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Abstract. In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to
better understand natural aerosol sources which are important to constrain the current and pre-industrial climate.
Here, we analyse particle number size distributions (PNSDs) collected during a year (2015) across four coastal
and inland Antarctic research bases (Halley, Marambio, Dome C and King Sejong). We utilise k-means cluster
analysis to separate the PNSD data into six main categories. “Nucleation” and “bursting” PNSDs occur 28 %–
48 % of the time between sites, most commonly at the coastal sites of Marambio and King Sejong where air
masses mostly come from the west and travel over extensive regions of sea ice, marginal ice and open ocean and
likely arise from new particle formation. “Aitken high”, “Aitken low” and “bimodal” PNSDs occur 37 %–68 %
of the time, most commonly at Dome C on the Antarctic Plateau, and likely arise from atmospheric transport
and ageing from aerosol originating likely in both the coastal boundary layer and free troposphere. “Pristine”
PNSDs with low aerosol concentrations occur 12 %–45 % of the time, most commonly at Halley, located at
low altitudes and far from the coastal melting ice and influenced by air masses from the west. Not only the sea
spray primary aerosols and gas to particle secondary aerosol sources, but also the different air masses impacting
the research stations should be kept in mind when deliberating upon different aerosol precursor sources across
research stations. We infer that both primary and secondary components from pelagic and sympagic regions
strongly contribute to the annual seasonal cycle of Antarctic aerosols. Our simultaneous aerosol measurements
stress the importance of the variation in atmospheric biogeochemistry across the Antarctic region.
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1 Introduction

The pristine region of the Southern Ocean plays a major role
in modulating Earth’s climate (Carslaw et al., 2013), and
natural aerosols are one of the greatest sources of uncer-
tainty in estimates of global radiative forcing (Reddington
et al., 2017). This uncertainty becomes greater in polar re-
gions (Carslaw et al., 2013). Aerosols modulate the climate
both directly, by absorbing and reflecting radiation, and indi-
rectly, by acting as cloud condensation nuclei (CCN), mod-
ulating cloud properties. The surface of the Southern Ocean
near the Antarctic continent goes through an annual freezing
cycle; this large frozen area harbours one of the globes largest
ecosystems providing a stable habitat for diverse microbial
assemblages (Arrigo et al., 2009, 2015). Understanding these
processes is key in polar environments where warming pro-
cesses are rapidly affecting delicate ecosystems (Clem et
al., 2020). For example, the Antarctic Peninsula has shown
some of the largest increases in near-surface air tempera-
ture measured globally across the last 50 years (Turner et
al., 2005). The study of the Antarctic environment can also
provide an insight into natural pre-industrial aerosol pro-
cesses and allows us to further our understanding of the pre-
industrial baseline (Hamilton et al., 2014).

Antarctic sea ice covers between 1 % (summer) and 5 %
(winter) of the global ocean. Antarctic terrestrial productiv-
ity and biodiversity occur almost exclusively in ice-free areas
that cover less than 1 % of the continent. In Antarctica the
coastline extends for 17 968 km and comprises about 34.8–
36.4× 106 km2, where 80 % of this surface is covered by ice,
even in summer (Peck, 2018; Ronowicz et al., 2019). Over-
all, there is about 390 071 km2 of coast shallower than 200 m
(Peck, 2018). Antarctic coastal systems harbour a high diver-
sity of marine and terrestrial ecosystems including Antarctic
seaweeds (benthonic macroalgae) and bird colonies (mainly
penguins). Antarctic seaweeds (often called macroalgae) are
found in shallow (< 200 m), coastal, rocky shores and can
cover more than 80 % of the benthic surface (Amsler et
al., 2005; Wiencke and Amsler, 2012). The Antarctic and
sub-Antarctic region is home for about half of the total
worldwide seabird population (Otero et al., 2018). Penguins
represent a high proportion of the avian biomass, and their
fecal material is one of the main source of phosphorus and
nitrogen, representing about 80 % of these elements in the
Antarctic marine environment. Seabird colonies also repre-
sent a significant source of atmospheric ammonia (NH3) in
remote maritime systems (Riddick et al., 2012; Schmale et
al., 2013). These emissions are environmentally relevant as
they primarily occur as “hot spots” in otherwise pristine en-
vironments.

The role of aerosols in the Antarctic is poorly understood
as their sources are many and varied in a relatively under-
studied region. Emissions from the Southern Ocean and the
Antarctic region are characterised by multiple environmen-
tal systems including open-ocean water, sea-ice regions and

land, either snow-covered or snow-free. These regions are
being affected by our changing climate (Chen et al., 2009). It
has long been known that there is a strong seasonal cycle
of Antarctic particle number concentrations (Shaw, 1988),
leading to the inference that most of the Antarctic aerosol
concentration is linked with biological processes occurring
in the surrounding oceans. It has been proposed that a large
“pulse” over summer months arises from the upper Antarc-
tic plateau (Ito, 1993; James, 1989), although particle num-
ber concentrations are much higher in coastal Antarctica. In
other words, it is still debatable if the aerosols originate in
the upper troposphere, being transported by the Antarctic
drainage flow (James, 1989) to the coast by katabatic winds
(Ito, 1993; Koponen et al., 2002; Fiebig et al., 2014; Hara et
al., 2011; Järvinen et al., 2013; Humphries et al., 2015), or if
the marine pelagic (ice-free) and sympagic (ice-containing)
boundary layers are a source of ultrafine particles (Herenz
et al., 2019; Weller et al., 2011, 2015, 2018; Dall’Osto et
al., 2017a; Heintzenberg et al., 2000, 2023).

The Antarctic aerosol summer maximum concentrations
(mainly ultrafine particles, < 100 nm) may be largely ex-
plained by new particle formation (NPF) events, as reviewed
by Kerminen et al. (2018). Super-micrometre aerosols
(> 1 µm) will mostly arise from primary sea spray (O’Dowd
et al., 1997a, b; Rankin and Wolff, 2003). The accumulation
mode (100 nm–1 µm) is a complex intermediary region with
both primary and secondary sources related by their multi-
tude of sources and long atmospheric lifetimes (Fossum et
al., 2018; Gras and Keywood, 2017). The relative importance
of these sources undergoes seasonal cycles related to meteo-
rology and biological productivity.

