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Abstract. Atmospheric brown carbon (BrC) plays a significant role in global warming, yet the evolution of
its optical properties during aging remains poorly understood, leading to substantial uncertainties in its climate
effects. In this study, we investigate the aging process of BrC and its driving factors using laboratory-generated
biomass burning emissions, including four types of straw and one type of wood. Upon OH oxidation, there
exists a large increase in OA fraction after 2 d aging, followed by a minor increase during aging to 7d. The
particle growth is dominated by the change in OA content and thus shows a similar trend during aging. The mass
absorption efficiency (MAE) of fresh BrC measured at 370 nm is 2.1-5.7m? g~!. A sharp decline in MAE is
observed after 2 d aging, equally attributed to photobleaching and secondary organic aerosol formation. Although
a negative correlation is observed between particle size and MAE, the reduction in MAE is mainly driven by the
decline in the imaginary part (k) of BrC, with particle size playing a minor role. Combined with positive matrix
factorization (PMF) analysis, the study reveals that oxygenated OA, characterized by higher O / C ratios but
lower MAE, increases significantly with aging. In contrast, two hydrocarbon-like OA factors with lower O / C
ratios and higher MAE decrease over time. These results emphasize the importance of categorizing BrC based
on its MAE and atmospheric behavior in climate models.
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1 Introduction

As a special class of organic aerosol (OA), brown carbon
(BrC) exhibits a significant light absorption ability at near-
UV and shorter visible wavelengths with a strong wavelength
dependence (Laskin et al., 2015). It accounts for approxi-
mately 19 %—40 % of the total absorption by carbonaceous
particles (Feng et al., 2013; Lin et al., 2014), with a global
radiative forcing ranging from +0.03 to +0.57 Wm™2 (Li
et al., 2023a). BrC can also perturb the temperature struc-
ture of the atmosphere and then influence cloud cover, known
as semi-direct effects (Laskin et al., 2015; Yan et al., 2018).
When deposited on snow and ice, BrC can reduce surface
albedo and cause early snow melting (Qian et al., 2015; Tuc-
cella et al., 2021). Additionally, the strong UV absorption
due to BrC can reduce the rate of atmospheric photochemi-
cal reactions, resulting in a 15 %-30 % decrease in regional
concentrations of OH radical and O3 (Wang et al., 2022).
However, our current understanding of the BrC light absorp-
tivity, especially its evolution upon aging processes, remains
limited, driving a significant uncertainty in the estimates of
its climate effects.

BrC originates from a variety of sources, including pri-
mary emissions from biomass burning, coal combustion, and
vehicular emissions (Olson et al., 2015; Sun et al., 2017; Xie
et al., 2017a; Park et al., 2018), as well as secondary pro-
cesses such as photochemical oxidation (Lambe et al., 2013;
Xie et al., 2017b), aqueous-phase processes (Lin et al., 2015;
Ye et al., 2019), and nighttime oxidation (Jiang et al., 2019;
Chen et al., 2023). Among these sources, biomass burning
has long been recognized as a dominant source (Saleh, 2020).
When considering BrC light absorption, the overall regional
or global radiative forcing of biomass burning aerosol can
shift from negative to positive effects (Saleh et al., 2015).

Many laboratory and field studies have investigated the
chemical and optical properties of BrC from biomass burning
(Hems et al., 2021). The optical properties of freshly emit-
ted BrC, such as the absorption Angstrom exponent (AAE)
and mass absorption efficiency (MAE) or imaginary part
(k), have been shown to strongly depend on burning condi-
tions, with BrC from flaming biomass burning combustion
exhibiting higher MAE and lower AAE than that from lower-
temperature smoldering combustion (Laskin et al., 2015;
Saleh, 2020). Utilizing the ratio of BC / OA as a proxy for the
burning condition, several studies have established a quanti-
tative relationship between the MAE and the burning condi-
tions based on laboratory combustion experiments (Saleh et
al., 2014; Xie et al., 2017a; Park et al., 2020). However, the
relationship varies with different studies and is suggested to
be affected by the biomass types (Xie et al., 2017a; Park et
al., 2020). So far, the extent to which the biomass types could
affect the BrC absorptivity is not clear and requires further
study.

