm and associ-
ated SIC dataset are widely used to represent Arctic SIC.

3 Estimate instantaneous ADRF over multiple
surface types and cloud conditions

Aerosol radiative forcing is defined relative to the aerosol-
free conditions, given by

ADRF = SWF,j, — SWFq, ()

where SWF., is the aerosol-free SWF, SWF,j is the all-
sky SWF, and ADRF is the aerosol direct radiative forcing.
With recent work exhibiting the utility of OMI UVAI data
at identifying BB aerosol plumes over the bright Arctic ice
and cloud surfaces (Sorenson et al., 2023), UVAI data can
serve as the basis for quantifying instantaneous absorbing
aerosol radiative forcing in the Arctic region with co-located
satellite observations. While the vertical aerosol distribution
significantly affects the retrieved UVAI values, we do not
have the proper observations of aerosol vertical distribution
to accurately account for these effects in this analysis, so the
aerosol layer height was not included as a variable in esti-
mating ADRF over the Arctic region. This is also partially
because the impact of aerosol extinction profiles has less ef-
fect on clear-sky TOA ADRF (Guan et al., 2010).

To estimate ADREF, all swaths of OMI UVAI data were
scanned to identify OMI swaths that contained widespread
and significant (perturbed UVAI > 2.0) absorbing aerosol
events over the Arctic region, which we defined here as
north of 65°N. We chose the 2.0 UVAI threshold for this
step to efficiently select swaths that provide good cover-
age of high aerosol loading conditions, with those swaths

Atmos. Chem. Phys., 25, 11867-11894, 2025
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Figure 2. Comparison of (a) OMI UV aerosol index, (b) Aqua MODIS true-color imagery, (¢) Aqua MODIS 2.1 um reflectance, and
(d) Aqua MODIS L1B cloud mask overlaid on the MODIS 2.1 um reflectance in a biomass burning smoke plume over northeastern Russia

and the Arctic Ocean.

also containing regions of lower UVAI to provide good data
range for machine learning training purposes. We identi-
fied 131 OMI swaths meeting these criteria, and for each of
these swaths, each OMI pixel north of 65°N was co-located
with a L2 Aqua CERES TOA SWF and surface albedo, a
L1B Aqua MODIS 2.1 pm reflectance and L2 Aqua MODIS
cloud optical depth and cloud top pressure, and a 25 x 25 km
SSMIS SIC value. As described in Sect. 2.1, we used the
L2 OMI quality control flags and the methods described
by Sorenson et al. (2023) to exclude pixels with flagged or
unflagged OMI row anomaly contamination from the co-
located dataset. Due to the similar pixel size between the
OMI footprint (13 x 24 km? near nadir) and both the CERES
footprint (20 x 20 km? near nadir) and the SSMIS grid box
(25 x 25 km?), we applied a “nearest-neighbor” approach to
co-locate the nearest CERES pixel and SSMIS grid box to
each OMI pixel. We excluded pixels from the co-located
dataset with the SSMIS surface type flag denoting coast-
line pixels or pixels too close to the North Pole (i.e., in
the “pole hole”). However, additional averaging steps were
required for colocating the MODIS data to the OMI grid
because the MODIS pixels (1 x 1 kmz) are much smaller
than the OMI pixels. For all MODIS products (2.1 um re-
flectance, cloud optical depth, and cloud top pressure), the
co-location values consisted of the averages of the values
from all MODIS pixels with latitudes and longitudes that
were within the latitude/longitude bounds of the OMI pixel,
with these bounds defining the latitudes and longitudes of the
four corners of each OMI pixel (provided with the OMI data).
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For the MODIS cloud top pressure data, an additional check
was added to ensure only non-zero cloud top pressure values
were included in the averaging for each co-location pixel.
This was done to avoid the skewing of the average cloud top
pressure by some non-retrieval fill values of 0. After perform-
ing the co-location, each swath contains the variables listed
in Table 1.

Figure 3 shows the distribution of surface types identi-
fied for the absorbing aerosol-containing OMI pixels (plotted
here for UVAI greater than 1.0) from each of the identified
swaths from 2005-2020. The stacked bars represent the per-
cent of aerosol-containing OMI pixels in the swath over the
Arctic that fall into each surface category, with blue corre-
sponding to “ice” (SSMIS SIC greater than 80 %), orange
corresponding to “mix” (SSMIS SIC greater than 20 % and
less than 80 %), green corresponding to “ocean” (SSMIS SIC
less than 20 %), red corresponding to “land” (SSMIS grid
box containing a land mask value), and purple corresponding
to “other” (SSMIS grid box identified as coastline or “pole
hole”). Coastline pixels were excluded from this analysis to
ensure only pixels that are entirely “land” were classified as
such in our analysis. Land, ocean, and mixed ice/ocean con-
ditions were frequently observed among the swaths, with a
smaller percent coverage of ice conditions observed. A table
describing each of the smoke plumes being analyzed here,
including their source region and visual characteristics, is in-
cluded in Appendix A. The majority of the identified swaths
are from the boreal summer months (June, July, and August),
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Table 1. The variables contained in each co-located Arctic OMI L2 swath. The methods by which the CERES, MODIS, and SSMIS data are

co-located to the L2 OMI grid, as well as the quality control methods applied to all the data products, are given in the right column.

Sensor Variable Co-location/QA processes applied
OMI UVALI perturbation Viewing geometry-based and surface type-based uncertainties removed following the
“perturbing method” of Sorenson et al (2023). The row anomaly quality control flag
was also applied to exclude rows impacted by the OMI row anomaly.
Solar zenith angle (SZA) Taken from L2 OMI data
Viewing zenith angle (VZA) Taken from L2 OMI data
Latitude Taken from L2 OMI data
Longitude Taken from L2 OMI data
Aqua CERES  TOA upwelling shortwave flux (SWF)  CERES value from nearest grid point
Surface albedo CERES value from nearest grid point
Aqua MODIS 2.1 pm reflectance Pixels within the latitude and longitude bounds of each OMI pixel averaged together
Cloud optical depth (COD) Pixels within the latitude and longitude bounds of each OMI pixel averaged together
Cloud top pressure (CTP) Pixels within the latitude and longitude bounds of each OMI pixel averaged together
Excluded values with CTP equal to 0.
SSMIS Sea ice concentration (SIC) SSMIS value from the nearest grid point
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Coastline (sea ice value = 253) and “pole hole” (sea ice value = 251) removed

times of frequent biomass burning events in northern Russia
and Canada.

After colocating the data, we inspected each of the se-
lected aerosol swaths to determine if the locations of the
BB aerosol plumes shifted between the MODIS imagery and
OMI UVAIL Though Aqua and Aura are both members of
the A-train satellite constellation, Aqua crosses the Equator
about 15 min before Aura, and thus likewise OMI UVAI ob-
servations lag behind the Aqua MODIS and CERES observa-
tions by about 15 min. This time lag could introduce a shift in
the BB plume locations in the OMI and MODIS data. Feng
and Christopher (2015), who conducted a study of above-
cloud aerosol radiative effect (ARE) over marine stratocu-
mulus clouds near equatorial Africa using co-located obser-
vations from sensors on board Aqua, Aura, and CALIPSO,
assumed that the locations of the BB aerosol plumes stud-
ied did not significantly shift between the overpasses of the
three satellites. Nevertheless, we compared the locations of
the plume identified in the OMI UVAI data with MODIS
true-color imagery for each aerosol swath, and the compari-
son of OMI and MODIS plume locations for the 03:08 UTC
10 August 2019 OMI swath is shown in Fig. 4. The OMI
UVAI data are overlaid on the MODIS true-color imagery
in Fig. 4c, and the region of high UVAI lines up very closely
with the visibly dense smoke in the true-color imagery, show-
ing that there was no significant drift between the OMI and
MODIS observations for this plume. After visually inspect-
ing all OMI and MODIS plume location comparisons, we did
not find any significant drift in any of the analyzed aerosol
swaths.

https://doi.org/10.5194/acp-25-11867-2025

3.1 Neural network for estimating aerosol-free SWF
from L2 satellite data

With aerosol forcing being defined relative to the aerosol-free
conditions, the difficulty in determining aerosol forcing from
only observations is the determination of the aerosol-free
TOA upwelling SWF in smoky regions. To solve this issue,
we constructed and trained a neural network (NN) to esti-
mate aerosol-free TOA upwelling SWF from observations in
BB smoke plumes around the Arctic. The NN was designed
to take inputs of solar zenith angle; viewing zenith angle;
SSMIS SIC and surface type; MODIS cloud optical depth,
cloud top pressure, and 2.1 ym reflectance; and CERES sur-
face albedo, values that were assumed to be largely indepen-
dent of the aerosols and return aerosol-free SWF after train-
ing the NN on aerosol-free input data. We note that the as-
sumption of the NN input variables being independent of the
aerosol loading may not hold for the MODIS cloud optical
depth data, as it is well known that, due to the aerosol indi-
rect effect, aerosol particles can greatly impact cloud proper-
ties such as cloud optical depth. Nevertheless, for simplicity,
we designed this system to focus on the aerosol direct effect
and leave the study of the impacts of the aerosol indirect ef-
fect on these results to a future study.