During the austral summer the concentration of dimethyl-
sulfide (DMS, a trace gas produced by marine plankton) in
the water of the Southern Ocean is the highest of the planet
(Lana et al., 2011), with high fluxes into the atmosphere,
potentially producing high concentrations of sulfuric acid
and methanesulfonic acid. However, under typical boundary
layer conditions the concentration of sulfuric acid is too low
to form particles alone, and another molecule, such as am-
monia, is required to stabilise the nucleating clusters (Kirkby
et al., 2011). Jokinen et al. (2018) reported the first molec-
ular characterisation of NPF from Aboa Research Station in
Antarctica, showing that new particles are formed via clus-
tering of sulfuric acid and ammonia (Kirby et al., 2011).
Sources of ammonia and alkylamines are related to ani-
mals, mainly birds and seal colonies, and melting sea ice,
but the relative importance of each source is unknown (Rid-
dick et al., 2012; Schmale et al., 2013; Brean et al., 2021;
Quéléver et al., 2022). Iodine oxoacids are also capable of
efficiently forming new particles (Baccarini et al., 2020; He
et al., 2021; Sipilä et al., 2016), with iodous acid being able
to efficiently stabilise clusters of iodic and sulfuric acid, even
in the absence of ammonia (He et al., 2023), with mod-
elling studies showing high gas-phase iodine concentrations
across Antarctica (Saiz-Lopez et al., 2007). Further, the for-
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mation of marine primary aerosol particles and of gas-to-
particle precursors is influenced by the uppermost layer of
the ocean, the so-called sea surface microlayer (SML) (Cun-
liffe et al., 2013). The SML – with physicochemical charac-
teristics different from those of subsurface waters (SSWs) –
results in dense and active viral and microbial communities
(Vaqué et al., 2021; Heinrichs et al., 2024). The microlayer
of the ocean is a source of oxygenated volatile organic com-
pounds (VOCs) in the Arctic leading to secondary aerosol
formation (Mungall et al., 2017), and it is also likely a source
in the Southern Ocean too, although no measurements of this
type are available. Therefore, while the limited number of
measurement studies implicate sulfuric acid and nitrogenous
bases as the drivers of NPF, iodine and VOCs may play a
substantial role.

The roles of secondary aerosols produced from biogenic
sulfur mainly derived from the atmospheric oxidation of
DMS and primary sea-spray aerosols in regulating cloudi-
ness above the Southern Ocean are still a matter of de-
bate (Meskhidze and Nenes, 2006; Korhonen, 2008; Asmi
et al., 2010; Quinn and Bates, 2011; Fossum et al., 2018;
Lachlan-Cope et al., 2020). The seasonal cycle of primary
and secondary aerosol emissions from the Southern Ocean
also affects light scattering by aerosols over all Antarctica,
including the upper plateau (Virkkula et al., 2022). A recent
intensification in Antarctic aerosol measurement field cam-
paigns is revealing that aerosol chemistry in the higher lat-
itudes of Antarctica can be much more complex than two
broad natural sources governing the aerosol populations: sea
spray (primary, mostly composed of sea salt) and non-sea-
salt sulfate (nssSO2−

4 , secondary). For example, Paglione
et al. (2024) stressed that various not yet fully understood
sources and aerosol processes are controlling the Antarctic
aerosol primary and secondary populations, with the emis-
sions from sympagic and pelagic ecosystems affecting the
variability in submicron aerosol composition both in mar-
itime areas and in the inner-Antarctic regions.

McCoy et al. (2015) suggested that primary marine or-
ganic ultrafine aerosols are important in the Southern Ocean
region. Saliba et al. (2021) found that the large total or-
ganic fraction of particles< 0.1 µm diameter may have im-
portant implications for CCN number concentrations and in-
direct radiative forcing over the Southern Ocean. Recently,
Humphries et al. (2021) identified three main aerosol sources
in the Southern Ocean: northern (40–45° S), mid-latitude
(45–65° S) and southern (65–70° S) sectors, with different
mixtures of continental and anthropogenic, primary and sec-
ondary aerosols depending on the studied region.

Recently, several long-term measurements (on the order
of a year or longer) of aerosol particle number size distri-
butions (PNSDs) at a high time resolution allow the investi-
gation of the aerosol sources around the Antarctic continent.
The PNSD is typically measured from ∼ 10–1000 nm, and
in Antarctica it is usually comprised of particles from sec-

ondary (NPF) and primary (blowing snow – BS; sea-spray
aerosols – SSAs) sources.

At King Sejong Station on the Antarctic Peninsula (Kim
et al., 2017; Park et al., 2023; Kim et al., 2019), Hal-
ley on the mainland coast (Lachlan-Cope et al., 2020) and
Dome C (Concordia) in the centre of the continent (Järvinen
et al., 2013), PNSD measurements indicated NPF as a mostly
summertime phenomenon. At Dome C weak and rare but real
NPF has been observed even in June, the darkest time of the
year (Järvinen et al., 2013). Particle counts and CCN num-
bers at Macquarie Island and throughout the Southern Ocean
undergo a summertime maximum (Humphries et al., 2023).
The CCN concentration at the onset of NPF showed an aver-
age instantaneous increase of 44 % or 11 % across the whole
period compared with the background concentration (Kim et
al., 2019; Park et al., 2023). NPF therefore seems to modulate
particle and CCN counts in the Antarctic.

At Halley, NPF events were shown to arise both from
the sea-ice marginal zone and the Antarctic plateau, indicat-
ing a marine and free-tropospheric source (Lachlan-Cope et
al., 2020). NPF events at King Sejong Station were found
to be more frequently associated with air masses originat-
ing from the Bellingshausen Sea than those from the Wed-
dell Sea, with a fraction of events being associated with
sea ice (Park et al., 2023). This suggests the phytoplankton
composition of the Bellingshausen Sea may be a source of
NPF precursors (Jang et al., 2019). In Marambio, Quéléver
et al. (2022) reported neutral and charged aerosol precur-
sor molecules and clusters, as well as charged and neutral
PNSDs. NPF precursors were inferred to be related to lo-
cal fauna (mainly penguins) and oceanic emissions from the
Bellingshausen Sea.