Upon aging processes, BrC absorptivity could decrease
significantly due to the photobleaching of some chro-
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mophores, with a lifetime ranging from a few hours (Zhao
et al., 2015; Browne et al., 2019) to a few days (Forrister
et al., 2015; Sumlin et al., 2017). The photobleaching rate
largely depends on ambient conditions, including concentra-
tions of OH radical (Wang et al., 2014) and NO, (Yang et al.,
2022) as well as relative humidity and temperature (Klodt et
al., 2023; Gao et al., 2024). The chemical characteristics of
BrC also determine the extent of the photobleaching effect.
For example, tar balls from biomass burning are found to be
resistant to the photobleaching process (Saleh, 2020). More-
over, the light absorption of BrC can be enhanced through the
functionalization and polymerization of existing OA (Wong
et al., 2019; Hems et al., 2020) or the formation of new
nitrogen-containing organic compounds, e.g., nitroaromat-
ics (He et al., 2022; Yang et al., 2022). The photobleaching
and enhancement may occur concurrently, making the evo-
lution of BrC absorptivity more complicated. Some studies
reported a continuous decrease in k (Liu et al., 2021), while
some show a slight increase first followed by a significant de-
crease (Cappa et al., 2020; Schnitzler et al., 2020). However,
current studies mainly focus on the evolution of the overall
BrC absorptivity, and few have endeavored to distinguish the
behaviors of different BrC components (Wong et al., 2019;
Fleming et al., 2020), which may undergo totally different
aging processes.

In this study, we characterized the optical, physical, and
chemical properties of fresh and aged BrC emitted from
biomass combustion. By analyzing the synchronous evolu-
tion of both chemical components and light absorption in
the smoke, we explored the aging processes of different BrC
components and their contributions to the overall light ab-
sorption at different aging levels. The study demonstrated
significant discrepancies in the aging processes among dif-
ferent BrC components and suggested the necessity to clas-
sify BrC based on its optical properties, especially its photo-
bleaching rate, for its better representation in climate models.

2 Materials and methods

2.1 Experimental setup

Five types of biomass fuels were collected from major crop-
producing areas in China, including wheat straw (WS), rice
straw (RS), corn straw (CS), soybean straw (SS), and ap-
ple branch (AB) (Table S1 and Fig. S1 in the Supplement).
The rice is mainly distributed in central and southern China,
and others are mainly distributed in northern China. These
biomass types could represent the majority of China’s bio-
fuels. The combustion experiments were conducted at the
Institute of Earth Environment of the Chinese Academy of
Sciences (IEECAS) in Xi’an, China. Figure S2 illustrates the
instrument configuration. Emissions were generated by burn-
ing batches of ~ 10 g of dry biomass fuels (cut into pieces of
10—15 cm) on a combustion platform in a ~ 8 m3 combustion
chamber. After the flame was extinguished, the smoke was
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first mixed and allowed to stand in the combustion chamber
and was then diluted before being sampled by several online
instruments. Details of the chamber and combustion facilities
are provided in Tian et al. (2015).

A potential aerosol mass oxidation flow reactor (PAM-
OFR) (Aerodyne Research, LLC, Billerica, MA, USA) was
applied to simulate atmospheric aging processes. For each
test, the fresh (F) aerosols were measured in the first 40 min,
and then the UV light of the PAM-OFR was turned on for
the next 40 min to measure the aged aerosols. Detailed infor-
mation of the PAM-OFR is described by Cao et al. (2020).
Briefly, inside the PAM-OFR, OH radicals were formed
through a series of photochemical reactions of HO and O,
under 185 nm UV illumination. The simulated OH concen-
trations can thus be controlled by adjusting the UV light
intensity. In this study, two aging levels were simulated by
applying two distinct UV intensities. For each aging level,
the UV intensity was kept constant throughout the experi-
ment by regulating the lamp voltage. Based on the residence
time within the PAM-OFR (90s) and an assumed average
atmospheric OH concentration of 1.5 x 10° molecules cm 3
(Mao et al., 2009), the equivalent atmospheric aging lev-
els were estimated to be around 2d (A-2) and 7d (A-7)
in this study, similar to those reported by Li et al. (2020)
and Guo et al. (2022). Table S1 also summarizes the con-
ditions for all burning tests in this study. It is important to
note that the experimental conditions do not perfectly rep-
resent the photochemical conditions of the atmosphere, and
it emphasizes OH-driven oxidation under initially high-NO,
conditions which rapidly shift towards low-NO, conditions
(Cappa et al., 2020).