First, to provide a large training and testing dataset, we
retrieved additional L2 OMI, MODIS, SSMIS, and CERES
data from the 4d on either side of each identified aerosol
event, with the 4 d window providing coverage of the aerosol-
free conditions in the aerosol regions. For example, for the
smoke event of 24—27 July 2006, additional data were down-
loaded to fill in the time period of 20-31 July 2006. The other
L2 swaths from the days with chosen aerosol-containing
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SSMIS Surface Types of L2 Arctic OMI Aerosol Swaths
Plotted for UVAI > 1.0
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Figure 3. Distribution of SSMIS-derived surface types among the OMI pixels with UVAI > 1.0 in each of the selected aerosol-containing

swaths between April through September of 2005 through 2020.
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Figure 4. Comparison of BB smoke aerosol plume locations as observed by Aqua MODIS and OMI for the 10 August 2019 03:08 UTC
OMI swath. (a) OMI UVAI perturbations. (b) Aqua MODIS true-color imagery. (¢) Aqua MODIS true-color imagery with the OMI UVAI

data overlaid.

swaths were also included in the training dataset. Thus, a to-
tal of 116d (each day may contain multiple OMI swaths)
of L2 OMI, MODIS, SSMIS, and CERES observations were
downloaded and co-located for training and testing purposes.
However, since the NN needs to estimate aerosol-free SWE,
and to ensure the validity of the results when applying the
NN to the aerosol swaths, the 131 aerosol-containing swaths
were removed from the input dataset. Additionally, we re-
moved 50 other randomly selected swaths from the dataset
and reserved them for validation of the NN model after
training. Thus, about 1100 L2 OMI swaths with co-located
MODIS, SSMIS, and CERES data were available for the NN
training and testing dataset. As an extra check, all remain-
ing pixels with OMI UVAI greater than 1 were removed to
further ensure that only aerosol-free data were provided to
the NN for training. In addition to the OMI UVAI check,
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pixels were removed if the latitude was less than 65° N, the
SSMIS SIC contained coastline or “pole hole” values, or the
cloud optical depth (COD) data were greater than 70. Since
the Arctic SSMIS data containing land pixels are set to 254,
these values were changed to 101 to remove the large discon-
tinuity of the SIC data from 100 to 254. After applying all of
these quality control checks and preprocessing steps, all of
the values in each variable were scaled to a 0-100 range, en-
suring all variables were equally weighted in the NN (thus,
the min and max of each variable sent to the NN was 0 and
100, respectively). The CERES SWF values used for validat-
ing the model at each training epoch were also scaled to a
0 to 100 range. Following these quality control steps, there
were 4.4 million available aerosol-free pixels identified, and
with 10 % of these being reserved for testing purposes (about

https://doi.org/10.5194/acp-25-11867-2025



B. T. Sorenson et al.: Observation-based Arctic absorbing aerosol direct radiative forcing

400000 pixels), the training dataset consisted of 4 million
aerosol-free pixels.

Figure 5 shows the architecture of the NN, which consists
of 13 total layers: 1 input layer, 11 fully connected hidden
layers, and 1 output layer. The input layer consists of seven
nodes, with one node for each input variable (solar zenith an-
gle, viewing zenith angle, SIC/surface type, MODIS 2.1 um
reflectance, MODIS cloud optical depth, MODIS cloud top
pressure, and CERES surface albedo). The hidden layers
contain an increasing number of nodes per layer from hidden
layer 1 to layer 6, with layers 1 through 6 having 8, 12, 16, 24,
32, and 64 nodes, respectively, and a decreasing number of
nodes per layer from layers 6 to 11, with layers 7 through 11
having 32, 24, 16, 12, and 8 nodes, respectively. Finally, the
output layer consists of one node that uses linear activation.
With all of the input variables being scaled to a 0-100 scale,
the output SWF value is on a 0-100 scale, so this output value
was reverted to a true SWF using the same scaling values to
convert the original SWF values to the 0—100 scale. The NN
was built using the TensorFlow Python package (Abadi et
al., 2015).

Several experiments were conducted to determine the best
activation function (AF) to use in the NN hidden layers.
The NN was trained multiple times using different AFs in
the hidden layer nodes, and the ending mean absolute er-
rors (MAESs) of the NN-predicted aerosol-free SWF against
CERES SWF observations after training with each AF for
100 epochs are listed in Table 2. The Leaky Rectified Lin-
ear Unit (LeakyReLLU; Maas et al., 2013) AF gave the best
performance with an ending MAE of 2.86 Wm™2, while
the Rectified Linear Unit (ReLU; Nair and Hinton, 2010)
AF gave the second-best performance with an ending MAE
of 2.92Wm~2. With the LeakyReLU activation function
known to avoid the “dead neuron” problem associated with
the ReLLU activation function (Dubey et al., 2022; Maas et
al., 2013), we suspect that this could be behind the slightly
better performance of the LeakyReLU AF relative to the
ReLU AF. Other models that gave good performance but
slightly worse performance than LeakyReLU include the
softplus (Glorot et al., 2011) and softsign (Glorot and Ben-
gio, 2010) AFs, though the simulation with the softplus
AF exhibited some instability between epochs 60 and 80.
While the experiments with Exponential Linear Unit (ELU;
Clevert et al., 2016) and Scaled Exponential Linear Unit
(SELU; Klambauer et al., 2017) AFs ended with MAE of
around 3.2 W m™2, the training was highly unstable, with
the errors spiking randomly between 3.0 and 3.5W m™2
with each epoch. The linear AF provided one of the worst
performances with an ending MAE of 5.47 W m~2, while
the training experiments with Gaussian Error Linear Unit
(GELU; Hendrycks and Gimpel, 2016) and sigmoid AFs
were stopped early because the MAE after the first about 10
epochs remained at around 12 W m~2 and did not converge.
Since the LeakyReL U activation function gave the best per-
formance out of the other activation functions tested in this
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Table 2. Mean absolute errors (MAEs) of the neural network output
after training for 100 epochs with several different activation func-
tions. Training with the sigmoid and GELU activation functions was
terminated after about 10 epochs due to the extremely high MAE
and the lack of convergence during the training process.

Activation Reference Mean absolute

function error after
training for
100 epochs
(Wm~2)

LeakyReLU Maas et al. (2013) 2.86

ReLU Nair and Hinton (2010) 2.92

Softplus Glorot et al. (2011) 2.94

Softsign Glorot and Bengio (2010) 3.06

ELU Clevert et al. (2016) 3.21

SELU Klambauer et al. (2017) 3.32

Tanh 4.87

Linear 5.47

Sigmoid ~12

GELU Hendrycks and Gimpel (2016) ~ 12

experiment, we used this activation function in all NN hid-
den layer nodes during training. Training was conducted on
a GPU node for 100 epochs with a batch size of 128, an
Adam optimizer (Kingma and Ba, 2017), and with back-
propagational loss being derived by minimizing the mean
squared error. After training for 100 epochs, the mean square
error (MSE) and mean absolute error (MAE) of the model-
estimated SWF values against the training observations were
16.9 and 2.86 W m~2, respectively.

3.2 Validation of the NN against CERES

Once trained, the NN was first applied to the 50 reserved
aerosol-free validation swaths (independent from the 131
aerosol swaths) to validate the NN output against CERES
observations. The 50 validation swaths contained about
200 000 pixels to use for validation; we note that similar val-
idation results were obtained when increasing the size of the
validation dataset to about 300000 pixels by adding 25 ad-
ditional aerosol-free OMI swaths (and co-located MODIS,
SSMIS, and CERES data) randomly chosen from the 2005—
2020 boreal summer study period. Errors were calculated be-
tween the NN-estimated aerosol-free SWF and the associ-
ated CERES TOA SWF observations, and the distribution of
the errors from the 50 validation swaths is shown in Fig. 6a.
The error distribution peaks at about 0 W m~2, suggesting
little overall bias in the NN-estimated aerosol-free SWF val-
ues. To further test for systematic biases in the NN-estimated
aerosol-free SWF, we binned the validation dataset first by
the SSMIS SIC and surface type and then by MODIS COD.
The NN error distributions binned by the SSMIS surface
type and the MODIS COD are shown in Fig. 6b and c, re-
spectively. We found that the mean SWF errors for the error
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Figure 5. Architecture of the neural network for estimating L2 aerosol-free SWF from L2 input values of solar zenith angle (SZA), viewing
zenith angle (VZA), sea ice concentration (SIC), 2.1 um reflectance (CH7), cloud optical depth (COD), cloud top pressure (CTP), and surface
albedo (ALB). Green circles represent nodes in the input layer, gray circles represent nodes in the hidden layers, and the red circle represents
the node in the output layer. All nodes in the neural network are fully connected to the nodes in the next layer, as illustrated by the lines

connecting the circles.