Hara et al. (2021) hypothesised that NPF mainly occurred
in the Antarctic free troposphere during spring and autumn
and in both the free troposphere and boundary layer during
summer, based on PNSD measurements and their effect on
cloud properties observed at Syowa Station. Dome C’s obser-
vations reported the background PNSD had its largest mode
below 30 nm, suggesting these particles were produced in
the upper atmosphere before entering continental Antarctica
(Järvinen et al., 2013). However, also ground-level particle
formation takes place on the upper plateau. Chen et al. (2017)
reported NPF events that were observed at Dome C by using
a combination of an air ion spectrometer (AIS) and a differ-
ential mobility particle sizer (DMPS). In several events par-
ticle formation and growth started from the cluster ion size
range of 0.9–1.9 nm, which means that in these cases the for-
mation took place at the ground level; however, NPF precur-
sor emissions from the plateau itself are believed to be neg-
ligible, implying they are transported from elsewhere. NPF
in Antarctica is therefore dependent on biogenic emissions
from the ice-covered and ice-free regions of the ocean, with
NPF occurring both at ground level and in the colder upper
atmosphere where particle formation rates can proceed more
rapidly.
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Table 1. Latitude and longitude of each site.

Site Lat Long Elevation a.s.l. (m)

King Sejong −62.2 −58.8 10
Marambio −64.2 −56.6 198
Dome C −75.1 123.3 3233
Halley −75.6 −26.2 30

Previous analyses of PNSDs at Halley using k-means clus-
ter analysis has shown that wintertime PNSDs were charac-
terised by extremely low particle concentrations, with a bi-
modal PNSD appearing with a blowing-snow or sea-spray
origin (Lachlan-Cope et al., 2020). The Antarctic wintertime
at this site is therefore mostly devoid of secondary aerosol
sources and is instead dominated by primary sources. Some
of these primary aerosols will be organic, and NMR analyses
of ambient aerosol samples show that aerosols arising from
the ice-free Southern Ocean are rich in lipids and sugars, and
aerosols arising from coastal areas are rich in sugars asso-
ciated with plant vegetation (Decesari et al., 2020). These
sources are likely primary, and the primary aerosol sources
are therefore many and varied across Antarctica.

Here, we apply k-means cluster analysis to simultaneous
measurements in the year 2015 at four Antarctic research
sites, extending the study of Lachlan-Cope et al. (2020).
We also compare the yearly data with field studies, in-
cluding the PEGASO (Plankton-derived Emissions of trace
Gases and Aerosols in the Southern Ocean) cruise in 2015
(Dall’Osto et al., 2017a, 2019b; Rinaldi et al., 2020; Dece-
sari et al., 2020) and the continental Antarctic site Kohnen
(Weller et al., 2018). We show a prevalence of new particle
formation at the coastal sites and associate this new parti-
cle formation with air masses flowing over regions of sea ice
and ocean. At the more southerly and inland sites, primary
particles dominate the particle number concentrations, while
air masses primarily travel over regions of land. Ambiguity
remains in this analysis, as some PNSD clusters likely con-
tain a substantial contribution from primary and secondary
processes. Nonetheless, we provide further evidence for the
roles of emissions from sympagic and pelagic ocean regions
in new particle formation and highlight the many and varied
sources of particles across Antarctica.

2 Methodology

2.1 Sampling sites and measurements

Simultaneous PNSD measurements at four sites across
Antarctica were collected for analysis. Their locations are
stated in Table 1 and shown in Fig. 1. Data coverage is shown
in Fig. S1 in the Supplement. PNSD measurements were ag-
gregated to 1 h for this study.

The South Korean King Sejong Station, the highest-
latitude site, is located on the Antarctic Peninsula. The PNSD
from 10 to 300 nm was measured every 3 min with a mobility
particle size spectrometer (MPSS) consisting of a differen-
tial mobility analyser (DMA; HCT, Inc., LDMA 4210) and
a condensation particle counter (CPC; TSI 3772). Details of
the site can be found in Kim et al. (2017, 2019) and Park et
al. (2023).

The Argentinian Marambio Station is located on the
Antarctic Peninsula, approximately 3 km from the coast. The
PNSD from 12–800 nm was measured every 6 min with a dif-
ferential MPSS (Asmi et al., 2010; Quéléver et al., 2022).

The French- and Italian-operated Dome C station is op-
erated on the eastern Antarctic Plateau at an elevation
of> 3000 m a.s.l and height of 900 km from the nearest
coast. The Dome C sampling site is located 1 km southwest
of Dome C’s main building. The PNSD from 10–620 nm
was measured every 10 min with a differential MPSS system
(Järvinen et al., 2013).

The British Halley VI station is located in coastal main-
land Antarctica on the floating Brunt Ice Shelf∼ 20 km from
the coast of the Weddell Sea. The Clean Air Sector Labo-
ratory where PNSD measurements are taken is located 1 km
southeast of the station. The PNSD from 6 to 209 nm was
measured every 1 min using a TSI Inc. MPSS, compris-
ing an electrostatic classifier (model 3082), a condensation
particle counter (CPC; model 3775) and a long differen-
tial mobility analyser (DMA; model 3081) (Lachlan-Cope et
al., 2020).

2.2 Data processing

A k-means cluster analysis was applied to the PNSD data
to apportion the PNSDs according to their shape (Beddows
et al., 2009), and this is routinely applied in pristine en-
vironments to PNSD data (Dall’Osto et al., 2017b, 2019b;
Lachlan-Cope et al., 2020), including the Halley dataset used
in this paper (Lachlan-Cope et al., 2020). The k-means anal-
ysis apportions data into k clusters such that the sum of
squares of distances of data to the cluster centre is minimised.
In the case of MPSS data, this produces well-separated clus-
ters (Beddows et al., 2009). First, data were normalised so
the Euclidian length of each PNSD was 1, so the clustering
is done solely on the merit of the shape of the PNSDs. Here,
a degree of distance between clusters was achieved with
16 MPSS clusters. These were assigned into six categories
typical of Antarctic PNSDs (Lachlan-Cope et al., 2020).
Compared to previous work, we combined the three “pris-
tine” clusters identified by Lachlan-Cope et al. (2020) into
one, as they follow the same seasonal trend, producing six
clusters instead of eight.