2.2 Gas analysis

The CO and CO; concentrations were monitored using a
Fourier transform infrared (FTIR) gas analyzer (DX4015,
Gasmet, Finland). Before each group of experiments, we
cleaned the FTIR sample cell with nitrogen and performed
background measurements. Gas concentrations were treated
by FTIR standard procedures (Calcmet v12.15) using the lin-
ear relationship between absorbance and molecular number
combined with the reference spectra. The modified combus-
tion efficiency (MCE), defined as CO,/(CO,+CO), was used
to indicate the burning conditions during each fire test (Ak-
agi et al., 2011; Wang et al., 2020b; Zhao et al., 2022). Here,
the CO and CO; represent the background-corrected CO and
CO, values in the smoke. The MCE measured in this work
ranged from 0.95 to 0.99 (Table S1). An MCE value greater
than 0.9 is indicative of flaming combustion (Sinha et al.,
2003; Akagi et al., 2011). The NO, and SO, concentra-
tions were monitored both before and after the PAM-OFR
(Fig. S2) using NO, analyzers (model 42i, Thermo Scientific
Inc., USA) and SO; analyzers (model 43i, Thermo Scientific
Inc., USA), respectively. The consumption rate of NO, and
SO, during the aging process could then be derived based on
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their concentrations measured after the PAM-OFR relative to
those before the PAM-OFR.

2.3 Aerosol characterization

The mass concentrations of non-refractory chemical compo-
nents were measured by a time-of-flight aerosol chemical
speciation monitor (ToF-ACSM; Aerodyne Research Inc.,
USA), including organics, nitrate (NO3), sulfate (SOi_),
chloride (C17), and ammonium (NHZ{). A detailed descrip-
tion of this instrument can be found in Frohlich et al. (2013)
and Xu et al. (2017). Briefly, the aerosols were first dried with
a diffusion dryer and then passed through a critical orifice
into a narrow beam via an aerodynamic lens. The aerosols
were successively vaporized by a heated surface (~ 600°),
ionized via electron ionization, and detected by a mass spec-
trometer detector. The collection efficiency (CE) value was
0.5 in this study (Middlebrook et al., 2012). The calibra-
tions were performed by dried monodispersed (300 nm) am-
monium nitrate and ammonium sulfate particles. The rel-
ative ionization efficiencies (RIEs) of 3.93 and 0.82 were
used for ammonium and sulfate, and the default values of
1.1, 1.4, and 1.3 were used for nitrate, organics, and chlo-
ride, respectively (Jimenez et al., 2003; Canagaratna et al.,
2007). The ToF-ACSM data were analyzed with the stan-
dard data analysis software (Tofware v3.3) within Igor Pro
(v7.08; WaveMetrics, Inc., Oregon, USA). In addition, pos-
itive matrix factorization (PMF) (Paatero and Tapper, 1994)
was performed on the high-resolution mass spectral matrix of
OA (Ulbrich et al., 2009; Zhang et al., 2011). Finally, three
OA factors were identified by the PMF model, including two
hydrocarbon-like OAs (HOA-1 and HOA-2) and one oxy-
genated OA (OOA).

