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Abstract. In this study, three photochemical mechanisms of varying complexity from the Statewide Air Pollu-
tion Research Center (SAPRC) family and two widely used anthropogenic emission inventories are employed to
quantify the discrepancies in the predicted effectiveness of nitrogen oxides (NOx) and volatile organic compound
(VOC) emission controls on ozone (O3), secondary inorganic aerosols (SIAs), and hydroxyl (OH) and nitrate
(NO3) radicals using the Community Multiscale Air Quality (CMAQ) model. For maximum daily average 8 h
O3 (O3-8 h), relative reductions predicted using different emission inventory and mechanism combinations are
consistent for up to 80 % NOx or VOC reductions, with maximum differences of approximately 15 %. For SIA,
while the predicted relative changes in their daily average concentrations due to NOx reductions are quite simi-
lar, very large differences of up to 30 % occur for VOC reductions. Sometimes even the direction of change (i.e.,
increase or decrease) is different. For the oxidants OH and NO3 radicals, the uncertainties in the relative changes
due to emission changes are even larger among different inventory–mechanism combinations, sometimes by as
much as 200 %. Our results suggest that while the O3-8 h responses to emission changes are not sensitive to the
choice of chemical mechanism and emission inventories, using a single model and mechanism to evaluate the
effectiveness of emission controls on SIA and atmospheric oxidation capacity may have large errors. For these
species, the evaluation of the control strategies may require an ensemble approach with multiple inventories and
mechanisms.
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1 Introduction

Tropospheric ozone (O3) pollution remains a major global
concern. O3 plays a critical role in atmospheric chemistry
and is an important target for air quality improvement (Lu
et al., 2018; Lyu et al., 2023; Real et al., 2024) because
high levels of surface O3 negatively affect human health,
agricultural crop yields, and plant growth (Du et al., 2024;
Feng et al., 2022; Ghude et al., 2016; Lu et al., 2020; West
et al., 2006). Surface O3 is mainly formed by the photo-
chemical reactions of NOx and volatile organic compounds
(VOCs) emitted from anthropogenic and biogenic sources
(Finlayson-Pitts and Pitts, 1999; Seinfeld and Pandis, 2016).
The development of effective O3 control strategies is ham-
pered by the considerable spatial and temporal variability of
surface O3 concentrations and their non-linear relationship
with emissions and meteorological conditions.

Three-dimensional chemical transport models (CTMs) are
a valuable tool for developing effective air pollution control
strategies. They can provide spatial and temporal informa-
tion on O3, particulate matter and toxic air pollutants by nu-
merically solving the mathematical equations describing the
emission, reaction, transport, and deposition of primary and
secondary atmospheric pollutants (Byun and Schere, 2006;
Russell, 1997). The impact of meteorology uncertainties on
air quality model predictions of O3 and particulate mat-
ter has been studied by Gilliam et al. (2015) and Wen et
al. (2025), respectively. Additionally, the veracity of mod-
eling outcomes is contingent upon the gas-phase chemical
mechanisms and emission inventories. Reliance on a single
chemical mechanism and emission inventory may result in
substantial uncertainty in modeled pollutant concentrations.
A common approach to reduce uncertainty in air quality
model predictions is to use an ensemble of simulations with
different emission inventories and chemical mechanisms (Hu
et al., 2017a).

The photochemical mechanism is one of the core com-
ponents of all CTMs. While the representation of inorganic
chemistry is generally similar across mechanisms, the rep-
resentation of atmospheric organic chemistry differs signif-
icantly in terms of the number of explicit model species,
the lumping schemes, and the radical chemistry, leading to
variations in the model predictions of O3, PM2.5, air tox-
ics, and some important radical species (Griffith et al., 2016;
Kim et al., 2009). Furthermore, the responses of the predic-
tions to changes in emissions may also differ depending on
the photochemical mechanism employed, which may impact
the assessment of emission control strategies. In practical
applications, it is of the utmost importance to strike a bal-
ance between mechanism complexity and computational ef-
ficiency. For long-term modeling studies of criteria pollutants
and the evaluation of numerous emission control strategies,
condensed mechanisms may prove to be the optimal choice.
More detailed mechanisms are appropriate for a broader
range of applications, such as investigations into specific re-

action products that are not explicitly represented in con-
densed mechanisms. However, they are more demanding on
computational resources.

In this context, several mechanism comparison studies
have been conducted. Differences in predicted O3 levels us-
ing various photochemical mechanisms have been reported
(Yu et al., 2010; Venecek et al., 2018). In addition to di-
rectly comparing the model predictions of O3 concentra-
tions, comparative analyses were also undertaken to examine
the similarities and differences between these mechanisms
in predicting O3 changes in response to changes in precur-
sor emissions. For example, Li et al. (2012) and Kang et
al. (2022) compared several mechanisms from the Statewide
Air Pollution Research Center (SAPRC) family, including
the standard versions of SAPRC-99, SAPRC-07, SAPRC-11,
and a highly condensed version of SAPRC-07. Their results
showed that, despite discrepancies in the predictions for O3,
key radicals such as OH and HO2, and oxidation products
such as HNO3, H2O2, NO2, PAN, and HCHO, the relative
changes in O3 due to changes in NOx and VOC emissions
were almost identical.

On the other hand, the accuracy of model predictions is
also significantly affected by uncertainties in anthropogenic
emission inventories (Hu et al., 2017a; Kang et al., 2022;
Placet et al., 2000), which primarily arise from uncertain-
ties and variability in activity levels (e.g., industrial produc-
tion or energy consumption) and emission factors (Akimoto
et al., 2006; Lei et al., 2011; Streets et al., 2003). For exam-
ple, when local speciation profiles are not available for the
generation of mechanism-specific VOC emissions from the
emission rate of non-methane hydrocarbons, average specia-
tion profiles from the SPECIATE database developed by the
US EPA were often adopted (Bray et al., 2019; Li et al., 2014;
Streets et al., 2003; Wu and Xie, 2017). However, the emis-
sion factors from the SPECIATE profiles are predominantly
representative of the characteristics of local emissions, as a
consequence of the disparities in emission standards and con-
trol technologies among diverse geographical regions (Sha
et al., 2021). This introduces uncertainties into the emissions
and the predicted pollutant concentrations.