distributions binned by SSMIS SIC and MODIS COD are
largely small, with magnitudes primarily less than 3 W m—2.
The peaks of nearly all the error distributions for the different
surface types and CODs are around 0 W m~2, suggesting lit-
tle systematic bias in the system associated with the different
surface types and CODs. The mean error for the land dis-
tribution (Fig. 6b, brown) is slightly larger at —5.5 W m™2,
suggesting a slight negative bias over land. We suspect that
this is related to the lack of information about the land-based
surface type in the system. If the NN is primarily trained on
dark land surfaces, but it is applied to brighter-than-normal
land surfaces (e.g., snow- and ice-covered land), the NN will
predict lower upwelling SWF than is observed by CERES.
When excluding data from April and May from this analy-
sis, the mean error for the over-land data is much smaller,
supporting our hypothesis that the slight negative shift in
the land-based error distribution is related to the land sur-
face brightness that is unaccounted for in this system. Given
that the majority of the smoke events analyzed in the study
occurred in the summer months (June—August), we do not
expect this potential low bias of the NN over bright land sur-
faces to significantly impact the results of our study.

3.3 Analysis of NN-based ADRF estimates on L2 basis

We then applied the NN to the 131 aerosol swaths to estimate
aerosol-free SWF in smoky regions. Comparisons of the NN-
estimated aerosol-free SWF against OMI UVAI and CERES
SWEF observations for an aerosol-free swath (22:44 UTC on
8 July 2018, 1 of the 50 swaths reserved for validation) and
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a swath containing an aerosol plume (22:13 UTC on 5 July
2018, 1 of the 131 aerosol swaths) are shown in Fig. 7.
The OMI UVAI perturbations for the first swath (Fig. 7a)
are all below 0, confirming that there were no absorbing
aerosols within the swath. The aerosol-free SWF values gen-
erated by the neural network (Fig. 7c) closely match the ob-
served CERES SWF values (Fig. 7b), with the NN-estimated
SWF matching both the patterns and intensity of the observa-
tions. Figure 7d, which shows the spatial differences between
the CERES-observed SWF against the NN-estimated SWF,
shows small differences between the observations and NN
output; the R? of the comparison between the CERES ob-
servations and NN output (shown in Fig. 7i) is 0.955, show-
ing the overall agreement between the observations and NN
output. For the aerosol swath, the OMI UVAI observations
(Fig. 7e) exhibit a plume of high UVAI (> 4) perturbations
extending from far northeastern Russia out over the Arctic
Ocean, over regions of both sea ice and open-ocean water.
The CERES SWF observations (Fig. 7f) and NN-estimated
aerosol-free SWF values (Fig. 7g) show agreement across
much of the swath, in regions with very low OMI UVAI,
but the differences between the CERES and NN SWF values
(Fig. 7h) reveal large differences within the plume region. In
the plume areas over dark land surfaces and ocean water, the
NN-CERES differences are strongly negative, showing that
the NN output is much lower than the CERES observations
within these regions; this agrees with the expected behav-
ior of a dense smoke plume over a dark surface, with the
BB smoke scattering sunlight upwards to TOA and induc-
ing a strong cooling effect from TOA. On the other hand, the
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Errors in NN-estimated SWF against CERES SWF
in aerosol-free conditions
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Figure 6. (a) Distribution of errors in the neural network (NN)-estimated aerosol-free shortwave flux (SWF) relative to CERES TOA
upwelling SWF observations for the 50 validation swaths reserved from the NN training dataset. (b) As in panel (a) but with the errors
binned by the SSMIS sea ice concentration (SIC) and surface type. (¢) As in panel (a) but with the errors binned by MODIS cloud optical

depth (COD).

differences between the CERES and NN SWF values in the
plume regions over cloudy and icy regions are strongly posi-
tive, showing that the NN-estimated aerosol-free SWF values
are much higher than the CERES observations; this suggests
that the BB aerosols have a darkening (or warming) effect
over the bright cloud and ice surfaces. We note that some re-
gions in the NN-estimated aerosol-free SWF values contain
missing values, which we suspect is a result of missing L2
MODIS COD values. Even in the aerosol-containing swath,
after removing pixels with OMI UVAI perturbation greater
than 1, the R? of the comparison between the CERES obser-
vations and NN output (shown in Fig. 7j) is still high at 0.933.
Using the CERES observations and NN output shown in
Fig. 7i and j, we calculated a noise floor of about 18 W m™2.

4 Estimate long-term trends in observation-based
ADRF

4.1 Generate a look-up table (LUT) of aerosol forcing
regression statistics from binned L2 data

While aerosol direct forcing trend can be directly estimated
using CERES data and neural-network-simulated aerosol-
free TOA SWF as mentioned in Sect. 3, it is rather computa-
tionally expensive to perform those estimations on 16 years
of Level-2 data. As an alternative, ADRF values can be es-
timated at the OMI UVAI domain. In this approach, aerosol
direct forcing values from Sect. 3 were used to derive the re-
lationship between ADRF and observing conditions, includ-
ing the underlying surface conditions (e.g., sea ice, clouds,
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oceans, land), aerosol loading (proxied by OMI UVAI), and
observing angles (e.g., SZA, VZA). Upon validating against
aerosol forcing values using approaches as mentioned in
Sect. 3, long-term aerosol forcing trends (at the OMI UVAI
domain) and uncertainties were derived using an innovative,
Monte Carlo-based method and through the analysis of daily
Level-3 (L3) cloud, sea ice, and OMI UVAI data.

In this approach, aerosol forcing efficiency, which is de-
fined as ADRF per OMI UVALI in this study, was estimated
based on observing conditions including OMI solar zenith
angle (SZA), MODIS cloud optical depth, and SSMIS SIC.
The observation conditions were quantified in discrete size
bins, and we used uniform bin sizes of 5° and 20 % for the
OMI SZA and SSMIS SIC, respectively, with MODIS COD
bin sizes increasing from 0.5 for low COD values to 20 for
high COD values. Examples of deriving aerosol forcing ef-
ficiency as functions of observing condition are shown in
Fig. 8 for each of the SSMIS surface type categories and
COD bins. The data for each of the surface type bins in this
figure are not separated by solar zenith angle, but as shown
later in Fig. 9, the ADRF does not change significantly with
solar zenith angle. A table containing the mean and standard
deviation of the ADREF for three of the COD bins is given in
Table 3. The magnitudes and signs of the ADRF vary signif-
icantly as a function of COD and SIC.

For primarily cloud-free scenes (COD < 0.5; dark blue in
Fig. 8), ADRF over dark surfaces such as ice-free ocean and
land is strongly negative (i.e., scene brightened). For high
UVAI scenarios and for COD < 0.5, the ADRF for both land
and ocean conditions is as large as —100 W m~2, indicating
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Figure 7. Validation of the neural network under aerosol-free (a—d) and aerosol (e-h) conditions. Panels (a)—(h) contain maps of the
(a, ) OMI UVALI perturbations, (b, f) CERES SWF observations co-located to the OMI grid, (¢, g) NN-estimated aerosol-free SWF, and
(d, h) difference between the NN-estimated aerosol-free SWF and CERES SWF observations. Panels (i) and (j) contain scatter plots of
the CERES SWF and NN aerosol-free SWF from the (i) aerosol-free swath and (j) aerosol-containing swath, with points plotted for the

aerosol-containing swath only when the OMI UVAI was less than 1.

a strong TOA cooling effect of dense aerosol plumes. For the
same low COD conditions, the forcing for high UVAI scenar-
ios increases gradually with increasing SSMIS SIC, with the
sign of the forcing efficiency switching from negative to posi-
tive between the 40 %—60 % and 60 %—80 % bins, or roughly
a SIC of 60 % (we note that a similar threshold of 60 %—
65 % is also found when binning the ADRF data using a va-
riety of other SIC bin sizes and bin edges). However, for pri-
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marily cloud-free scenes over sea ice (SSMIS SIC > 80 %),
forcing over the bright surfaces is strongly positive, with
ADRF values for high UVAI scenarios being as large as
+80Wm~2 (i.e., scene darkening). As COD increases, the
ADREF as a function of UVAI also generally increases (dark-
ening), though the increase per unit COD is higher for darker
surfaces than for lighter surfaces. The change in forcing effi-
ciency (the slope of the UVAI vs. ADRF regression line) as
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Figure 8. Aerosol direct radiative forcing (ADRF) derived from co-located satellite observations (CERES, OMI, MODIS, SSMIS) and
neural network output of aerosol-free SWF, divided by COD and binned for ocean surfaces (sea ice concentration (SIC) below 20 %, a),
mixed ice/ocean surfaces (SIC between 20 % and 40 %, b; SIC between 40 % and 60 %, c; SIC between 60 % and 80 %, d), ice surfaces (SIC
greater than 80 %, e), and land surfaces (f). Linear regression lines between ADRF and OMI UVAI are plotted for each of the COD bins.