To quantify the photochemical effect on aerosol chemical
compositions, we further calculated the enhancement ratio
(ER) of different species using BC as a proxy for primary
emissions (Eq. 1):

ER = Xaged Xtresh , (1)

BCaged BCtiesh
where X represents a certain species, e.g., NO3_ , SOﬁ_,
OA, or OOA. BC was measured via a seven-wavelength
aethalometer (AE33) as described in the following section.
The ER > 1 indicates net production of species X, while the
ER < 1 indicates net loss. Bias could be introduced by the as-
sumption that different species have the same wall-loss rate
(Hennigan et al., 2011). In addition, BC measured by AE 33
could also be biased by applying a fixed MAE value when
converting the optical absorption to the mass concentration,
which instead varies with BC mixing state (Zanatta et al.,
2018).

In addition, we also investigated the evolution of aerosol
size distributions along with the aging process and its possi-
ble influence on estimated BrC MAE. The particle number
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size distribution was obtained via a differential mobility an-
alyzer (DMA; Model 3082, TSI Inc., USA) combined with a
condensation particle counter (CPC; Model 3788, TSI Inc.,
USA), focusing on particles within a size range of approxi-
mately 12-460 nm.

2.4 Optical measurement

The light absorption of aerosols was measured with a seven-
wavelength aethalometer (Model AE33, Magee Scientific,
Berkeley, CA, USA). The AE33 measures light transmitted
through a filter on which particles are deposited and automat-
ically compensates for the loading effect and multiple scat-
tering coefficients (C) in real time (Drinovec et al., 2015,
2017). In this study, a newer filter tape (M8060) with a rec-
ommended C value of 1.39 was used. A value of 7.77 m? g~
was used to convert measured absorption at 880 nm by the
AE33 to the mass concentration of BC (Drinovec et al.,
2015). The AAE is an important parameter to characterize
the spectral dependence of aerosol absorption and was cal-
culated via Eq. (2):

babs (A) = K x A7AME, )

where byps (1) is the absorption coefficient at the wavelength
of A in Mm™!, and K is a constant. The absorption co-
efficients of seven wavelengths were used to fit the expo-
nential function curve to obtain AAE. Assuming BC is the
only light-absorbing component at 880 nm (Kirchstetter et
al., 2004; Kirchstetter and Thatcher, 2012), the b,ps of BC
and BrC at 370 nm was then calculated by Eqgs. (3)—(4):

—AAEgC
babs,BC (A) = baps (880nm) X (@) s (3)
babs,BrC ()\) = babs (k) - babs,BC ()\) , (4)
_ babs,BrC ()\)
MAE®)) = oA 5

Here, AAEpc was assumed to be 1.1, which represents the
likely range of AAE for BC externally and internally mixed
with non-absorbing materials (Lack and Langridge, 2013;
Li et al., 2022b; Tian et al., 2023). Uncertainties may arise
from the assumption that BC is the only light-absorbing com-
ponent at 880nm. A recent study suggested that tar BrC
can also exhibit significant absorption at 880 nm, with MAE
ranging from 0.2 to 1.8 m? g~! (Corbin et al., 2019). Fur-
thermore, the use of a fixed AAEpc introduces additional
uncertainty, as a wide range of 0.8—1.4 has been reported in
previous studies (Lack and Langridge, 2013). The MAEs of
BrC at different A were further calculated based on the mass
concentrations of OA (Eq. 5).

To further quantify the contributions of different OA
components to BrC absorption, a multiple linear regression
(MLR) model was applied to obtain the MAE values for
HOA-1, HOA-2, and OOA as follows:

bavs.Brc =m1 x [HOA — 1]+ my x [HOA — 2]+ m3 x [OOA]. (6)
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Here, mi, my, and m3 denote the MAE, in m? g’l. The light
absorption and MAE in this study refer to the wavelength
at 370 nm, unless otherwise noted. The ER of BrC absorp-
tion was also calculated using a similar equation to that for
chemical components, with X representing the absorption of
BrC at 370 nm and the BC term substituted by absorption at
880 nm.