To date, several emission inventories covering China have
been developed, such as the Multi-resolution Emission In-
ventory for China (MEIC), the Regional Emission inventory
in ASia (REAS), and the Emission Database for Global At-
mospheric Research (EDGAR). These inventories have been
successfully applied in chemical transport modeling to in-
vestigate the concentration and spatial distribution of O3 and
other pollutants (Hu et al., 2017b; Kang et al., 2021; Li et
al., 2019, 2018; Saikawa et al., 2017; Xue et al., 2020; Ya-
maji et al., 2008). Hu et al. (2017a) reported inconsisten-
cies in emission inventories in predicting O3 and PM2.5 us-
ing the Weather Research and Forecasting/Community Mul-
tiscale Air Quality (WRF/CMAQ) model system. Ma and
van Aardenne (2004) identified variations in NOx and VOC
emissions among different inventories as the main factors in-
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fluencing modeled O3 concentrations. Our previous study,
which employed the condensed SAPRC-07 mechanism and
two anthropogenic emission inventories (MEIC and REAS),
also observed relatively larger differences in O3 predictions
between inventories in megacities of Beijing and Shang-
hai, especially on days with elevated O3 levels (Kang et al.,
2022).

While several studies have explored the differences in
model predictions due to varying chemical mechanisms or
emission inventories, a comprehensive analysis of the influ-
ence of diverse combinations of these two factors on the sen-
sitivity of O3 and other air pollutants to emission changes in
China has yet to be undertaken. In this study, our motivation
is to address this gap by applying the CMAQ model, inte-
grated with three photochemical mechanisms and two widely
used emission inventories, to quantify the effects of differ-
ent combinations of mechanisms and inventories on the pre-
dictions of maximum daily average 8 h ozone (O3-8 h) and
other secondary pollutants in different regions of China. In
addition, the impacts on atmospheric oxidation capacity and
key gaseous pollutants are investigated. To gain insight into
the variations in pollutant sensitivity, a series of incremental
emission reduction scenarios were used, thereby enabling the
quantification of the influence of different mechanism and
inventory combinations on the response of O3 and related
pollutants. The findings of this study can assist policymakers
in the development of more effective and adaptive pollution
control strategies.

2 Materials and methods

2.1 The CS07, SAPRC-11, and SAPRC-18
mechanisms

The SAPRC mechanism is a widely used photochemical
mechanism that represents complex atmospheric reactions
in computationally tractable forms. Instead of tracking the
oxidation of individual precursor organic compounds and
their reaction products explicitly, the SAPRC is a lumped-
molecule chemical mechanism that groups structurally simi-
lar VOC species (e.g., alkanes, akenes, and aromatics) into
several groups of lumped model species. Some important
species, such as isoprene and formaldehyde, are represented
explicitly. The reactions of each lumped model species with
common oxidants (OH, NO3, and O3) are derived based on
the reactions of individual species within that group, which
are generated automatically using a mechanism generator
(Carter et al., 2025). One of the complexities in represent-
ing VOC reactions is the intermediate oxidation products and
radical species. In the SAPRC mechanism, the radicals such
as peroxyl radicals and intermediate products such as organic
nitrates are represented by a group of common species to
reduce the number of reactions and model species. A brief
comparison of the three SAPRC mechanisms is summarized
in Table S1 in the Supplement.

Three different chemical mechanisms from the SAPRC
mechanism family were used in this study, i.e., the condensed
SAPRC-07 (CS07) (Carter, 2010), the standard SAPRC-11
(S11) (Carter and Heo, 2013), and the standard SAPRC-18
(S18) (Carter, 2020). These mechanisms were selected to
represent different levels of detail in gas-phase reactions in
a regional chemical transport model. The CS07 was derived
from the widely used SAPRC-07 mechanism and has a high
condensation level similar to that of the carbon bond mecha-
nism, which is also widely used. The S11 is an updated ver-
sion of the SAPRC-07 mechanism, with significant revisions
made to the aromatic chemistry. The S11 mechanism em-
ployed in this study is identical to that utilized in our previous
study (Kang et al., 2021). For a detailed description of CS07
and S11 regarding O3 source apportionment and emission
sensitivity, please refer to Kang et al. (2022). The S18 mech-
anism represents a complete update of the SAPRC mecha-
nism since SAPRC-07. S18 incorporates a greater number of
model species, a more explicit representation of peroxyl rad-
ical chemistry, and a lumping scheme that is more suitable
for predicting secondary organic aerosol (SOA) formation.
Due to these modifications, S18 is more extensive than S11 in
terms of both the number of species and chemical reactions.
Although it has been successfully applied in photochemical
box models (Jiang et al., 2020; Li et al., 2022a, b), it has not
yet been implemented in 3D regional CTMs.

2.2 Anthropogenic emission inventories

The present study compares two widely used anthropogenic
emission inventories, MEIC (http://www.meicmodel.org, last
access: 16 September 2025) and REAS 3.1 (https://www.
nies.go.jp/REAS/, last access: 16 September 2025), to inves-
tigate O3 pollution in China. The emission data from these in-
ventories were processed using an in-house emission proces-
sor. Detailed VOC speciation profiles selected from the US
EPA-developed SPECIATE database were processed using
the speciation profile processor from Carter (2015) to gener-
ate profiles for the CS07, SAPRC-11, and SAPRC-18 mech-
anisms, which are used to estimate emissions of CMAQ-
ready VOCs. The MEIC emission inventory includes only
emission estimates in China, whereas the REAS emission in-
ventory has complete spatial coverage for Asian countries.
In the MEIC simulation, emissions from other countries are
supplemented using data from the REAS inventory.