Counts of L2 pixels in each surface type bin are given in the subplot titles.

COD increases is large for ocean and land surfaces, but the
slopes of the lines remain roughly the same over ice scenes.
The slopes of the UVAI vs. ADRF regression lines are pos-
itive across all surface types for high COD (> 20) scenes,
suggesting that the thick clouds obscure the ocean and land
surfaces below. The regression equations for the data plotted
in Fig. 8 are listed in Appendix A (Table A2).

Following similar steps, for each OMI SZA, MODIS
COD, and SSMIS surface type bin, all ADRF values and as-
sociated OMI UVAI values were analyzed with linear regres-
sion to identify the slope and intercepts of the fitted line be-
tween the data (we note that similar results were found when
using the more robust Theil-Sen slope estimator). The slopes
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and intercepts of the forcing regression allowed the ADRF
to be estimated given an input UVAI value and the associ-
ated SZA, COD, and sea ice value, and these values were
used to construct a look-up table (LUT) of aerosol forcing
regression statistics for use in estimating daily aerosol direct
forcing from L3 data. The slopes of the regressions applied
to each bin for each surface type are shown in Fig. 9. Only
grid boxes with more than 50 co-located values in the box are
shown in the figure. Over ocean and land surfaces, negative
forcing efficiencies were identified for low COD conditions,
shown by the blue on the bottom of these panels. The nega-
tive forcing efficiency (negative slope) shows that an increase
in UVAI leads to negative ADRF, meaning the presence of
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Table 3. Mean and standard deviation (in W m~2) of the absorbing aerosol direct radiative forcing (ADRF) from Fig. 8 binned by SSMIS
sea ice concentration (SIC)/surface type, MODIS cloud optical depth (COD), and OMI UV aerosol index (UVAI). Results are given for three

COD ranges: 0-0.5, 8-12, and 20-30.

Mean and standard deviation of binned L2 ADRF

SSMIS MODIS UVAI UVAI UVAI UVAI
Surface type COD 0-2 2-4 4-6 >6

Mean ADRF Mean ADRF Mean ADRF Mean ADRF
ADRF SD | ADRF SD | ADRF SD | ADRF SD
Ocean (0 %-20 % ice) 0-0.5 -=21.7 283 | —47.8 320 | —664 389 | —78.4 329
8.0-12 —-1.0 24.8 1.5 19.8 3.3 14.6 2.6 15.8
20-30 0.6 20.7 8.4 14.5 10.4 18.2 14.2 11.8
Mix (20 %—40 % ice) 0-0.5 —8.8 31.8 | —32.0 35.1 | =51.7 376 | =352 39.7
8.0-12 1.7 29.0 13.1 22.8 33.7 29.7 NA NA
20-30 4.4 24.9 12.9 31.6 12.3 0.0 NA NA
Mix (40 %—60 % ice) 0-0.5 —6.3 303 | —15.6 32.8 | —32.1 38.6 | —27.7 33.8
8.0-12 1.8 25.8 144 22.8 31.8 19.1 42.9 0
20-30 3.7 22.3 18.1 16.9 433 26.8 NA NA
Mix (60 %—80 % ice) 0-0.5 —4.0 32.7 1.3 25.7 1.3 33.3 16.3 34.1
8.0-12 2.1 25.5 16.6 22.0 26.9 23.7 83.3 149
20-30 5.8 23.3 21.0 17.2 32.2 18.9 NA NA
Mix (0 %-20 % ice) 0-0.5 4.5 27.6 26.1 29.9 36.5 32.0 62.3 25.9
8.0-12 5.7 25.1 25.0 27.4 43.9 27.6 44.6 15.1
20-30 7.5 22.5 23.3 20.6 24.6 0.0 NA NA
Land 0-0.5 —145 34.1 | —50.2 32.8 | =755 31.8 | —71.1 40.7
8.0-12 —-3.7 352 —6.3 26.1 —13.8 295 | —12.7 28.9
20-30 —4.9 324 5.8 28.3 5.0 24.3 25.8 17.1

SD: standard deviation.
NA: not available.

the aerosols leads to increased upwelling TOA SWF; in other
words, negative forcing leads to less energy into the Earth
and atmospheric system (a brightening effect). The negative
forcing efficiencies for low COD conditions over land sug-
gest that the land surfaces were dark in the input data, which
is not surprising given that most of the input data for the NN
were from boreal summer. Thus, we did not detect data with
land snow coverage in this analysis. For COD values primar-
ily above 8 over land and ocean scenes, the magnitude of the
forcing efficiency slopes shifts to being positive; as a note,
this behavior closely matches results reported by Feng and
Christopher (2015) in their analysis of aerosol forcing over
tropical marine stratocumulus clouds. The positive forcing
efficiencies for the higher COD values indicate that higher
aerosol loading leads to less upward-directed SWF (i.e., a
darkening effect). On the other hand, over ice surfaces, the
forcing efficiencies are entirely positive, with little change
exhibited for increasing COD over icy surfaces. Over mixed
ice/ocean surfaces, there is some variability with increasing
COD, with slightly negative forcing efficiency for clear-sky
conditions (COD < 0.5) and positive forcing efficiency for
nearly all other SZA and COD bins. While not shown, the
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slope standard errors in most of the bins are generally low
(<2Wm~2 UVAI™!), though higher slope errors are found
in some of the outer bins where the number of co-located
values per bin is very low, such as for the “mix 20 %—40 %”
bin. These results show the complex nature of aerosol forcing
over the different cloud and surface conditions in the Arctic.

4.2 Calculate daily estimates of ADRF from LUT and
daily averaged OMI UVAI data

With the forcing efficiency values derived from the co-
located L2 data, we then estimated ADRF on a daily
basis from 1 April to 30 September of 2005 through
2020. Daily averages of perturbed OMI UVAI on a 1 x 1°
latitude x longitude grid were derived from the quality-
controlled L2 OMI UVAI data, while L3 MODIS daily 1 x 1°
gridded cloud optical depths (product MYDO08_D?3) were ob-
tained from the NASA Langley online data archive, and daily
SSMIS SICs on the default 25 x 25 km? grid were converted
to a 1 x 1° latitude longitude grid. For each day, if a 1 x 1°
OMI grid box contained a daily averaged perturbed OMI
UVAI value that was higher than a threshold (here, set to
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Slopes of UVAI vs. ADRF Linear Regression Equations
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Figure 9. Slopes of the regression lines between the UVAI perturbations and NN-based ADRF estimates as functions of OMI solar zenith
angle and MODIS COD, for (a) ocean surfaces: sea ice concentration (SIC) below 20 %; (b—d) mixed ice/ocean surfaces (b: SIC between
20 % and 40 %, c: SIC between 40 % and 60 %, d: SIC between 60 % and 80 %), (e) ice surfaces (SIC greater than 80 %), and (f) land

surfaces.

0.7), then a forcing value was estimated for that grid box.
Regions with OMI UVAI values less than the threshold value
were assumed to be aerosol-free, and the ADRF values were
set to zero for those regions. We note that similar results
were obtained when, rather than using this straightforward
threshold approach for the daily OMI UVAI data, we com-
pared the daily OMI UVAI value to a UV-absorbing aerosol-
free OMI background climatology value and calculated daily
forcing if the daily UVAI was greater than the background by
more than the threshold amount. The daily SSMIS SIC value,
the calculated daily minimum solar zenith angle, and the L3
MODIS COD values for that grid box were used to select the
correct forcing regression slope and intercept from the forc-
ing regression LUT. Once the forcing efficiency slope and
intercept values were identified, the estimated daily ADRF
was calculated following

ADRF[, j] = JADRE |1CEL, j1, SZAl, j1, CODL, ]
oAl e e ’

x UVAI[Z, j1+ CAprFlicEi, j1, szAli, j1, CODIi, j1+ 3
where i denotes the latitude index, j denotes the
longitude index, UVAI[i, j] is the daily UVAI for
the grid box, and B%RIFF |ICE[i, j1.8ZAli,j1,coD[i,j] and

CADRF |ICE[i, 1, SZA[i, j1, coD[i,j1 are the forcing efficiency
slope and intercept, respectively, associated with the SIC, so-
lar zenith angle, and COD of the lat/long grid box. Thus, al-
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though both SIC and cloud coverage change throughout the
study period, their combined impact to ADRF is reflected
in the analysis. An example of the daily estimated aerosol
forcing for 5 July 2018 is shown in Fig. 10. In Fig. 10a, the
daily averages of perturbed OMI UVAI reveal a large plume
of BB smoke over northeastern Russia and extending over
the Arctic Ocean. The SSMIS SIC (Fig. 10b) and MODIS
COD (Fig. 10c) values indicate that most of this plume was
located over primarily ocean and ice surfaces, with a mixture
of cloudy and cloud-free conditions in those regions. After
following the methodology described above, the daily esti-
mated ADRF was calculated, with the forcing value being
shown in Fig. 10d. The positive (red) values indicate less
upward-directed SW energy caused by the BB aerosol par-
ticles, which is expected due to the icy and cloudy condi-
tions in those regions. The same plume also exhibited nega-
tive (blue) forcing values across the land and mixed ice/ocean
areas.