The condensation sink (CS, s−1) represents the rate at
which a vapour-phase molecule will collide with a pre-
existing particle surface and was calculated from the PNSD
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Figure 1. Map of the sampling stations (Halley, Marambio, Dome C, King Sejong) for the dataset collected in 2015. Additional data for
shorter period are intercompared at Kohnen (Weller et al., 2018) and during the PEGASO cruise (Dall’Osto et al., 2017a; blue line is
the PEGASO cruise track). The February sea-ice extent signifies the annual minimum, while the September median signifies the annual
maximum (data are from the National Snow and Ice Data Center – NSIDC – at https://nsidc.org/data/, last access: 30 July 2024, Fetterer et
al., 2017).

data as follows (Kulmala et al., 2012):

CS= 2πD
∑

dp
βm,dpdpNdp . (1)

Here, D represents the diffusion coefficient of the condens-
ing vapour, which is assumed to be sulfuric acid. The tran-
sitional regime correction factor is denoted by βm,dp, dp is
the diameter of a measurement bin, and Ndp is the number of
particles in size bin dp.

2.3 Air mass trajectories

Air mass back trajectories were calculated using the HYS-
PLIT (Hybrid Single Particle Lagrangian Integrated Trajec-
tory) trajectory model (Draxler and Rolph, 2010) arriving at
the sampling site every 1 h. Each back-trajectory data point
was assigned to a surface type (land, sea, ice or snow over
land; a cell is considered ice-covered if more than 40 % of the
cell is covered with ice) on a 24 km grid from the daily In-
teractive Multisensor Snow and Ice Mapping System (IMS)
(U.S. National Ice Center, 2008). To investigate air masses
concurrent with high particle count, these 72 h back trajecto-
ries were gridded to 1× 1 grid cells of 1° each and linked
back to the total integrated particle number concentration
from the PNSD measurements by the following equation:

ln
(
Cij

)
=

1∑N
k=1 τijk

∑N

k=1
ln (ck)τijk , (2)

where Cij is the concentration-weighted trajectory (CWT)
at cell i, j , N is the total number of trajectories, ck is the
value of particle number (N ) associated with the arrival of

trajectory k, and τijk is the residence time of trajectory k
in grid cell i, j . Cij therefore describes the source strength
of condensable vapour that drives particle growth from any
particular grid cell (Hsu et al., 2003; Lupu and Maenhaut,
2002). This was done using the trajLevel function in the ope-
nair package in R 3.6.3.

3 Results

3.1 Trends in aerosol PNSDs

The mean PNSDs for the measured periods are shown in
Fig. 2a. PNSDs at the two Antarctic Peninsula sites, Maram-
bio and King Sejong, show large nucleation modes. Aitken
mode peaks are present at all sites with maximum concentra-
tions between 30 and 50 nm. Accumulation mode peaks are
present at all sites with maximum concentrations> 100 nm.
The prominent nucleation modes at Marambio and King Se-
jong are also visible in the daily contour plots, with the
visible signature of a new nucleation mode in the late and
early afternoons (local times) at the two sites, respectively
(Fig. S3). Total average particle counts are highest at King
Sejong and Marambio (312± 601 and 270± 541 cm−3), and
particle counts at Halley are lower (223± 245 cm−3), while
those at Dome C are 44± 67 cm−3.

The monthly variation in total particle number (Ntot) is
similar between all sites and highest in the austral summer,
with minimum values in July and August. Ntot at Dome C is
substantially lower in nearly all months compared to all other
sites, with the monthly average only exceeding 100 cm−3 in
the austral summer months (November, December). Rela-
tive contributions of the modes< 30, 30–100 and > 100 nm
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Figure 2. Features of particle PNSD data for four Antarctic sites, showing (a) mean particle PNSD per site, (b) mean particle count per
site, (c) seasonal variation in particle count per site and (d) contribution of different size fractions to particle count per site. Only data from
the same time period (April–December) are intercompared and presented in panels (a), (b) and (d), whereas the whole temporal trend is
presented in panel (c).

to Ntot at each site are shown in Fig. 2d. The relative con-
tribution of < 30 nm particles is highest at Marambio and
King Sejong, exceeding 50 % of the total Ntot at Maram-
bio, consistent with the prominence of the presence of the
nucleation mode (Fig. 2a). The contribution of < 30 nm par-
ticles to total Ntot is lowest at Halley, where ∼ 50 % of the
Ntot comes from the mode 30–100 nm and ∼ 30 % from the
mode> 100 nm. At Dome C, ∼ 65 % of Ntot comes from
the mode 30–100 nm, with small contributions from particles
above or below this size range.

3.2 Cluster analysis

3.2.1 Categorising PNSD k-means clusters

A k-means cluster analysis was used to partition the PNSD
data into days with similarly shaped PNSD data. In k-means
cluster analysis, starting with a higher number of clusters and
then merging them based on similarity can enhance the sep-
aration and interpretability of the final clusters by capturing
finer details. These 16 daily k-means clusters (Fig. S2, re-
ferred to onwards as the initial PNSD clusters) were therefore

aggregated into 6 daily categories typical of Antarctic PNSD
data (referred to as simply the PNSD clusters) for further
analysis based on the shape of the PNSD and their tempo-
ral variation (Fig. 3a and b). These are nucleation, bursting,
Aitken high, Aitken low, pristine and bimodal, following pre-
vious classifications described in previous studies (Dall’Osto
et al., 2017b, 2019b; Lachlan-Cope et al., 2020). The diur-
nal cycle of the PNSD belonging to each of the initial 16
k-means clusters at each of these sites is shown in Fig. S4,
while the diurnal cycle of the merged clusters is shown in
Fig. S5, separated by site, and the PNSD per cluster separate
by season is shown in Fig. S6.

Two clusters relate to NPF: nucleation (mean particle
count 502± 1087 cm−3) has a mean PNSD with a peak at
12 nm averaged between all sites. This corresponds to fresh
new particles generated during NPF events and will corre-
spond to days of measurements dominated by a signature of
new particles appearing in the PNSD, typically with signs of
growth. Bursting (mean particle count 177± 350 cm−3) has
a mean PNSD with a peak at 22 nm averaged between all
sites and typically corresponds to days when new particles
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Figure 3. Cluster analysis results, showing (a) average frequency of each cluster per site, (b) mean PNSD per cluster and (c) seasonal
variations in cluster frequency per site.

form or either fail to grow, are lost to coagulation, or are di-
luted and lost before arrival at the receptor site. Note that the
name “bursting” refers to “bursts” in particle number con-
centrations due to secondary formation, rather than bubble
bursting. These likely still do correspond to secondary for-
mation processes. We presume here that there is no primary
contribution to these PNSDs.