2.3 Model application

The CS07, S11, and S18 mechanisms were incorporated into
the CMAQ model (version 5.0.2) to evaluate the differences
of mechanisms and inventories in predicting O3-8 h, OH
and NO3 radicals, secondary inorganic aerosols, and reac-
tive VOC species (HCHO) in July 2017 in China. July is
widely used in modeling studies to represent conditions of
a typical summer month (Kang et al., 2021). The model do-
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main, which covers China and surrounding areas in eastern
and southeastern Asia at a 36 km× 36 km horizontal resolu-
tion, along with the locations of cities mentioned in the arti-
cle, is illustrated in Fig. S1 in the Supplement.

The simulations included model runs with the following
combinations: S11 mechanism with MEIC inventory (S11–
MEIC), S11 with REAS (S11–REAS), CS07 with MEIC
(CS07–MEIC), CS07 with REAS (CS07–REAS), and S18
with REAS (S18–REAS). The MEIC only has five emission
sectors, making it difficult to re-speciate the emissions for
the S18 mechanism. Specifically, solvent utilization emis-
sions are not represented in the public version of MEIC as a
separate sector (Wang et al., 2018). Since solvent utilization
accounts for a significant fraction of VOC emissions in ur-
ban areas and has very different emission characteristics than
fuel combustion sources, re-speciating the five-sector MEIC
VOC emissions will be inaccurate. It should be noted that
while the MEIC emission inventory is for 2017, the most re-
cent year in the REAS inventory is 2015, which is the one
used in the current study.

The July anthropogenic emission inventories from MEIC
and REAS were processed using an in-house emission pro-
cessor, with updated speciation profiles employed to gen-
erate CMAQ-ready VOC emissions (Kang et al., 2022).
The speciation profiles for different chemical mechanisms
were derived from the same detailed speciation profiles
extracted from the SPECIATE database. Comprehensive
overviews of MEIC and REAS inventories were provided by
Kang et al. (2022). Comparisons of major species, includ-
ing NOx (NO+NO2), SO2, ethene (ETHENE), formalde-
hyde (HCHO), higher olefins (OLE) (comprising OLE1 and
OLE2, which are lumped alkene species with propylene
and trans-2-pentene as representative compounds), isoprene
(ISOPRENE), and monoterpenes (TRP1), are shown in Ta-
bles S2–S3 and Figs. S2–S3 for municipalities and provinces
in July 2017. Note that OLE and TRP1 emissions are from
the S11 mechanisms. Emissions for CS07 are similar, but
some of the species in OLE and TRP1 are explicit species
in S18. There are notable spatial differences in the week-
day emissions of HCHO, ETHENE, OLE, SO2, and NOx be-
tween MEIC and REAS. Specifically, REAS exhibits higher
HCHO emissions in locations like Beijing, Tianjin, Henan,
Shanghai, and Guangzhou than MEIC (Fig. S2). In the
south of Henan, ethene emissions are significantly higher in
REAS relative to MEIC. The emissions of OLE in REAS
are lower than those in MEIC in Beijing, Tianjin, Shang-
hai, Guangzhou, Chengdu, and Chongqing. SO2 emissions
in MEIC are generally lower than those in REAS, except for
Shanghai and Guangzhou. NOx emissions differ significantly
between MEIC and REAS. In eastern China, including cities
like Shanghai and Guangzhou, NOx emissions from REAS
are typically lower than those from MEIC, although some ar-
eas demonstrate a notable increase. These discrepancies in-
evitably affect the accuracy of air pollutant predictions, un-
derscoring the necessity for a comprehensive assessment of

emission inventories in the development of effective pollu-
tion control policies.

Biogenic emissions were generated using the Model of
Emissions of Gases and Aerosols from Nature (MEGAN)
version 2.10, which has been observed to emit higher lev-
els of isoprene and monoterpenes in comparison to anthro-
pogenic sources (Fig. S3). Open burning emissions were pro-
duced using the FINN inventory from the National Center for
Atmospheric Research (NCAR) (Wiedinmyer et al., 2011).
Sea salt and windblown dust emissions were simulated on-
line using the CMAQ model. Initial and boundary condi-
tions for the model simulation were generated using CMAQ
default profiles. The initial 3 d of the simulation serve as a
spinup and are excluded from subsequent analyses.

Meteorological inputs were generated using the Weather
Research and Forecasting (WRF) model version 4.2 for
the 36× 36 km domain with 44 vertical layers. The initial
and boundary conditions for WRF were derived from the
FNL global reanalysis data (available at https://rda.ucar.edu/
datasets/ds083.2/, last access: 16 September 2025). Further
details on the configuration of WRF model can be found in
the work of Kang et al. (2022). WRF-derived meteorological
parameters, including temperature and relative humidity at a
height of 2 m above the surface and wind speed and direction
at 10 m, have been validated against observational data from
the National Climatic Data Center (NCDC), demonstrating
good performance (Kang et al., 2021).

2.4 Sensitivity of O3 and related pollutants to emission
controls across different mechanisms and
inventories

A large number of sensitivity simulations with systematic re-
ductions in NOx and VOC emissions were conducted to ex-
plore variations in the sensitivity of O3-8 h and related pol-
lutants to emission reductions across different mechanisms
and inventories. Three sets of simulations were performed for
each mechanism/inventory combination considered in this
study (see Sect. 2.3). In the first set of simulations, NOx

emissions were reduced by 20 %, 40 %, 50 %, 60 %, and
80 %, while the emissions of VOCs were maintained at their
base-case level. In the second set of simulations, VOC emis-
sions were reduced by 20 %, 40 %, 50 %, 60 %, and 80 %,
while NOx emissions remained constant. In the third set of
simulations, both NOx and VOC emissions were reduced by
20 %, 40 %, 50 %, 60 %, and 80 %.