4.3 Error analysis of daily estimated aerosol direct
radiative forcing

Before applying the NN results and forcing regression LUT
to long-term ADREF trend analyses, an analysis of the im-
pacts of errors in the system on the daily observation-based
estimates of ADRF must be conducted. Thus, we calculated
error statistics for four error sources: errors in the neural net-
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Daily Estimated Aerosol Direct Radiative Forcing
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Figure 10. Estimated forcings from aerosol using forcing efficiency slopes and intercepts for 5 July 2018. (a) Daily averaged perturbed OMI
UVAL (b) SSMIS sea ice concentration (SIC). (¢) Daily L3 Aqua MODIS COD. (d) Estimated aerosol direct radiative forcing (ADRF) for
5 July 2018 based on the OMI UVAI and the look-up table (LUT) of aerosol forcing regressions under different viewing geometry, surface,

and cloud conditions.

work output, errors in the forcing regressions used in the
LUT, impacts of daily SSMIS SIC errors on the daily forcing
estimates, and impacts of daily MODIS COD errors on the
daily forcing estimates.

First, we quantified the errors in the NN-generated
aerosol-free SWF estimates against CERES observations.
For each of the 50 L2 swaths reserved for testing (not in-
volved in training the NN), aerosol-free SWF values were
estimated and were compared to the CERES SWF observa-
tions from the same swaths. All these errors were combined,
and after removing any pixels with UVAI > 1, the distribu-
tion of the combined errors from all 50 swaths was generated
and is shown in Fig. 11a. The red curve represents a Gaussian
curve fitted to the distribution, fitted using the Levenberg—
Marquardt algorithm and least squares statistics. A normal
distribution fits the errors well, though with a slight underes-
timation of errors towards the edges of the distribution. Based
on the fitted Gaussian curve, the mean and standard deviation
of the NN output errors are 1.4 and 18.3 W m~2, respectively
(Fig. 11a).

Atmos. Chem. Phys., 25, 11867—11894, 2025

Another source of error in the daily estimates of ADRF is
in the application of the forcing regressions in the LUT. To
quantify errors in the LUT method at estimating ADRF, we
first calculated ADRF for all of the aerosol swaths by sub-
tracting the CERES observations from the NN aerosol-free
SWEF output; this is referred to as the “L2-style” forcing esti-
mate. Then, for the same L2 swaths, we calculated estimated
ADREF at each aerosol-containing pixel using the LUT-based
method, in which the MODIS COD, OMI SZA, and SSMIS
SIC values were used to select the forcing regression val-
ues from the LUT, and the OMI UVAI perturbation from the
L2 pixel was then applied to the forcing regression values to
generate an estimated ADREF; this is referred to as the “L3-
style” forcing estimate. The errors between the L2-style and
L3-style forcing estimates for all aerosol-containing pixels in
the L2 aerosol swaths were combined, and the distribution of
the combined errors is shown in Fig. 11b. As in Fig. 11a, a
Gaussian curve was fitted to the data using the Levenberg—
Marquardt algorithm and least squares, and the normal dis-
tribution provides a good estimate for the errors. The mean
and standard deviation of the L2-style vs. L3-style errors are
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B. T. Sorenson et al.: Observation-based Arctic absorbing aerosol direct radiative forcing

Errors between L2 CERES & NN output
under aerosol-free conditions
7000 ]

(a)

u=-1.4Wm2

6000 1 0=18.3Wm?

5000 +

4000

Counts

3000 A

2000 A

1000 H

O -4
-100 =75 =50 =25 0 25 50 75
TOA SWF Error (NN - CERES) [Wm™2]

100

L3 Daily Forcing Errors Due to Ice Errors
0 Ice errors: Mean = 0.0%, SD = 15.0%

(c)
104 4

103 4

Counts

102 4
101 o

100 4
-100 -75 -50 -25 O

25
Forcing error (ADRFjceerror - ADRForig) [Wm™2]

50 75 100

Counts

11883

Errors between L2 forcing (NN-based) and
L3-style forcing (Al & LUT) applied to L2 data
1

2000 (P) 1.3 Wm-2
21.0 Wm-~2
1500
1000
500

O_
-100 -75 -50 -25 O

25
Forcing error (L3 - L2) [Wm™2]

50 75 100

L3 Daily Forcing Errors Due to COD Errors
COD errors: Mean = 0,SD=5

—300 —200 =100 O 100 200 300
Forcing error (ADRF cogerror - ADRForig) [Wm™2]

Figure 11. Error distributions of four error sources in the daily forcing estimates. (a) Distribution of errors between the CERES SWF
observations and the NN-estimated aerosol-free SWF, generated from the 50 reserved co-located L2 swaths and for pixels with UVAI < 1.
(b) Distribution of errors between the ADRF calculated directly from the NN output and CERES observations (L2 style) and the ADRF
calculated on the L2 swaths using the OMI UVALI perturbations and the look-up table (LUT) of forcing regressions (L3 style). (¢) Distribution
of errors in the daily L3 forcing estimates caused by the application of normally distributed errors to the daily SSMIS sea ice values during
the calculation process. (d) Similar to panel (c) but showing the impacts of the application of errors in the daily MODIS COD values. The
mean and standard deviation of the distributions in W m~2 are represented by p and o, respectively, in each panel. Note that a logarithmic

y axis is applied to panels (c¢) and (d).

—1.3 and 21.0 W m~2, showing that the L3-style ADRF val-
ues slightly overestimate the ADRF computed directly from
the NN output and CERES observations.

Lastly, we investigated how errors in the daily L3 SS-
MIS SICs and MODIS COD values affect the daily esti-
mated ADRF. According to the SSMIS daily SIC dataset
user guide from the National Snow and Ice Data Center, and
as described in Sect. 2.4, SSMIS SICs are generally within
45 % of the true SIC in the wintertime and within £15 %
in the summertime due to the presence of melt ponds on
the ice surface. Thus, to determine how possible errors in
the daily SSMIS SICs of this magnitude impact the esti-
mated daily ADRF values, we first calculated daily estimated
ADREF using the methods described in Sect. 4.2 for 1 April to
30 September of 2005-2020. Then, we calculated the daily
ADREF values again, but before using the daily SSMIS SIC
to select the aerosol forcing regression values from the LUT,
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we perturbed the SIC by an error from a normal distribution
with a mean of 0 % and a standard deviation of 15 %, though
the ending SIC values were capped to a minimum of 0 % and
a maximum of 100 % after adding the errors. The distribu-
tion of the errors between the original daily L3 ADREF es-
timates and the ice-error-affected daily L3 ADRF estimates
are shown in Fig. 11c; note that the y axis is set to a logarith-
mic scale because the vast majority of the errors are equal to
0 (the “0” bin contains about 60 000 values, while the next
closest bins contain less than 1000 values). We suspect that
the overwhelming frequency of O-value errors in the distri-
bution is due to the chosen SSMIS surface bins and the wide
coverage of land surfaces within the study area. With the SS-
MIS SIC bins used in the LUT being 20 % wide, if the er-
ror applied to the daily SSMIS SIC value was too small to
change the sea ice value to a different sea ice bin, the forc-
ing regression values selected from the LUT did not change,
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and therefore the calculated daily ADRF value remained un-
changed from the original calculation. Also, these changes
did not affect the calculations over land surfaces, and with
the source region for the aerosol plumes in the Arctic pri-
marily being boreal Russia and Canada, many of the identi-
fied smoky grid points were over land and were unaffected by
the perturbations in the ice values. Unlike the previous two
error distributions, the errors in Fig. 11c are not normally
distributed. The mean and standard deviation of the errors in
daily L3 ADRF estimates due to SSMIS sea ice errors are 0
and 3.2 W m~2, respectively.