Aitken is the most common PNSD category separated
into Aitken high (mean particle count 401.6± 45.5 cm−3)
and Aitken low (mean particle count 208.8± 216.7 cm−3).
The mean PNSD shows peak concentrations at about 20–35
and 35–55 nm, respectively. These two clusters are separated
based on their aerosol total concentrations. The name of this
category emerges from growing ultrafine aerosol resulting
from the processing of local and regional marine aerosols,
a phenomenon previously described as occurring mainly in
summer (Dall’Osto et al., 2017b).

Pristine (mean particle count 142± 134 cm−3) has a mean
PNSD with a peak at 88 nm. The name of this category
emerges from the extremely low “pristine” particle num-
ber concentrations. The three k-means clusters belonging
to this category have some specific aerosol modes, peaking
at 65 nm, 85 nm and a much larger accumulation mode at
160 nm (Fig. S2) likely associated under pristine conditions
with high loadings of blowing snow, as previously discussed
in Lachlan-Cope et al. (2020).

Bimodal (mean particle count 107± 133 cm−3) has two
peaks in the PNSD at 39 and 113 nm. Both are characterised
by low particle counts. The name of this category is associ-
ated with the bimodal PNSD. The two initial clusters differ
slightly because of the Hoppel minimum at 55 and 75 nm,
respectively; the Hoppel minimum refers to a specific dip in
the number concentration of aerosol particles at these sizes,
suggesting variations in particle stability, growth or origin.

The condensation sink represents the main loss process
for many low-volatility vapours which contribute to new
particle formation. The condensation sink for the burst-
ing k-means cluster is lowest (2.3× 10−4 s−1), followed
by bimodal (2.4× 10−4 s−1), pristine (3.4× 10−4 s−1), nu-
cleation (3.7× 10−4 s−1), Aitken low (3.4× 10−4 s−1) and
Aitken high (4.0× 10−4 s−1). Particle counts change by
around 1 order of magnitude between sites, but the shapes of
the PNSD are similar (Figs. S2, S5). All nucleation PNSDs
show the formation and growth of particles at midday and
afternoon times (local time), while bursting shows particles
at or near the smallest sizes, sometimes with an indication of
particle growth (Figs. S4, S5).

3.2.2 Trends in PNSD k-means clusters

The frequency of occurrence of these different PNSD clus-
ters can indicate the dominant sources of aerosol particles at
each of these time periods. All sites have a large contribu-
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tion from Aitken low and Aitken high PNSD clusters, with
37 % of PNSDs falling into these categories across all four
sites. Marambio is also dominated by PNSD clusters falling
into the nucleation and bursting category (25 % and 23 % of
PNSDs, respectively). There is a smaller contribution of nu-
cleation and bursting to the PNSDs at King Sejong (8 % and
20 %, respectively). These PNSD clusters contribute little at
Halley (3 % and 3 %, respectively) and at Dome C (2 % and
5 %, respectively). Halley instead sees a large contribution of
pristine PNSDs (45 % of PNSDs), and Dome C sees a large
contribution of bimodal PNSDs (34 % of PNSDs) (Fig. 3a).

The seasonal evolution of these k-means clusters is shown
in Fig. 3c. At Marambio, the contribution of nucleation and
bursting PNSDs occurs in nearly all months. At King Se-
jong, nucleation and bursting PNSDs are most frequent in
the spring and autumn months, while pristine air masses are
most common in the austral winter. At Halley, Aitken PNSDs
dominate the warmer months, while pristine air masses dom-
inate the colder winter months. At Dome C, where data are
available, bimodal PNSDs dominate the winter, while Aitken
dominates the warmer months. There is a substantial contri-
bution of nucleation and bursting in the month of Septem-
ber also. When all sites are averaged, a clear seasonal cycle
is seen, with pristine and bimodal PNSDs dominating in the
coldest months and a substantial contribution of Aitken in the
warmer months. Nucleation is slightly higher in the warmer
months (particularly January through March), while bursting
PNSDs are higher outside of these months.

3.3 Air mass analysis

The 72 h HYSPLIT back trajectories arriving at the four dif-
ferent measurement sites for every hour with PNSD data
were calculated. The amount of time each of these air masses
spent flowing over land, open ocean, marginal ice or sea ice
per k-means cluster across all sites is plotted in Fig. 4a and
per site is plotted in Fig. 4b. On average, the air masses arriv-
ing at the sites had flown over most of the land of the Antarc-
tic continent (54 %), with a 24 % contribution from sea ice,
15 % contribution from open water and a small (6 %) con-
tribution from marginal ice. Nucleation and bursting PNSDs
occur when air masses have travelled over substantially less
land and over more sea ice, marginal ice and ocean than
average (40 %, 8 % and 26 % of air mass hours for nucle-
ation and 34 %, 10 % and 25 % of air mass hours for burst-
ing, respectively). At Marambio, the main contribution is air
masses arising from sea-ice regions (50 %), which is highest
for bimodal PNSDs (76 %). The contribution of open wa-
ter to Aitken, bursting and nucleation is higher than average
(23 %), while the contribution of sea ice to these air masses
is lower (44 %). At King Sejong, air masses spend the major-
ity of their time travelling over regions of open water (41 %)
and sea ice (33 %). The contribution of open water is higher
for bimodal (51 %) and Aitken PNSDs (58 %). At Halley, air
masses spend the majority of their time flowing over land re-

Figure 4. Land surface types associated with each cluster, showing
(a) average association across all sites and (b) association per site.
“Average” is the mean of all clusters.

gions (79 %), with a small contribution from sea ice (15 %).
The contribution of sea ice to nucleation PNSDs is substan-
tially higher (30 %). At Dome C, air masses arriving at the
receptor site mostly flow over land (99 %). The contributions
of sea ice, marginal ice and open water are higher for bursting
PNSDs (9 % in total).