3 Results and discussion

3.1 Model evaluation of O3 and PM2.5 predictions
across various mechanisms and inventories

Observations of O3-8 h and PM2.5 at a large number of
surface monitoring stations nationwide in July 2017 were
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obtained from the publication website of the China Na-
tional Environmental Monitoring Center (http://www.cnemc.
cn, last access: 16 September 2025). The model performance
statistics were evaluated separately for different regions: the
North China Plain (NCP), Yangtze River Delta (YRD), Cen-
tral China (Center), Pearl River Delta (PRD), and Sichuan
Basin (SCB). Specifically, NCP includes Beijing, Tianjin,
and some cities in Hebei and Shandong provinces; Center
includes cities in the provinces of Henan, Hubei, Hunan,
and Jiangxi; YRD includes Shanghai and some cities in the
provinces of Anhui, Jiangsu, and Zhejiang; PRD includes
Shenzhen and some cities in Guangdong province; and SCB
includes Chongqing and some cities in Sichuan province. As
shown in Figs. S4–S5, the model performance for O3-8 h
and PM2.5 predicted by different mechanisms and emission
inventories in major regions of China exhibits large varia-
tions, due to differences in climate, topography, and emission
sources. Overall, the average values of mean normalized bias
(MNB) and mean normalized error (MNE) for O3-8 h pre-
dictions across all combinations of mechanisms and inven-
tories are generally within the recommended model perfor-
mance criteria (MNB≤± 0.15 and MNE≤ 0.3) (Emery et
al., 2017) in most regions. Similarly, the model shows good
performance for PM2.5 in most areas, except for the PRD
region, where the mean fractional biases (MFB) for PM2.5
using S18–REAS, CS07–REAS, and S11–REAS are slightly
outside the recommended range (Boylan and Russell, 2006).
The underestimation of PM2.5 predictions using REAS in the
PRD, as shown in Fig. S5, is likely related to biases in this
inventory specific to this region.

3.2 Spatial variations in predictions of O3 and related
pollutants by different mechanisms and inventories

Figure 1 shows the spatial distribution of monthly averaged
O3-8 h concentrations predicted by S11–MEIC in July, along
with the absolute differences between O3-8 h predictions
from S11–MEIC and those from other mechanisms and in-
ventories. Based on S11–MEIC, high O3-8 h levels exceed-
ing 80 ppb occurred in eastern China, especially in Beijing,
Tianjin, Hebei, northern Henan, SCB, and Shanghai. Ex-
tremely high O3-8 h levels above 100 ppb are also observed
over the Bohai Bay and the Yellow Sea, likely due to re-
gional transport of polluted air from the continent, reduced
NOx titration with O3, and lower O3 dry deposition veloc-
ities over the ocean (Luhar et al., 2017; Silva and Heald,
2018). Similar spatial distributions of O3-8 h concentrations
are also found in the simulations using other mechanisms and
inventories (Fig. S6). In comparison, O3-8 h concentrations
predicted by S11–REAS are generally 2–7 ppb higher than
those by S11–MEIC in most parts of China, especially in the
central region, Zhejiang, and Fujian provinces, but about 2–
7 ppb lower in Beijing, Shanghai, Chengdu, and the PRD re-
gion. S18–REAS predicted significantly lower O3-8 h levels,
with reductions greater than 7 ppb in regions such as Beijing,

Figure 1. Predicted monthly averages of MDA8 O3 (O3-8 h) con-
centrations in July 2017 using (a) the S11 mechanism and MEIC
emission inventory (base case) and the differences between the base
case and cases using alternative photochemical mechanisms and
emission inventories (alternative case – base case): (b) S11 and
REAS, (c) S18 and REAS, (d) CS07 and MEIC, and (e) CS07 and
REAS inventories. Units are ppb.

Tianjin, Hebei, Shanghai, SCB, PRD, and other developed
areas such as Zhengzhou and Hefei.

In contrast, CS07–MEIC predicted lower O3-8 h levels
overall, with apparent reductions of ∼ 6–7 ppb in the SCB,
central China, and coastal areas near Shanghai. Similarly,
CS07–REAS also showed generally lower O3-8 h concentra-
tions compared to S11–MEIC, particularly in Chengdu, Lu-
oyang, Shanghai, Guangzhou, Ningbo, Hefei, Nanchang, and
the Yellow Sea (∼ 7 ppb lower or more), although some lo-
cations exhibit higher O3-8 h levels than those predicted by
S11–MEIC. These discrepancies highlight that the accuracy
of O3 predictions is sensitive to variations in photochemi-
cal mechanisms and emission inventories. This underscores
the importance of adopting and comparing multiple mecha-
nisms and inventories when developing region-specific pol-
lution control policies.

The difference in Fig. 1c for other countries is mainly due
to the difference between S11 and S18. Predicted O3 concen-
trations by S18 are lower than those by S11, especially in ur-
ban areas (e.g., in Ulaanbaatar in Mongolia). This is consis-
tent with the box-model simulation results reported by Carter
(2020). In Fig. 1a, the difference of the monthly O3 in other
countries is negligible when the same chemical mechanism
is used, which further confirms our conclusion.

In Fig. 1b, O3 concentrations from S11–REAS are sig-
nificantly lower than those from S11–MEIC over the Yel-
low Sea. This is because the O3 formation sensitivity regime
over the Yellow Sea is likely NOx-limited as the VOC-
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sensitive urban plume is advected to the marine environ-
ment (Vermeuel et al., 2019). Furthermore, satellite-observed
HCHO/NOx columns over the Yellow Sea are greater than 6,
clearly indicating a NOx-limited regime (Kang et al., 2021).
Since the NOx emissions in the upwind regions in the REAS
inventory are significantly lower than these in the MEIC in-
ventory, this leads to reduced O3 formation in the S11–REAS
results compared to the S11–MEIC results.