3 Results and discussion

3.1 Chemical compositions of fresh and aged smoke

The chemical components of fresh and aged smoke from dif-
ferent biomass burning are illustrated in Fig. 1a. For fresh
smoke, the mass fraction of OA is the highest (39 %—63 %).
The relative importance of BC and Cl1™ varies significantly
with biomass type. For example, the median mass fractions
of BC emitted by apple branch and soybean straw are rel-
atively high, reaching 22 % and 27 %, respectively, but are
only around 7.8 %—10 % for other biomass types, which in-
stead exhibit higher mass fractions of C1~ (21 %-34 %) and
NHI (10 %9—13 %). A relatively high mass fraction of CI™
(> 20 %) was also reported in the smoke from straw combus-
tion (Ni et al., 2017; Ma et al., 2019). This difference may be
related to local crop fertilization, which significantly affects
the element content of the straw (Huan-cheng et al., 2005).
Higher MCE may also cause more emission of C1~ due to
higher burning temperatures (Wang et al., 2020b). The mass
fractions of SOi_ and NOj are very low (< 5%), except
for apple branch, consistent with other laboratory results (Li
et al., 2016; Ma et al., 2019; Guo et al., 2022). Upon the
aging process, significant changes were found for aerosols
with secondary sources, including SO?[, NOy3’, and OA. For
SOﬁ_, the ER is around 1.1-2.3 at A-2 and further increases
to 1.7-3.1 at A-7 (Table S2). The ER of NO3 at A-2 (1.5—
2.9) is higher than that of SO?~, which could be explained by
a faster NO; production rate and is also consistent with the
higher NO, consumption rate compared to SO, (Fig. S3).
The ER of NO3 at A-7 (1.6-2.6), however, is similar to or
even lower than that at A-2 and hence is significantly lower
than that of SOif. Similar trends of SOi* and NO; from A-
2 to A-7 have also been reported in other studies (Guo et al.,
2022) and are attributed to the replacement of NO5; by more
acidic SOZT Similarly, C1~ depletion can also result from
acid replacement by stronger acids such as HySO4 and HNO3
(Wang et al., 2019) or reactions with organic acids (Laskin et
al., 2012), leading to a low ER value of C1~ (i.e.,, ER < 1).
Moreover, the cycle between NO, and their oxidative reser-
voir (NO,) has a significant impact on the NO, / NO; ratio,
and the photolysis of particulate nitrate (pNO3) is proposed
as a potentially important mechanism influencing the parti-
tioning between NO, and NO, (Ye et al., 2023). However,
the photolysis rate constant of pNOj3 is highly variable and
can be greatly affected by aerosol properties, including pNO3
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loading and particle size (Ye et al., 2017; Andersen et al.,
2023). This may also help explain the observed differences
in the ER of NOj between A-2 and A-7.

For OA, the ER increases from 1.3-1.6 at A-2 to 1.4-1.9
at A-7, showing continuous formation of secondary organic
aerosols (SOAs). This could be verified by the stack diagram
of the high-resolution mass spectra in Fig. S4, which demon-
strates a notable increase in signals at m/z of 28 and 44 for
all biomass types under the OH exposure, indicative of the
formation of oxygenated OA, such as organic acids (Aiken et
al., 2008; Lambe et al., 2013). To further describe the implied
changes in OA composition, the H/C and O / C ratios for
both fresh and aged smoke are distributed on the Van Krev-
elen diagram in Fig. 1b. The ratios are estimated based on
high-resolution fragments (i.e., m/z of 43 and 44) using cali-
bration factors from Canagaratna et al. (2015), which derived
these factors from sampling standards, assuming that the el-
emental composition of the original species corresponds to
the averaged ion composition across the mass spectrum. The
H /Cand O / C values of fresh OA are 1.44 and 0.33, respec-
tively, indicating a low carbon oxidation state (OS; ~ —1).
Compared to fresh OA, the O /C ratios progressively in-
crease to 0.45 for A-2 and 0.57 for A-7, accompanied by
an OS, approaching 0, which is attributed to the formation
of oxygenated OA. The H / C ratios also show an increase
(1.52) for A-2 but a slight decrease for A-7 compared to A-2.
The evolution of H / C depends on the precursor, and in gen-
eral it decreases with OH exposure due to the hydrogen loss
from the C = O bond formation (Lambe et al., 2013). How-
ever, Hennigan et al. (2011) also reported a slight increase in
H / Cratios. Li et al. (2023b) attributed the discrepancy to the
abundance of Co,H307 in fresh smoke, where low CoH30%
levels lead to an increase in m/z of 43 during the initial aging
process.