Our CWT analysis grids back trajectories to 1°× 1°
squares and weighs each segment of the back trajectory with
the corresponding Ntot observed upon the air mass’s arrival,
performed individually for each PNSD cluster. These are
plotted in Fig. 5. A map highlighting source regions for Ntot
unseparated by cluster per site is shown in Fig. S8. The
CWTs aggregated together for each site are shown in Fig. S9.
Mean heights of these trajectories are shown in Fig. S10.

The sources of particles by number (or, Ntot) across all
PNSD data at the two Antarctic Peninsula sites, Marambio
and King Sejong, are to the west of the peninsula, across the
iced and open-water regions of the Bellingshausen Sea and
to a lesser extent the Weddell Sea. Those at Halley are con-
centrated at the coastal and land-based regions, with some
influence from the Weddell Sea, while the highest aerosol
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Figure 5. Concentration-weighted trajectory maps showing the sources of particles corresponding to each cluster at each site. The 72 h back
trajectories are calculated with HYSPLIT.

concentrations at Dome C arise from mostly land regions,
with some trajectories extending past the southern tip of the
continent over ocean regions (Fig. S8).

Air masses arriving at the Antarctic sites corresponding to
nucleation and bursting k-means clusters pass mostly over
the Bellingshausen Sea at Marambio and King Sejong. Air
masses passing over the regions just west of the peninsula
have a high source contribution to high number concentra-
tions of particles especially, as do the more northerly regions
off the southern tip of South America. At Halley, these PNSD
clusters are mostly associated with coastal regions, consis-
tent with the higher contribution of sea ice. The source con-
tributions at Dome C correspond to a small number of trajec-

tories. All trajectories corresponding to nucleation PNSDs
have a lower-than-average trajectory height, although the to-
tal number of trajectories this corresponds to is relatively
small (Fig. S10).

Aitken PNSDs have strong source contributions from the
entire Bellingshausen Sea region at Marambio and King Se-
jong. At Halley, there is a strong contribution from land
mass regions, while at Dome C, land regions contribute to
this PNSD. Bimodal and pristine air masses at Marambio
and King Sejong have strong source contributions from the
iced regions either side of the Antarctic Peninsula, cover-
ing the Weddell and Bellingshausen seas. This is consistent
with the higher contribution from sea-ice regions to these k-
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means clusters. At Halley, the bimodal PNSDs arise when
air masses flow over coastal and land-based regions, while
pristine PNSDs, which are extremely frequent at this site,
arise largely from the Antarctic continent itself. At Dome C,
there is a strong source contribution to bimodal and pristine
PNSDs from air masses flowing over the coastal region of
southern Antarctica, as well as some land regions. Trajec-
tories corresponding to pristine PNSDs have, on average, a
higher trajectory height than average.

3.4 Intercomparison with other existing data across the
year 2015

3.4.1 PEGASO cruise

The PEGASO (Plankton-derived Emissions of trace Gases
and Aerosols in the Southern Ocean) cruise was conducted
on board the RV Hesperides in the regions of the Antarctic
Peninsula, South Orkney Islands and South Georgia Islands
from 2 January to 11 February 2015. It was found that the mi-
crobiota of sea ice and the sea-ice-influenced ocean can be
a source of atmospheric primary and secondary organic ni-
trogen (ON), specifically low-molecular-weight alkylamines
(Dall’Osto et al., 2017a, 2019a). Other follow-up studies
also claim that the potential impact of the sea-ice (sympa-
gic) planktonic ecosystem on aerosol composition was over-
looked in past studies, and multiple eco-regions act as dis-
tinct aerosol sources around Antarctica (Decesari et al., 2020;
Rinaldi et al., 2020).

Figure 6a shows the intercomparison of MPSS PNSDs
for the PEGASO cruise. These are separated into times
when the air masses flowed over the Pacific Ocean and over
the Weddell Sea. This is compared with stations used for
this study where overlapping data are available (Marambio,
King Sejong and Halley). Air masses from the southern Pa-
cific Ocean with anthropogenic and terrestrial influence from
Patagonia are likely responsible for the higher Aitken mode
seen for the “Pacific” PNSD during the PEGASO cruise.
By contrast, cruise measurements influenced by the Wed-
dell Sea show a PNSD similar to the three stations intercom-
pared, suggesting little anthropogenic influence of the latter.
Dall’Osto et al. (2017a) showed that sea-ice regions are a
strong source of sub-3 nm particles in Antarctica relative to
open-water regions. The present study, considering a much
broader dataset, also shows that the open-water regions sam-
pled at Marambio and King Sejong stations are also associ-
ated with enhanced NPF.

3.4.2 Kohnen Station

Weller et al. (2018) reported PNSDs and conducted bulk and
size-segregated aerosol sampling during two summer cam-
paigns in January 2015 and January 2016 at the continental
Antarctic station Kohnen (Dronning Maud Land). The trans-
port of aerosols was associated with two main weather condi-
tions: (1) the sporadic impact of cyclones causing high load-

Figure 6. PNSD intercomparisons: (a) PNSD from the PEGASO
cruise when influenced from air masses from both the Weddell Sea
and Pacific Ocean and the stations used for this study where over-
lapping data are available (Marambio, Halley and King Sejong sta-
tions) and (b) PNSD from Kohnen Station (Weller et al., 2018) and
the stations used for this study where overlapping data are available
(Marambio, Halley and King Sejong stations).

ings of marine aerosol concentrations and NPF and (2) clear-
sky conditions causing long-range transport of aged aerosols.
Figure 6b shows similar aerosol PNSDs among Kohnen, Hal-
ley and King Sejong stations for the same sampling period
in 2015. By contrast, much higher concentrations of ultra-
fine particles – likely due to NPF – were seen occurring
at Marambio. This may be a combination of local sources
(nearby penguin colonies) and melting sea ice during the
summer period, given Marambio is the station among them
all closest to marginal sea-ice zones (Quéléver et al., 2022).