Figure 2 illustrates the differences in spatial distribu-
tion of monthly averaged secondary inorganic aerosol (SIA)
concentrations modeled with different mechanisms and in-
ventories. According to S11–MEIC, high SIA concentra-
tions are mainly concentrated in NCP and SCB, exceeding
15 µg m−3. High SIA concentrations are also found in Bohai
Bay, likely due to long-range transport of polluted air from
land sources. Compared to S11–MEIC, S11–REAS predicts
higher SIA concentrations (> 1 µg m−3) in most areas, espe-
cially in NCP, Henan, and SCB (higher by about 6 µg m−3

or even more). Nationwide, SIA concentrations predicted
by S18–REAS are generally higher than those predicted by
S11–MEIC, with increases of up to 6 µg m−3 or more in
the NCP, Central China, SCB, Bohai Bay, and the Yellow
Sea. CS07–MEIC shows similar SIA levels to S11–MEIC,
with slightly lower concentrations of∼ 1 µg m−3 in SCB and
Bohai Bay. The spatial differences in SIA predictions be-
tween CS07–REAS and S11–MEIC are similar to those be-
tween S11–REAS and S11–MEIC, suggesting that SIA con-
centrations from CS07–REAS and S11–REAS are compara-
ble.

3.3 Impacts of mechanisms and inventories on
predicted atmospheric oxidation capacity

Atmospheric oxidation capacity (AOC), which governs the
removal rate of primary pollutants and the production of sec-
ondary pollutants (Elshorbany et al., 2009; Prinn, 2003), is
primarily controlled by the hydroxyl (OH) and nitrate (NO3)
radicals in the atmosphere (Geyer et al., 2001; Liu et al.,
2022). The spatial differences in OH and NO3 predictions
for different mechanisms and inventories are illustrated in
Figs. 3–4.

S11–MEIC predicts high OH concentrations exceeding
3.7× 106 molec. cm−3 (0.15 ppt) mainly in northern China,
including NCP, Inner Mongolia, and some western sites.
Compared to S11–MEIC, S11–REAS predicts lower OH
concentrations in NCP, Jiangsu, Shanghai, PRD, SCB, and
other urban nuclei but higher concentrations in rural areas. In
contrast, S18–REAS predicts higher OH concentrations than
S11–MEIC in most regions, except in some northern loca-
tions. CS07–MEIC produces elevated OH concentrations in
northwestern China, Chengdu, Chongqing, Shanghai, Hebei,
Shandong, and northern Henan but lower OH levels in other
regions. Similar to S11–REAS, CS07–REAS shows much
higher OH levels in northwestern China but lower OH lev-
els in eastern regions than S11–MEIC. The variability in OH

Figure 2. Predicted monthly averages of secondary inorganic
aerosol (the sum of nitrate, sulfate, and ammonium ion, SIA) con-
centrations in July 2017 using (a) the S11 mechanism and MEIC
emission inventory (base case) and the differences between base
case and cases using other photochemical mechanisms and emis-
sion inventories (alternative case – base case): (b) S11 and REAS,
(c) S18 and REAS, (d) CS07 and MEIC, and (e) CS07 and REAS.
Units are µg m−3.

Figure 3. Predicted monthly averages of OH radical concentrations
in July 2017 using (a) the S11 mechanism and MEIC emission in-
ventory (base case) and the differences between the base case and
cases using other photochemical mechanisms and emission inven-
tories (alternative case – base case): (b) S11 and REAS, (c) S18 and
REAS, (d) CS07 and MEIC, and (e) CS07 and REAS. Units are ppt
(0.1 ppt∼ 2.46× 106 molec. cm−3).
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levels can significantly affect the formation of O3 and other
gaseous and particulate pollutants.

The spatial distribution of NO3 concentrations modeled by
S11–MEIC exhibits high values in Xinjiang, Inner Mongolia,
NCP, and Bohai Bay, with NO3 concentrations reaching up
to 20 ppt. Obvious differences in NO3 predictions between
S11–REAS and S11–MEIC are primarily observed in Xin-
jiang and Inner Mongolia, with smaller differences in other
regions. S18–REAS generally predicted higher NO3 concen-
trations than S11–MEIC, especially in Xinjiang, Inner Mon-
golia, Bohai Bay, Yellow Sea, and Taiwan Strait, by ∼ 6 ppt
or more. In contrast, CS07–MEIC consistently predicts lower
NO3 levels than S11–MEIC. CS07–REAS predicted lower
NO3 concentrations in the eastern regions but higher con-
centrations in parts of Xinjiang compared to S11–MEIC.

3.4 Impacts of mechanisms and inventories on HCHO
prediction

Spatial variations in AOC, as reflected in OH and NO3 pre-
dictions from different mechanisms and inventories, imply
that photochemical formation and loss rates for air toxics
may also vary depending on the mechanism and inventory
used. To explore how these variations affect the modeling
results for gaseous pollutants, we examined HCHO, one of
the most important gaseous air toxics with both primary and
secondary sources. It is also a significant contributor to O3
formation and OH production, thus playing a crucial role in
tropospheric photochemistry (Wang et al., 2017; Zhang et al.,
2013).

Monthly average surface HCHO concentrations from
S11–MEIC are similar to the surface observations made in
China (Zhang et al., 2021). HCHO concentrations are gen-
erally high in the SCB and eastern China, areas with signif-
icant biogenic VOC emissions (Kang et al., 2023a), partic-
ularly in Chengdu, Shanghai, and Changsha, where HCHO
concentrations reach or exceed 7 ppb (Fig. 5). This suggests
that a significant fraction of the HCHO is due to secondary
formation. HCHO levels predicted by S11–REAS are sim-
ilar to those predicted by S11–MEIC, with only minor dif-
ferences of less than 1 ppb. In contrast, S18–REAS predicts
significantly lower HCHO levels than S11–MEIC, with dif-
ferences > 1 ppb, especially in SCB, NCP, PRD, YRD, and
central China. CS07–MEIC and CS07–REAS predict higher
HCHO levels than S11–MEIC, especially in SCB and eastern
China, with differences exceeding 1 ppb. These results indi-
cate that HCHO predictions are more strongly influenced by
photochemical mechanisms than by uncertainties in emission
inventories, due to its secondary formation.