Similar methods were applied to determine the impacts of
errors in the daily MODIS COD values on the estimated daily
ADREF values. After surveying the standard deviations of the
L1B/L2 MODIS COD values that were averaged into each
daily L3 COD value across the entire 1 April to 30 Septem-
ber of 2005-2020 dataset, we found that, though the most
commonly occurring COD standard deviation is less than 1,
the second most commonly occurring daily MODIS COD
standard deviation is about 5. Thus, similar to above, we re-
calculated the daily L3 ADREF values, but before using the
MODIS COD value at the grid point to select the forcing re-
gression values from the LUT, we perturbed the COD value
by an error from a normal distribution with a mean of 0 and
a standard deviation of 5. The distribution of the errors be-
tween the original ADRF values and the values calculated
using the perturbed COD values are shown in Fig. 11d; as in
Fig. 11c, a logarithmic y axis is used in Fig. 11d because the
vast majority of the errors are equal to 0, with the “0” bin
containing about 40000 values, while the next closest bins
have about 8000 values. We suspect that there are more non-
zero errors in the COD error distribution than in the ice error
distribution because of the small COD bin sizes for lower
COD values. As with the ice errors, the COD-induced forc-
ing errors are not normally distributed. The mean and stan-
dard deviation of the errors in daily L3 ADRF estimates due
to MODIS COD errors are 0.7 and 14.6 W m~2, respectively.

With the mean and standard deviation of the errors from
each component calculated, the error statistics were com-
bined to derive the total error statistics for the daily L3
observation-estimated ADRF values. The mean error was
calculated as the sum of the individual error distribution
means, which is —0.8 W m™2. This slight low bias can be
corrected in the L3 daily ADRF calculations by adding
0.8 Wm~2 to the calculated daily ADRF values. The final
standard deviation was calculated as the square root of the
sum of the squares of each individual standard deviation,
which equates to 31.6 W m™2, assuming error variances are
addable. We note that this does not account for co-varying
errors (such as related errors in COD and SIC), so this stan-
dard deviation is likely an overestimate of the true error in
the daily forcing values.
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4.4 Total observation-based Arctic aerosol forcing
trends using Monte Carlo error estimations

We conducted a Monte Carlo simulation method to estimate
the impact of the errors in the observational estimates of daily
L3 ADRE. In this approach, a total of 600 independent sim-
ulations were performed. We note that, although 600 sim-
ulations were selected, the mean trend values largely stabi-
lized after 300 simulations, with a less than 5 % difference
found between mean ADRF trends larger than 0.25 W m™2
per study period for simulations with 300 and 600 runs. For
each simulation, daily ADRF values were computed from the
LUT as mentioned in Sect. 4.2 using daily OMI UVALI, SIC,
and COD data at a spatial resolution of 1 x 1° latitude/lon-
gitude over the study domain. For each day and each 1 x 1°
latitude/longitude grid, an error in ADRF was added to the
daily ADRF value. The added error term was randomly gen-
erated by following the normal distribution as derived from
Sect. 4.3, with a mean of 0.8 W m~2 and a standard deviation
of 31.6 Wm™2. For each simulation, ADRF trends (2005—
2020) can be estimated, first by averaging daily values into
monthly averages and then by estimating trends through the
linear regression analyses over the monthly averages. Since
we added semi-random errors to the ADRF calculations, with
errors added following the accumulated error distributions
from Sect. 4.3, in theory, with sufficient simulations, the
spread of aerosol forcing trends from those simulations shall
capture error sources as mentioned in Sect. 4.3 (e.g., with an
error standard deviation of 31.6 W m~2). Here we assumed
that the errors in the daily L3 ADRF values are normally dis-
tributed. We note that the same number of data points were
included in each simulation, and the only difference among
the 600 simulations is that for each observation for each sim-
ulation, the added error term, which was randomly generated
based on the error distribution from Sect. 4.3, was different.

The mean trend from the 600 simulations was considered
the ADRF trend from this study, and the spread in trends
from different simulations was related to the error boundaries
of the calculated ADREF trend. This exercise was performed
for April-September for the study period of 2005-2020. In
addition to computing the trends of ADRF over the study
period, we computed monthly trends of SSMIS SIC, Aqua
MODIS cloud fraction, and perturbed OMI UVAI data over
the study period for qualitative comparison with the ADRF
trends. The monthly SSMIS SIC values were first averaged
into a 1 x 1° latitude/longitude grid, and then linear regres-
sion was applied to the time series of monthly averaged SIC
at each grid point to find the trends. Linear regression was
also applied to the L3 monthly Aqua MODIS cloud frac-
tion data at each latitude/longitude grid point to find cloud
trends. Monthly perturbed UVAI values were calculated by
averaging together all daily UVAI averages that were greater
than 0, and linear regression was applied to the time series of
monthly perturbed UVAI data at each grid point to find the
trends.
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Figure 12. Example of the methods applied for determining the
significance of the observation-based estimates of ADRF trend at
each lat/long grid point in the Arctic. The histogram shows the dis-
tribution of the 600 trend estimates at the selected point. The black
dotted line represents the mean trend value, while the dotted black
lines on either side of the mean represent the mean plus and minus
the standard deviation.

To determine the significance of the ADRF trends, we an-
alyzed the mean and the spread of the 600 estimated monthly
trends at each lat/long grid point. We used the standard de-
viation of the 600 trends to construct a 90 % confidence in-
terval around the mean of each trend, and if the bounds of
the confidence interval were the same sign as the mean trend
(i.e., if the absolute value of the trend was greater than 1.645
times the standard deviation of the 600 trends), we denoted
the trend as being significant. An example of applying this
methodology for the 600 trends at a point over northern Rus-
sia is shown in Fig. 12. The histogram of all 600 trend es-
timates at that point reveal that the trends are centered just
above —4 W m™2 per study period, though some of the es-
timates are as low as —7 Wm™2 per study period and some
are as high as about 0 W m~2 per study period. The dashed
black line represents the mean of the 600 trends, which is
equal to —3.7 W m~2 per study period, while the dotted black
lines represent the 90 % confidence interval. With a standard
deviation of 1.3 W m~2 per study period, the confidence in-
terval of the trend of “u £ 1.64506” becomes (—5.9, —1.6),
and since this interval does not contain the value of zero, we
denote this trend as being significant at the 90 % confidence
level.

The monthly trends of SSMIS SIC, Aqua MODIS cloud
fraction, OMI UVAI, and the mean and standard deviation
of the 600 observation-based ADRF trends are shown in
Fig. 13, with trends calculated separately per month. De-
creases in SIC (Fig. 13, first column) are strongest in the late
summer months and September, times of the year when Arc-
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tic sea ice extent is at its yearly minimum. The Aqua MODIS
cloud fraction trends (Fig. 13, second column), though vari-
able by month and region, are largely positive across the Arc-
tic, though decreases in cloud fraction were found over Rus-
sia in June and August and over Europe in July.

Both the UVAI (Fig. 13, third column) and ADREF trends
(Fig. 13, fourth column) are weak in the spring months,
with weak negative UVAI trends over much of the Arctic.
Weak positive ADRF trends are found over parts of Russia
and Alaska, with regions of weak negative ADRF trend over
the Arctic Ocean north of Alaska and Russia. Summertime
UVAI and ADRF trends, in contrast, are much stronger. Pos-
itive UVALI trends are found over Russia for June, July, and
August, as well as over Canada in August, though a region
of negative UVALI trend over northwestern Russia can be at-
tributed to a large-scale BB aerosol event in that area early
in the study period. Weaker UVALI trends extend from Rus-
sia over the Arctic Ocean. The ADREF trends for the sum-
mer months largely follow the patterns in the UVAI trends,
with strong decreases in ADRF over Russia in June, July, and
August and over northern Canada in August. The negative
ADREF trends are as large as —4 W m~2 per study period lo-
cally. These results indicate stronger ADRF closer to the BB
aerosol source regions in north central Russia and Canada,
with weaker ADRF for the BB smoke plumes after being
transported. Over the Arctic Ocean, in regions where BB
aerosols are transported from mainland Russia and Canada,
the magnitudes of the ADRF trends are smaller, and both
negative and positive ADRF trends are found in different ar-
eas of the Arctic. Positive ADRF trends are found over the
Arctic Ocean north of Russia and Alaska in July, as well as
north of Canada in August, while negative ADRF trends are
found closer to the northern coasts of Russia, Canada, and
Alaska. The strongest positive ADRF trends over the Arc-
tic Ocean, north of Russia in July, are as high as +1 W m™2
per study period. We determined the confidence of the trends
at each grid point using the methods described above, and
trends in which the 90 % confidence interval is nonzero are
denoted with black hashing in Fig. 13. Most of the April and
May ADREF trends do not have high confidence, but many
of the strong negative ADRF trends over Russia and Canada
in June, July, and August have high confidence. The posi-
tive trends over the Arctic Ocean north of Russia in July and
north of Canada in August also have high confidence, but
most of the other weak trends over the Arctic do not. We sus-
pect that the lower confidence in the weaker trends across
much of the Arctic is likely a result of the high errors in daily
observation-based estimates of ADRF.

