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Text S1. Definition of pollution accumulation index (PAI) 

Boundary layer height (BLH) and wind speed (WS) are crucial meteorological fields for the 

occurrence of air pollutions, reflecting the atmospheric circulation conditions directly (Huang 

et al., 2017; Korshover and Angell, 2000; Su et al., 2018). Here, a pollution accumulation index 

(PAI) is defined using BLH (km) and WS (m s-1) to represent the atmospheric dispersion 

capacity. The formula is as follows:  

PAI=
1

BLH  × 
1

eWS 	
(4) 

where PAI is dimensionless. The higher (lower) the PAI is, the poorer (better) the ventilation 

is and the more (less) the pollutants accumulate. The data are freely from the ERA5 products 

by the European Centre for Medium-Range Weather Forecasts. A higher PAI generally 

indicates meteorology being more favorable for pollution accumulation.  

 

Text S2. Evaluation indices for simulation vs. observation 

Four statistical indices, including mean bias (MB), normalized mean bias (NMB), root mean 

square error (RMSE), and index of agreement (IOA), are used to evaluate the model 

performance on mass concentrations of surface pollutants (Feng et al., 2021; Willmott, 1981): 
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where Si and Oi are the simulated and observed variables, respectively. N is the total number of 

simulation variables, and 𝑂. denotes the average of observations. The IOA varies in the range 

from 0 to 1, and higher values suggest better agreement between the simulation and the 

observation.  
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Figure S1. Map showing the locations of the 141 monitoring stations for air quality (red dots) 

over the NCP. Data are from the CNEMC. The color shading represents the topography of this 

region, with water areas depicted in blue.  
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Figure S2. A re-presentation of the long-term tropospheric NO2 column time series shown in 

Figure 2a, but with (a) June and (b) October pulses highlighted using grey bars. The red bars 

show the fertilization events during sowing periods for maize and winter wheat in (a) June and 

(b) October, respectively.  
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Figure S3. Linkage between NO2 column over the NCP from 2005 to 2022 and PAI. Long-term 

(2005-2022) monthly NO2 column is generally connected to the PAI (r = 0.58, confidence level 

exceeding 99.9%) over the NCP, but there are noticeable discrepancies in the timings of the 

sub-peaks between them.  
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Figure S4. Spatial distribution of the minimum daily soil temperature of the top layer over the 

NCP during the period from 20 February to 31 March, 2020. Data are from the ERA5 reanalysis. 

The white areas show waters. 
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Figure S5. Other sub-peaks of NH3 column over the NCP from 2007 to 2022. (a and b) Satellite-

retrieved other pulses of NH3 column in June and October, respectively. Intersections of the 

gray bars and the green lines, and the short bars are similar to those in Figure S4. 
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Figure S6. Spatial distribution of O3 formation sensitivity to precursors indicated by the 

[H2O2]/[HNO3] ratio in March 2020 over the NCP. A ratio less than 0.3, great than 0.5, and 

between 0.3 and 0.5 indicates the O3 formation under VOC-sensitive, NOx-sensitive and 

transition regimes, respectively.  
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Figure S7. Temporal variations of annual anthropogenic NOx emission rate averaged over 

urban areas (red) and croplands (blue), respectively, in the NCP and the fraction of the emission 

over croplands in the total (black) during 2008-2017. The data are derived from the MEIC v1.3 

emission inventory.  
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