Figure 4. Predicted monthly averages of NO3 radical concentra-
tions in July 2017 using (a) the S11 mechanism and MEIC emission
inventory (base case) and the differences between the base case and
cases using alternative photochemical mechanisms and emission in-
ventories (alternative case – base case): (b) S11 and REAS, (c) S18
and REAS, (d) CS07 and MEIC, and (e) CS07 and REAS. Units are
in ppt (0.1 ppt∼ 2.46× 106 molec. cm−3).

Figure 5. Predicted monthly averages of HCHO concentrations in
July 2017 using (a) the S11 mechanism and MEIC emission inven-
tory (base case) and the differences between the base case and cases
using alternative photochemical mechanisms and emission invento-
ries (alternative case – base case): (b) S11 and REAS, (c) S18 and
REAS, (d) CS07 and MEIC, and (e) CS07 and REAS. Units are
ppb.

https://doi.org/10.5194/acp-25-11453-2025 Atmos. Chem. Phys., 25, 11453–11467, 2025



11460 M. Kang et al.: Uncertainties in assessing emission control effectiveness

3.5 Impacts of mechanisms and inventories on the
sensitivity of O3 and related pollutants to emission
controls

Figures 6–10 and S6–S15 display the fractional changes in
predictions of O3 and related pollutants due to NOx and VOC
reductions using various mechanisms and inventories.

3.5.1 Impacts of mechanisms and inventories on O3
sensitivity to emission controls

For all mechanisms and inventories, O3-8 h concentrations
consistently decrease with reductions in NOx , VOCs, or both
in all five cities in July. The efficiency of emission controls
improves with increasingly higher emission reductions of
NOx and VOCs. These trends are consistent with the find-
ings of Kang et al. (2021), suggesting that the mechanisms
and inventories do not affect the trend of change in O3 but
do affect the magnitude of the change. These results also
show that in July, the sensitivity of O3 formation to NOx

and VOCs is in transition or NOx-limited regimes. In Bei-
jing, when NOx emissions are reduced, CS07–MEIC and
CS07–REAS show the largest O3-8 h reductions compared
to other mechanisms and inventories, while S18–REAS ex-
hibits the smallest changes, especially with larger NOx re-
ductions. In Shanghai, the largest O3-8 h reductions due
to NOx controls are observed with CS07–REAS, followed
by S11–REAS, while S18–REAS again shows the smallest
changes. In Changsha, there are no significant differences
among mechanisms and inventories in the sensitivity tests. In
Shenzhen, S11–REAS shows the greatest decreases in O3-
8 h, followed by CS07–REAS and S18–REAS, while S11–
MEIC and CS07–MEIC show the smallest changes. Except
for S18–REAS, predictions from other mechanisms and in-
ventories are similar in Chongqing.

When only VOC emissions are reduced in Beijing, S11–
MEIC predicts the largest O3-8 h reductions, while CS07–
REAS predicts the smallest changes. Similar patterns are
found in Shanghai and Changsha, with larger differences
among different mechanisms and inventories in Shanghai.
In Shenzhen, S11–MEIC also exhibits the largest O3-8 h
decreases, followed by CS07–MEIC, while CS07–REAS,
S11–REAS, and S18–REAS show smaller changes. In
Chongqing, S18–REAS predicts the largest changes and
CS07–MEIC the smallest, although the differences among
these scenarios are not substantial. When both NOx and VOC
emissions are reduced, the predicted change rates of O3-8 h
do not vary much across different mechanisms and emis-
sion inventories for all five cities. Additionally, the sensitivity
tests for Shenzhen, as presented in Fig. 6, suggest that dif-
ferences in emission inventories may have a greater impact
on emission control outcomes than differences in chemical
mechanisms. O3 in Shenzhen is lower than other cities in-
cluded in Fig. 6, and most of the O3 there is background O3

on typical days (Kang et al., 2023b). Thus, it is less respon-
sive to emission reductions than other cities.

Figure S6 illustrates the national-scale relative changes in
O3-8 h due to NOx emission reductions evaluated using dif-
ferent mechanisms and inventories. The results are consistent
with those shown in Fig. 6, with the greatest O3-8 h reduc-
tions occurring in the SCB, Central, and YRD. For all mech-
anisms and inventories, increasingly higher NOx reductions
generally lead to increasingly lower O3 in July, with relative
changes in O3-8 h ranging from approximately 5 % to 60 %
as NOx reductions increase from 20 % to 80 %. In compari-
son, the O3-8 h reductions predicted by S18–REAS are less
pronounced than other mechanisms and inventories in most
areas. Similar to NOx reductions, higher VOC reductions
typically result in larger O3 reductions in July, with signif-
icant reductions observed in NCP, Chengdu, PRD, Shanghai,
and Bohai Bay. The relative changes in O3-8 h increase from
5 % to 40 % as VOC reductions increase from 20 % to 80 %
in these areas (Fig. S7). The comparison between Figs. S6
and S7 suggests that NOx reduction tends to be more effec-
tive in controlling O3 pollution in non-VOC-limited regions
than VOC reduction, given the same level of emission reduc-
tion.