In addition to the spatial trends, we analyzed the regional
averages of observation-based ADRF estimates across the
Arctic. We calculated regional averages of the 600 monthly
forcing values in three regions: the entire Arctic (65-90° N),
low Arctic (65-75°N), and high Arctic (75-90°N). Then,
we calculated the mean and standard deviation of the 600
trends across those regional averages of ADRF for each re-
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SSMIS MODIS
Ice Conc. Trend Cld. Frac. Trend OMI UVAI Trend ADRF Trend Mean ADRF Trend SD

April

August July June May

September

-20 0 20 —25 0 25 -0.2 0.0 0.2 -1 0 1 0.0 0.5 1.0 1.5
Ice Conc. Trend Cld. Frac. Trend UVAI Trend ADRF Trend ADRF Trend SD
[% (study period)~1] [% (study period~1] [UVAI (study period) ~1] [Wm~2 (study period) ~] [Wm™2]

Figure 13. Monthly trends in SSMIS sea ice concentration (SIC), Aqua MODIS cloud fraction, OMI UVAI and observation-estimated
ADREF trends over the 2005-2020 study period for April (first row), May (second row), June (third row), July (fourth row), August (fifth
row), and September (sixth row). First column: trends of monthly averaged SSMIS SIC. Second column: trends of monthly averaged Aqua
MODIS cloud fraction. Third column: trends of monthly averaged perturbed OMI UVAL Fourth column: mean of 600 trends from monthly
averages of observation-based ADRF estimates, plotted in units of Wm—2 per study period. Fifth column: standard deviation of the 600
monthly ADRF trends, plotted in units of W m™—2 per study period.
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gion. The mean trends are considered statistically signifi-
cant if the mean of the p values associated with the 600
trends is below 0.05. The mean and standard deviation of
the monthly mean and trends across the 600 trends are listed
in Table 4, with bolded trends denoting those that are sta-
tistically significant. We note that similar results were ob-
tained when using 300 trend estimates. Trends in region-
averaged ADRF for the spring months are very small for
all three regions. Larger trends are found in the summer
months, with the low Arctic having the largest trends. Over
the entire Arctic region, the strongest trends in regional
observation-based ADRF estimates are in August, with a
trend of —0.059 +0.005 W m~2 per study period. Over the
low Arctic, however, the trend is much larger at a statis-
tically significant —0.18540.009 Wm™~2 per study period
for August. Trends in the high Arctic are the smallest, with
the largest trends in the high Arctic found in August at
+0.046 + 0.006 W m~2 per study period. While some of the
trends in region-averaged ADREF are statistically significant,
we admit that statistically significant trends may not actu-
ally be impactful. However, the magnitudes of Arctic annual
mean aerosol radiative forcing estimates from model-based
studies (Breider et al., 2017; Feng et al., 2013; Markowicz
et al., 2021; Myhre et al., 2013; Schacht et al., 2019) range
from 0.05 to 0.64 W m—2. Thus, some of the larger trends in
monthly regional ADRF averages, such as those calculated
for the low Arctic in the boreal summer, are comparable in
magnitude to regional mean forcing estimates and therefore
may be impactful.

Changes in ADRF across the study period could result
from changes in aerosol amount (UVAI) or from changes in
the lower boundary condition (ice and cloud). First, to de-
termine the impacts of sea ice change on the ADRF trends,
we recalculated the daily ADRF estimates across the April—
September of 2005-2020 study period while keeping the
sea ice values unchanged from 2005. For example, in this
method, the 1 August 2016 daily ADRF value was calculated
using the OMI UVAI and MODIS COD data from 1 August
2016 but with the SSMIS SIC data from 1 August 2005. We
repeated this analysis while holding the ice values constant
from other years and compared the trends in Arctic-averaged
ADRF from the original calculations with those from the
calculations with sea ice held constant. Overall, the trends
calculated when holding the sea ice constant did not signifi-
cantly vary from the initial trend results, with the mean per-
cent difference over the 6 months being about 12 %. We con-
ducted a similar analysis to determine the impacts of clouds
on the trends in Arctic-averaged ADRF trends by recalculat-
ing the daily ADRF estimates across the study period while
holding the cloud optical depth values unchanged from indi-
vidual years. The trends calculated using the modified cloud
optical depth values exhibited deviated more from the origi-
nals than the trends calculated with modified sea ice values,
with a mean percent difference over the 6 months of about
65 %. However, the signs of the monthly average forcing val-
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ues and forcing trends remained largely the same, showing
that changes in UVAI were still the dominant factor causing
the changes in absorbing aerosol direct radiative forcing.

5 Conclusions

In this study, through the use of satellite data from MODIS,
CERES, SSMIS, and OMI, we developed an observation-
based estimation of aerosol direct radiative forcing (ADRF)
patterns and trends over the Arctic region for UV-absorbing
aerosols for the period of 2005-2020. To derive ADREF,
aerosol-free sky TOA upwelling SW flux values were derived
through a neural-network-based method. Error distributions
from various error sources were analyzed, and an innovative
Monte Carlo error estimation method was developed and im-
plemented for quantifying uncertainties in estimated ADRF
trends. This study found the following:

1. High R? values of above 0.9 were found between co-
located CERES SWF data and the aerosol-free SWF
values derived from a neural network-based method
with the use of level-2 OMI, MODIS, SSMIS, and
CERES data as input parameters. The mean squared er-
ror (MSE) and mean absolute error (MAE) of 16.9 and
2.86 W m™2, respectively, were found for the neural net-
work after training based on aerosol-free SWF values,
suggesting that the neural-network-based method may
be used for estimating aerosol-free SWF values for fu-
ture aerosol forcing studies using CERES data.

2. With the combined use of OMI data, CERES data, and
aerosol-free SWF values as estimated from the neural
network-based method for over 130 aerosol-containing
swaths over the Arctic, we quantified the instantaneous
ADRF of absorbing aerosols (primarily BB) over the
Arctic region as functions of solar zenith angle, sur-
face type, and cloud conditions. For primarily cloud-
free scenes (COD < 0.5) and with 20 %-wide SSMIS
SIC bins, a SIC of about 60 % represents the turning
point between SIC over which the scattering effects of
BB aerosols (“cooling” effect) dominate to SIC over
which the absorbing effects of BB aerosols (‘“warming”
effect) dominate, though the ADRF over mixed ice/o-
cean surfaces is still rather mild due to lack of albedo
contrast between the aerosol particles and the surface
beneath. We note that a similar threshold of 60 %—65 %
is still found when using a variety of other SIC bin sizes
and bin edges. Over primarily sea ice scenes and cloud-
free conditions, instantaneous ADRF values can be as
high as +80 W m~2 for heavy aerosol loading (Al per-
turbation > 6), and over open water or over dark land,
ADREF can be as low as —100 W m~2 for similar heavy
aerosol loading scenarios.

3. To reduce computational burden, LUTs of ADRF as a
function of observing conditions were constructed and

Atmos. Chem. Phys., 25, 11867-11894, 2025
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Table 4. Mean and standard deviation of the trends over the 600 region-averaged monthly forcing estimates, separated by month, for 2005—
2020, in units of W m—2 per study period. The uncertainty range denotes the standard deviation of the 600 trend estimates. Bolded trends are
statistically significant, with the mean of the p values associated with the 600 trends being below 0.05.

Arctic Low Arctic High Arctic

(65-90°N) (65-75°N) (75-90° N)

April —0.002 +0.002 0.002+£0.003 —0.00540.003
May 0.001 +0.001 0.004 £0.002 —0.001 +0.002
June —0.023+0.003 —0.053+0.005 —0.003+0.003
July —0.0314+0.004 —0.078 £0.008 0.008 £ 0.004
August —0.059+0.005 —0.185+0.009 0.046 £ 0.006
September —0.019£0.007 —0.033+0.005 —0.006+0.012

were used to study long-term trends in observation-
based ADRF at the OMI UVAI domain. The overall
error in estimated daily ADRF, quantified as a Gaus-
sian distribution, has a mean error of 0.8 W m~2 with a
standard deviation of 31.6 W m—2. An innovative Monte
Carlo method was introduced to estimate ADRF trends
and uncertainties based on the daily ADRF error distri-
bution, by introducing daily ADRF errors to the trend
estimates through a stochastic-based method. As sug-
gested from this study, strong negative ADRF trends as
large as —4 Wm™? per study period were found over
Russia and Alaska in the summer months, closer to the
source region for the BB aerosols, with weaker trends
over the Arctic Ocean. The trends over the Arctic Ocean
in the boreal summer are mixed in sign, with both nega-
tive and positive ADRF trends found locally across the
Arctic. The positive trends, which are generally closer
to the North Pole than the negative trends, are as high as
+1.0 W m~2 per study period in some regions.