4 Discussion

4.1 Possible primary sources

Of our six aerosol categories, nucleation and bursting are re-
lated to secondary aerosols, while the two Aitken k-means
clusters likely have significant contributions from primary
and secondary processes (Fig. 2a), although the latter may
dominate. Bimodal PNSDs are likely associated with aged
and processed marine aerosols (the Hoppel minimum mode
is seen at about 70 nm; Hoppel et al., 1994). We cannot
apportion primary aerosols from our PNSD measurements
without any chemical composition information but can hy-
pothesise some. Sea salt aerosol particles are formed from
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open ocean regions when sea spray is produced by wave
breaking and bubble bursting generating film and jet drops
(De Leeuw et al., 2011). Sea salt aerosol is also formed from
blowing snow above sea ice (Frey et al., 2020). These mech-
anisms are thought to contribute equally to sea salt aerosol
loads (Legrand et al., 2016), while blowing snow over land is
a source from continental Antarctica (Giordano et al., 2018).

In the periods when NPF is negligible, there are still other
primary aerosol sources. We show that pristine and bimodal
PNSD clusters dominate through the winter (Figs. 3c, S6).
It is therefore important to characterise these pristine condi-
tions. The three k-means clusters of the pristine categories
have similar low particle number concentrations, but one of
the three has a distinct PNSD. The cluster (pristine_160),
seen with a bimodal PNSD (75 and 160 nm, respectively),
was strongly associated with high wind speed and possi-
bly associated with blowing snow and sea-spray sea salt,
dominating the winter aerosol population (Lachlan-Cope et
al., 2020). When the four stations are compared in this study,
it can clearly be seen that Halley has the most frequent pris-
tine conditions (45 %, relative to the 12 %–20 % of the other
three), also relative to Dome C where we propose that free-
tropospheric transport and aged aerosols populate the PNSD
with Aitken modes and bimodal PNSDs.

The pristine initial PNSD cluster with a strong peak at
160 nm (Table S1 in the Supplement) is seen mainly at Hal-
ley (12 %) relative to the other stations (2 %–3 %). A study
by Yang et al. (2019) proposes a source for ultrafine sea
salt aerosol particles from blowing snow, dependent on snow
salinity. This mechanism could account for the small parti-
cles seen during Antarctic winter at coastal stations (Gior-
dano et al., 2018; Frey et al., 2020). Recently, similar PNSD
were reported by Gong et al. (2023) in the central Arctic over
an entire year from September 2019 to October 2020 during
the Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) expedition, showing that blowing
snow was observed more than 20 % of the time from Novem-
ber to April. The sublimation of blowing snow generates high
concentrations of fine-mode sea salt aerosol (diameter be-
low 300 nm), enhancing cloud condensation nuclei concen-
trations by up to 10-fold above background levels (Gong et
al., 2023).

Primary marine organic aerosol in the submicron regime
is likely produced separately from sea salt (Gantt and
Meskhidze, 2013). At the coastal sites of Marambio and Hal-
ley, bimodal and pristine PNSDs with the highest particle
number concentration arise mostly from the Bellingshausen
Sea, where DMS(P)-rich phytoplankton concentrations are
very high. A dominant biological oceanic mechanism of pri-
mary particle origin at these sites is therefore likely. Given
the vastly different source characteristics between these sites,
it is likely that the dominant mechanisms of origin of these
primary particles, and therefore our bimodal and pristine
clusters, also differ between sites, but it is clear that primary
emissions dominate the PNSD in the Antarctic winter.

4.2 New particle formation and possible secondary
sources

We identify two PNSD clusters which we classify as arising
from secondary processes: these are nucleation and burst-
ing PNSDs. The Aitken PNSD clusters cannot be defini-
tively said to contain solely particles from secondary pro-
cesses, although they have similar source regions (Fig. S5)
and could consist of grown particles formed either elsewhere
in the boundary layer or in the free troposphere, with average
growth rates of around ∼ 0.1–1 nm h−1 (Brean et al., 2021;
Järvinen et al., 2013; Jokinen et al., 2018; Kim et al., 2019);
particles formed through NPF would grow to the sizes ob-
served in this PNSD cluster on the order of ∼ 2 d. The con-
tribution of Aitken PNSDs is greatest outside of the winter
months (Fig. S7). However, below, we will purely discuss
the contribution of the bursting and nucleation PNSDs.

NPF in Antarctica is a summertime phenomenon largely
responsible for the seasonal cycle in particle number con-
centrations (Fig. 2c). This cycle has been observed at King
Sejong Station (Kim et al., 2017; Park et al., 2023; Kim et
al., 2019), Halley (Lachlan-Cope et al., 2020) and Dome C
(Järvinen et al., 2013; Chen et al., 2017). This corresponds
with periods of high biological and photochemical activity
(Jang et al., 2019; Kim et al., 2019). These observations
are consistent with our observed higher frequency of nucle-
ation PNSD clusters in January through March (Figs. 3c, S6).
However, we consistently observe nucleation and bursting
PNSDs year-round, even at sites where manual inspection of
these PNSDs has found little to no NPF in the winter seasons
(Kim et al., 2019).

We frequently observe PNSDs with a large nucleation
mode in the austral summer (Fig. S7). NPF is mainly influ-
enced by the source rates of vapours, including emissions of
dimethylsulfide (DMS), volatile organic compounds (VOCs)
and bases such as NH3 and iodine, as well as OH q and
O3 production rates, loss rates of vapours and new parti-
cles (CS), ion pair production rates, and temperature (Lee
et al., 2019). Vapour source rates will be lowest in winter;
however, ion pair production from cosmic rays is likely con-
stant, while loss rates of vapours and temperatures have a
wintertime maximum. Some number of particles may there-
fore form and be identified by cluster analysis, even when
they do not give the visual signature of an NPF event.

Our analyses show that coastal Antarctic sites nearest to
the melting sea ice are most influenced by NPF (Fig. 3c)
where a large fraction of the PNSDs are classified as nucle-
ation and bursting (48 % and 28 % at Marambio and King
Sejong, respectively). Further, we show that NPF is frequent
when air masses flow over the ice-influenced oceanic Antarc-
tic regions (Figs. 4, 5). NPF events have been shown to
be frequent and strong at coastal Antarctic sites (Brean et
al., 2021; Jokinen et al., 2018) but most rapid at those near-
est to melting ice (Brean et al., 2021) as well as near lo-
cal sources associated with penguin colonies (Quéléver et
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al., 2022). Recent observations shows that this does not ex-
tend across the whole of the Southern Ocean (Baccarini et
al., 2021). Our PNSD cluster analysis is consistent with this.
Melting sea is therefore a likely source of NPF precursors in
the Antarctic Peninsula region.