3.5.2 Impacts of mechanisms and inventories on SIA
sensitivity to emission controls

Reducing NOx emissions typically leads to decreasing SIA
levels across the five cities, with the efficiency of reduc-
tions improving as NOx reduction increases. As illustrated
in Fig. 7, the predicted changes in SIA are quite similar for
different mechanisms and inventories. However, VOC con-
trols do not always effectively reduce SIA concentrations,
likely attributable to an increase in NO3 radicals, as shown in
Fig. 9. In Beijing, changes in SIA in response to VOC reduc-
tions vary with mechanisms and inventories. For S11–MEIC
and CS07–MEIC, SIA concentration first increases and then
decreases with decreasing VOCs. S18–REAS shows a gen-
eral decrease in SIA concentrations with decreasing VOCs.
In contrast, CS07–REAS and S11–REAS predict an increase
in SIA concentrations with VOC reductions, with the rate
of SIA growth initially increasing and then decreasing as
VOC emission decreases. In Shanghai, VOC reductions gen-
erally increase SIA concentrations across all mechanisms
and inventories, especially for CS07–REAS and S11–REAS,
which show that SIA concentrations consistently increase as
VOCs are progressively reduced. In Changsha, SIA concen-
trations also consistently increase with increasing VOC re-
ductions for all mechanisms and inventories. In Shenzhen,
SIA concentrations increase with VOC reductions; however,
the changes are more pronounced for S11–REAS compared
to the less significant variations observed for CS07–MEIC.
Except for S18–REAS, Chongqing shows an increase in SIA
concentrations with VOC reductions, particularly for CS07–
REAS. Overall, simultaneous reductions in NOx and VOCs
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Figure 6. Predicted changes of monthly average MDA8 O3 (O3-8 h) concentrations in July 2017 due to reductions of NOx only (first row),
VOCs only (second row), and NOx and VOCs (third row) using different photochemical mechanisms and emission inventories. The black
line represents the average change across all mechanisms and inventories at different levels of emission reductions.

decrease SIA levels in most cities, similar to the effects of
NOx controls alone.

Figure S8 shows the relative changes in SIA due to NOx

controls on a national scale, using different mechanisms and
inventories. The stepwise reductions in NOx emissions lead
to an overall decrease in SIA concentrations, with the most
pronounced reductions observed in the NCP, SCB, Jiangsu,
Bohai Bay, and Yellow Sea. The decreases in SIA increase
from ∼ 5 % to 60 % as NOx reduction increases from 20 %
to 80 %. On the contrary, VOC reduction causes an over-
all increase in SIA concentrations (Fig. S9), indicating that
VOC controls are less effective than NOx controls in reduc-
ing SIA levels in July. Notably, the largest increases in SIA
are seen in SCB, Central, and YRD, where SIA increases
grow from ∼ 6 % to 30 % as VOC reduction increases from
20 % to 80 %. In comparison, S18–REAS shows relatively
smaller changes in SIA, with some areas in NCP showing
obvious decreases in SIA concentrations.

3.5.3 Impacts of mechanisms and inventories on OH
and NO3 sensitivity

As shown in Fig. 8, the effects of NOx reductions on OH
concentrations vary depending on the mechanism and inven-
tory used. In most regions, OH production decreases with
reducing NOx emissions, likely due to the decrease in O3
concentrations, as O3 photolysis in the presence of water
vapor is a significant source of atmospheric OH (Seinfeld
and Pandis, 2016). Except for Shenzhen, CS07–MEIC and

CS07–REAS predict the largest decreases in OH due to NOx

control in other cities, while S18–REAS predicts the small-
est OH change rates. In Shenzhen, OH levels predicted by
S11–MEIC and CS07–MEIC initially increase and then de-
crease as NOx emissions decrease, while those predicted by
S18–REAS, CS07–REAS, and S11–REAS exhibit a consis-
tent decrease in OH levels. When only VOCs are reduced,
the changes in OH vary across different mechanisms and
inventories. In Beijing, except for S18–REAS, OH concen-
tration initially increases and then decreases with decreas-
ing VOC emissions. In Shanghai, OH concentrations from
CS07–REAS and S11–REAS basically increase with de-
creasing VOCs, while those from CS07–MEIC and S11–
MEIC show an initial increase followed by a decrease. S18–
REAS predicts a general decrease of OH with decreasing
VOCs in Beijing and Shanghai. In Changsha, OH concen-
trations consistently increase with reduced VOCs across all
mechanisms and inventories, with CS07–REAS showing a
rapid increase of up to 75 %. In Shenzhen, OH levels from
CS07–REAS, S11–REAS, and S18–REAS increase with de-
creasing VOCs, while those from S11–MEIC and CS07–
MEIC decrease. In Chongqing, all mechanisms and inven-
tories except S18–REAS predict an increase in OH concen-
trations with decreasing VOCs, with CS07–MEIC showing
a significant increase of up to 75 %. When both NOx and
VOC emissions are reduced, OH concentrations generally in-
crease for all mechanisms and inventories, although the rela-
tive changes are relatively small (< 25 %).
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Figure 7. Predicted changes of monthly average secondary inorganic aerosol (nitrate, sulfate, and ammonium, SIA) concentrations in July
2017 due to reductions of NOx only (first row), VOCs only (second row), and NOx and VOCs (third row) using different photochemical
mechanisms and emission inventories. The black line represents the average change across all mechanisms and inventories at different levels
of emission reductions.

Figures S10–S11 display the spatial distribution of OH
changes due to incremental emission controls across differ-
ent mechanisms and inventories. There is a nationwide de-
crease in OH concentrations due to NOx reductions, with
more pronounced decreases in central and eastern China,
where OH levels drop by ∼ 20 % to 80 % as NOx reduc-
tion increases from 20 % to 80 %. Instead, VOC reductions
generally lead to increased OH concentrations across most
of China, significantly in some regions with large vegetation
cover (Kang et al., 2023a), such as central and southeastern
China. In these areas, OH levels increase by 20 %–200 % in
response to stepwise VOC reductions. This increase occurs
because high atmospheric VOC concentrations in rural and
vegetation-rich areas react with OH radicals to produce RO2
and HO2, depleting OH; thus reducing VOCs in these areas
increases OH levels. However, in some urban centers, such
as Beijing and Shanghai, changes in OH levels due to VOC
controls depend on the extent of reduction and the choice of
mechanism and inventory.