4. When analyzing trends in regional averages of the
monthly ADRF estimates around the Arctic, the
strongest (and statistically significant) ADRF trends
were found in the low Arctic (65-75°N) in August at
—0.185 £ 0.009 W m~2 per study period. Trends in av-
eraged ADRF over the high Arctic (75-90° N) are much
smaller than in the low Arctic, also peaking in Au-
gust with a slightly positive and statistically insignifi-
cant trend of +0.046 & 0.006 W m~—2 per study period.

This study suggests that while overall all changes in ADRF
over the Arctic region are marginal and are only significant
over certain period (e.g., August for the low Arctic), changes
in regional ADRF can be significant and could contribute to
regional warming and cooling and possible change in sea ice
status, although ADRF over the Arctic region can be sig-
nificantly affected by the underlying complex surface con-
ditions. As the Arctic continues to warm, sea ice coverage
continues to decrease, and intrusions of large amounts of BB
smoke aerosol particles into the Arctic region become more
frequent, these results suggest that absorbing aerosols may
act to counter Arctic warming. This is still complicated, how-
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ever, by Arctic sea ice and changes in Arctic cloud status, be-
sides aerosol—cloud and aerosol-cryosphere interactions. In-
creases in Arctic cloud cover, especially in regions of sea ice
loss (Abe et al., 2016), could mask the dark, ice-free ocean
surfaces beneath the clouds and reduce the TOA cooling ef-
fect of lofted BB aerosol particles in the Arctic. However, the
optical depth of the clouds over ocean surfaces has a signifi-
cant impact on the TOA radiative forcing characteristics of a
BB aerosol plume, so estimating how future changes in cloud
status could affect future ADRF is very complicated. Addi-
tionally, BB smoke plumes reaching the high Arctic over sea
ice regions may lead to local warming effects. Further, this
study focused only on the direct radiative impacts of absorb-
ing aerosols, leaving out the impacts of scattering aerosols.
While scattering aerosols such as sea salt and sulfates have
radiative cooling effects, reductions in sulfate emissions have
led to decreases in sulfate aerosols. Thus, the cooling effects
of sulfate aerosols is projected to weaken in the future (Ren
et al., 2020; Schmale et al., 2022).

While we identified that the TOA radiative impacts of a
lofted plume of absorbing aerosol particles switch from cool-
ing (i.e., scene brightening) to warming (i.e., scene darken-
ing) above a critical SIC threshold of 60 %—65 %, this raises
several questions that are unanswered in this study. We do
not know precisely why 60 %—65 % represents the critical
threshold. Additionally, we do not know how other phenom-
ena, such as multiple scattering between the aerosol layer and
the ice surface, impact the TOA forcing characteristics. Stud-
ies to investigate such questions would require extensive ra-
diative transfer model simulations using varying SIC, atmo-
spheric temperature and moisture profiles, cloud properties,
and aerosol properties (with observations needed to quan-
tify the aerosol properties over the multiple surface types in
the Arctic), which would go beyond the scope of this study.
These are very interesting research questions that warrant
further study, but we leave them to future work.
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Appendix A

Table A1. The dates and visual description of the BB aerosol events from which L2 data were obtained and used in the study.

Date

Event description

24-27 July 2006

22 April 2008

11-12 August 2014

27 June 2015
6—10 June 2015

14-17 August 2017

3-5 July 2018
21 July 2018

14 August 2018
26 August 2018

10-11 August 2019

Large smoke plume from central Russia extending to the Arctic Ocean
Smoke from Alaska extending north over the Arctic Ocean

Smoke from NE Russia extending over Arctic Ocean and sea ice

Smoke over Alaska and the Beaufort Sea

Yellow smoke over sea ice in Arctic Ocean north of Alaska
Smoke from pyrocumulonimbus event in British Columbia extended into the central Arctic
Smoke from NE Russia crossing the Chukchi Sea and entering Alaska

Large amounts of dark smoke over the Arctic between NE Siberia and Alaska

Large smoke plume over Arctic Ocean (both ice and water) starting from central Siberia
Large smoke plume across northern Canada and Greenland
Smoke from NE Siberia lofted across the Arctic Ocean
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Table A2. The linear regression equations relating the UVAI and ADRF values binned by SSMIS surface type and MODIS COD from Fig. 8.

ADREF vs. UVAI regression equations
Obtained from ADRF and UVAI binned by SSMIS sea ice concentrations and MODIS COD

SSMIS surface type
Ocean (0 %—20 % ice)

SSMIS surface type
Mix (20 %—40 % ice)

SSMIS surface type
Mix (40 %—60 % ice)

MODISCOD 0-0.5 ADRF=-—11.4x UVAI —14.2 ADRF= —83 x UVAI —4.6 ADRF = —4.8 x UVAI — 3.3
0.5-2 ADRF=-74 x UVAI -74 ADRF = —3.6 x UVAI + 0.2 ADRF =0.8 x UVAI — 1.3
24  ADRF = —6.3 x UVAI — 3.0 ADRF = —-1.9 x UVAI + 1.4 ADRF =23 x UVAI — 1.1
4-8 ADRF = -2.6 x UVAI — 1.8 ADRF = —0.6 x UVAI + 1.3 ADRF =3.6 x UVAI — 2.6
8-12 ADRF =09 x UVAI — 1.3 ADRF = 3.8 x UVAI + 0.1 ADRF = 5.8 x UVAI — 1.6
12-20  ADRF =2.9 x UVAI — 1.9 ADRF = 5.8 x UVAI — 1.9 ADRF = 6.1 x UVAI — 3.0
20-30 ADRF =2.7 x UVAI — 0.6 ADRF = 3.0 x UVAI 4 3.1 ADRF =7.4 x UVAI — 0.9
30-50 ADRF =23 x UVAI + 2.3 ADRF =2.3 x UVAI + 3.1 ADRF =7.7 x UVAI + 1.2
SSMIS surface type SSMIS surface type SSMIS surface type
Mix (60 %—80 % ice) Ice (80 %—100 % ice) Land
MODIS COD  0-0.5 ADRF=2.1 x UVAI-5.2 ADRF = 7.8 x UVAI + 1.6 ADRF = —14.3 x UVAI - 54
0.5-2 ADRF =5.9 x UVAI — 5.0 ADRF = 8.2 x UVAI + 1.0 ADRF = —8.4 x UVAI — 5.8
2-4 ADRF =59 x UVAI — 4.0 ADRF = 8.5 x UVAI — 2.6 ADRF = —4.5 x UVAI — 6.8
4-8 ADRF =6.2 x UVAI — 3.1 ADRF = 8.5 x UVAI - 0.5 ADRF = —-2.2 x UVAI - 5.3
8-12 ADRF=6.2 x UVAI — 1.3 ADRF = 8.1 x UVAI + 1.5 ADRF = —1.0 x UVAI — 3.5
12-20  ADRF =7.1 x UVAI — 2.5 ADRF =9.1 x UVAI + 1.0 ADRF =23 x UVAI - 7.1
20-30 ADRF =6.1 x UVAI + 2.3 ADRF = 7.6 x UVAI + 2.7 ADRF =34 x UVAI — 6.4
30-50 ADRF=6.2 x UVAI + 3.9 ADRF = 7.3 x UVAI 4 3.3 ADRF = 5.3 x UVAI — 5.8
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Code and data availability. The L2 OMI data  were

retriecved from the NASA Goddard Earth Sciences
Data and Information Services Center (GES DISC)
(https://doi.org/10.5067/Aura/OMI/DATA2004, Torres, 2006),

and quality control methods to generate the cleaned, per-
turbed UVAI data were conducted following methods de-
scribed in Sorenson et al. (2023). Aqua CERES SSF Level-
2 FM4  data  (https://doi.org/10.5067/Aqua/CERES/SSF-
FM4_1.2.004A, NASA/LARC/SD/ASDC, 2014) were used
in this study, with subsets of the FM4 data obtained from
the Atmospheric Sciences Data Center at the NASA Langley
Research Center. The daily and monthly DMSP SSM/I-
SSMIS sea ice concentration version-2 data were retrieved
from the National Snow and Ice Data Center (NSIDC) on-
line archive at https://doi.org/10.5067/MPYGI15WAA4WX
(DiGirolamo et al.,, 2022). The Level-l1B (MYDO021KM;

https://doi.org/10.5067/MODIS/MYDO021KM.061, MODIS
Characterization Support Team (MCST), 2017), Level-2
MYDO06; https://doi.org/10.5067/MODIS/MYDO06_1.2.061,

Platnick et al, 2015a), and Level-3 daily (MYDO0S_D3;
https://doi.org/10.5067/MODIS/MYDO08_D3.061, Plat-
nick et al, 2015b) and monthly (MYDO08_M3;
https://doi.org/10.5067/MODIS/MYD08_M3.061, Platnick et
al., 2015¢) MODIS data were retrieved from the NASA Level-1
and Atmosphere Archive and Distribution System Distributed
Active Archive Center (LAADS DAAC) website.
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