High aerosol number concentrations arising from the
Bellingshausen Sea are consistent with a previous analysis
of NPF at King Sejong (Jang et al., 2019). Bursting and nu-
cleation aerosol categories in particular exhibit high num-
ber concentrations when air masses pass over the regions
just west of the peninsula (Fig. 5). These regions have been
shown to be rich in alkylamines (Dall’Osto et al., 2019a),
which leads to rapid and efficient particle formation (Brean
et al., 2021). There is evidence that these melting sea-ice re-
gions are sources of numerous NPF precursors (Atkinson
et al., 2012; Dall’Osto et al., 2017a, 2019a). This is also
consistent in the sympagic Arctic environment (Dall’Osto et
al., 2017b, 2018). Consistent with this, the results of our k-
means cluster analysis show that the sites with the highest
exposure to air masses that pass over regions of sea ice and
marginal ice have by far the greatest contribution from nucle-
ation and bursting PNSD types (Figs. 2, 4). The sites where
air masses primarily travel over snow-covered land regions
have, by contrast, very little contribution from nucleation and
bursting (Fig. 4a).

The role of new particles formed in the free troposphere
and transported down to our receptor sites is unknown but
likely. Particle formation processes are highly efficient in the
free troposphere given the lower temperatures and higher ion
pair production rates. A wider number of potential nucleation
mechanisms are therefore likely (Kirkby et al., 2011; Wang
et al., 2022). Modelling studies predict a substantial fraction
of CCN in all seasons (Korhonen et al., 2008). These parti-
cles, if arriving at the receptor site long enough after forma-
tion, will contribute to either nucleation, bursting or Aitken
PNSDs. While we therefore highlight source regions lead-
ing to boundary layer NPF processes, we cannot state what
fraction of PNSDs arise from free-tropospheric particle for-
mation processes.

5 Implication and conclusion

Figure 7 shows a schematic illustration of the sea ice, mi-
crobiota, sea-to-air emissions, and primary and secondary
aerosols in Antarctica. Figure 7 highlights the dominance
of NPF in summertime PNSDs and a dominance of primary
aerosols during the wintertime, with these primary aerosols
being more prevalent inland than at the coast, a key finding
of this study. It also highlights the retreat of sea ice in the
summer, leading to increased marine emissions, alongside a
reduction in terrestrial biological activity and sunlight inten-
sity during winter months.

To gain insight into the influence of marine Antarctic bio-
geochemistry on atmospheric aerosol, we report simultane-

ous aerosol PNSDs collected across an entire year (2015) at
four research stations (Marambio, King Sejong, Halley and
Dome C), as well as a brief intercomparison with a cruise
around the regions of the Antarctic Peninsula, South Orkney
Islands and South Georgia Islands (Dall’Osto et al., 2017a)
and a field campaign at Kohnen Station (Weller et al., 2018).
Our study shows that the aerosol PNSDs across the Antarctic
have striking differences, likely due to multiple eco-regions,
and subsequent atmospheric chemical and physical processes
act as multiple aerosol sources around Antarctica. These
analyses suggest that the PNSD of Antarctic sub-micrometre
aerosols may have been oversimplified in the past (Ito, 1993)
and that complex interactions between multiple ecosystems,
coupled with different atmospheric circulation, result in very
different PNSDs populating Antarctica. Our knowledge on
aerosol sources of primary and secondary origin is limited.

The Southern Ocean is among the largest sources of sea-
spray aerosols (SSAs) on planet Earth. Current aerosol mod-
els have a large uncertainty in the SSA abundance (Lapere
et al., 2023), and the relative importance of the sublima-
tion of blowing snow is not yet quantified (Giordano et
al., 2018; Frey et al., 2020). The biogenic organic component
of SSA in Antarctica is thought to be important (McCoy et
al., 2015) but again not fully quantified. Sea ice may also
modulate SSA production, with potentially significant cli-
mate impacts (Dall’Osto et al., 2022a). Other leached ma-
terial from Antarctic media including seaweeds and pen-
guin guano may also affect cloud-relevant SSA production
(Dall’Osto et al., 2022b).

Recently, Brean et al. (2023) emphasised how understand-
ing the geographical variation in surface types across the
Arctic is key to understanding secondary aerosol sources,
highlighting that particle formation and growth rate vary
tremendously, likely due to different regions producing dif-
ferent precursor source rates. The same complexity applies
to Antarctica – an ensemble of regions with substantial spa-
tial heterogeneity across marine, terrestrial and freshwater
biomes, with productivity and biodiversity patchiness super-
imposed on strong environmental gradients. Antarctica, one
of the world’s eight major biogeographical realms, is split
into 16 Antarctic Conservation Biogeographic Regions (also
known as ecoregions or bioregions; Terauds et al., 2012; Ter-
auds and Lee, 2016) but is made up almost entirely of the
ice-covered land mass, coastal tundra and sea ice surrounding
the main continent. It contains two additional marine biore-
gions – the Antarctic Peninsula and Scotia Sea and the Sub-
antarctic Indian Ocean Islands (Chown and Convey, 2007). A
bioregion is smaller in scale than a biogeographical realm but
larger than an eco-region or an ecosystem, it allows the inte-
grations of multiple eco-regions, including terrestrial, fresh-
water and marine, into a cohesive system. Whilst these defi-
nitions may be challenging in the context of atmospheric bio-
geochemistry, we argue that a better comprehension of the in-
teractions between the biosphere and the geosphere is needed
to better understand aerosol sources in Antarctica.
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Figure 7. Schematic illustrations of the sea ice, microbiota, sea-to-air emissions, and primary and secondary aerosols in Antarctica during
summer (a) and winter (b).

The changes occurring in the Antarctic environment will
modify the climate with feedbacks and exchanges between
the biosphere and cryosphere with the atmosphere. Changes
in marine and terrestrial life – including adaptation of eco-
physiology, food and nutrient availability – will affect the
emissions of primary and secondary aerosol precursors.
Interdisciplinary studies and international cooperation in
Antarctica are reducing the gap in our knowledge of these
key environmental factors.
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