Similar to OH, NO3 levels predicted by different mech-
anisms and inventories basically decrease with decreasing
NOx emissions, likely related to the decline of O3 concen-
trations since NO3 radicals are predominantly formed by the
reaction of NO2 with O3 (Geyer et al., 2001). In general,
the change rates of NO3 due to NOx reductions are higher
for CS07–MEIC and CS07–REAS, while they are lower for
S18–REAS. When VOC emissions are reduced, NO3 pro-

duction increases, except for S18–REAS. In Changsha, a
particularly dramatic increase of over 200 % and 150 % is
observed for CS07–REAS and CS07–MEIC, respectively,
when VOC emissions are cut by 80 %. This increase in NO3
radicals could be attributed to a decline in the rapid reaction
of NO3 with unsaturated hydrocarbons. However, for S18–
REAS, NO3 concentrations decrease with decreasing VOCs
in Beijing, Shanghai, and Chongqing. Unlike OH, simultane-
ous reductions in NOx and VOCs result in lower NO3 levels
across all mechanisms and inventories.

Figures S12–13 illustrate the spatial variation in NO3
changes due to systematic emission reductions for all mecha-
nisms and inventories. NO3 radicals show a decreasing trend,
particularly in eastern China, where reductions in NO3 lev-
els vary from 40 % to 100 %. Except for S18–REAS, other
mechanisms and inventories generally predict a nationwide
increase in NO3 radicals with reduced VOCs, particularly in
central and southeastern China, where NO3 levels increase
by ∼ 30 %–300 % or even more with increasing VOC reduc-
tions. S18–REAS predicts a decrease in NO3 levels with re-
duced VOCs in some megacities such as Beijing, Shanghai,
Chengdu, and Chongqing, while NO3 levels increase else-
where.
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Figure 8. Predicted changes of monthly average OH radical concentrations in July 2017 due to reductions of NOx only (first row), VOCs
only (second row), and NOx and VOCs (third row) using different photochemical mechanisms and emission inventories. The black line
represents the average change across all mechanisms and inventories at different levels of emission reductions.

Figure 9. Predicted changes of monthly average NO3 radical concentrations in July 2017 due to reductions of NOx only (first row), VOCs
only (second row), and NOx and VOCs (third row) using different photochemical mechanisms and emission inventories. The black line
represents the average change across all mechanisms and inventories at different levels of emission reductions.
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Figure 10. Predicted changes of monthly average HCHO concentrations in July 2017 due to reductions of NOx only (first row), VOCs only
(second row), and NOx and VOCs (third row) using different photochemical mechanisms and emission inventories. The black line represents
the average change across all mechanisms and inventories at different levels of emission reductions.

3.5.4 Impacts of mechanisms and inventories on the
sensitivity of secondary gaseous pollutants to
emission controls

As shown in Fig. 10, HCHO concentrations decrease with
decreasing NOx emissions, likely due to decreased AOC,
as evidenced by decreased OH and NO3 levels. This in-
dicates that secondary formation from the oxidation of at-
mospheric VOCs is the dominant source of HCHO, in ac-
cordance with previous studies (Wang et al., 2017; Yang et
al., 2019; Zhang et al., 2013). In addition, the most sig-
nificant decreases in HCHO levels due to NOx reductions
are observed for CS07–REAS in all five cities, particularly
in Changsha and Chongqing, where HCHO levels drop by
about 40 %. When VOCs are reduced alone, HCHO lev-
els decrease linearly across all mechanisms and inventories,
a trend similar to the simultaneous reduction of NOx and
VOCs. Variations in HCHO changes across different mech-
anisms and inventories suggest the need to evaluate differ-
ent mechanisms and inventories when formulating regional
emission control policies for carbonyl pollution.

Figures S14–S15 illustrate the spatial distribution of rela-
tive changes in HCHO due to NOx and VOC controls using
different mechanisms and inventories. VOC and NOx con-
trols lead to reductions in HCHO concentration, especially
in eastern China. However, VOC controls generally lead to
larger reductions in HCHO concentrations (∼ 10 %–80 %)

than NOx controls (∼ 4 %–40 %), as shown in Figs. S14–15
and Fig. 10. This suggests that VOC controls are also es-
sential and more effective for reducing secondary gaseous
organic pollutants in the atmosphere.

4 Conclusions

This study utilized the CMAQ model to evaluate the impacts
of different mechanisms and inventories on the prediction
of O3 and other air pollutants. It also examined how these
mechanisms and inventories affect the sensitivity of O3 and
related species to emission reductions. For O3-8 h, relative
reductions predicted using different emission inventory and
mechanism combinations are consistent for up to 80 % NOx

or VOC reductions, with maximum differences of approxi-
mately 15 %. For SIA, while the predicted relative changes
in their daily average concentrations due to NOx reductions
are quite similar, very large differences of up to 30 % oc-
cur for VOC reductions. Sometimes even the direction of
change (i.e., increase or decrease) is different. For the oxi-
dants OH and NO3 radicals, the uncertainties in the relative
changes due to emission changes are even larger among dif-
ferent inventory–mechanism combinations, sometimes by as
much as 200 %. Our results suggest that while the O3-8 h re-
sponses to emission changes are not sensitive to the choice of
chemical mechanism and emission inventories, using a sin-
gle model and mechanism to evaluate the effectiveness of
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emission controls on SIA and atmospheric oxidation capac-
ity may have large errors. For these species, the evaluation
of the control strategies may require an ensemble approach
with multiple inventories and mechanisms.
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