3.2 OA classification based on PMF

To further explore the evolution of different OA components,
we classified total OA from both fresh and aged smoke into
different categories based on the PMF model. We ran the
model with the number of factors ranging from two to seven
and chose three factors for the final results based on optimal
fit and interpretability (Fig. 2). Factor 1, classified as HOA-1,
has the lowest O / C ratio (0.08) and shows strong correla-
tions with ions at m/z of 55 (r> = 0.85) and 57 (> = 0.90),
respectively. Many field observations indicate that this factor
is usually related to different combustion processes (Tham-
ban et al., 2017; Rivellini et al., 2020; Li et al., 2022a). Fac-
tor 2, classified as HOA-2, is also characterized by hydrocar-
bon fragments, especially at m/z of 41, 43, 55, 57, 67, 69,
and 71. It has moderate ratios of O / C (0.37) and H/ C (1.2)
compared to other factors. It also has a good correlation with
BC (r? = 0.50), and ions at m/z of 60 (> =0.41) and 73
(r2 =0.68), respectively (Table S3), which is also similar to
the HOA resolved from ambient OA (Thamban et al., 2017,
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Li et al., 2017; Wang et al., 2020a). Factor 3 is dominated
by ions at m/z of 28 and 44, with the highest O / C ratio of
0.76. Moreover, it is well correlated with oxidized products
or fragments, including SOﬁ_ (r2 =0.51), NOy (r* =0.58),
m/z of 28 (r2 = 0.72), and m/z of 44 (r* = 0.90), and thus
is classified as OOA.

For fresh smoke, the OA is dominated by HOA-1 and
HOA-2, while the contribution of OOA is still of significance
(19 %—40 %; Fig. 2d). This is actually a significant feature
distinguishing biomass sources from other sources (Aiken et
al., 2008). Biomass is naturally rich in oxygen-containing
compounds, such as cellulose, hemicellulose, and lignin.
And those oxygen-containing structures partially break down
and release oxygen-rich substances into the gas or aerosol
phase during combustion. Incomplete combustion during ig-
nition and the burnout stages can also produce oxidized OA
with relatively high O / C ratios (Heringa et al., 2011; Av-
ery et al., 2023). Previous studies have reported O / C ratios
of 0.2-0.6 in fresh biomass burning smoke (Heringa et al.,
2011; Fang et al., 2017; Ma et al., 2019; Li et al., 2023b),
significantly higher than those from traffic exhaust (around
0.02-0.19) (Chirico et al., 2010; Dallmann et al., 2014; Col-
lier et al., 2015). Along with OH exposure, the fractions of
HOA-1 and HOA-2 decrease, while OOA increases signif-
icantly, reaching 55 %70 % at A-2 and 62 %—80 % at A-7,
respectively. For HOA-1, the ER for all biomass types de-
creases from 0.88 at A-2 to 0.66 at A-7, respectively. The
ER of HOA-2 is around 0.63 at A-2 but slightly increases
to 0.71 at A-7. The ER of OOA of different biomass types
reaches 2.6-3.7 at A-2, implying significant and fast yields
of SOA. The ER of OOA continues to grow at A-7, but the
growth rate slows down compared to A-2. Previous studies
have also shown that the initial rapid increase in SOA and
O /C in biomass burning aerosols slows down when aging
time exceeds 2 d due to the depletion of precursors (Grieshop
et al., 2009; Cappa et al., 2020; Li et al., 2024). It is worth
mentioning that there exists a large variability in OA com-
position as well as its evolution upon aging among different
biomass types. For instance, the ER of OOA in AB smoke
is the smallest, and the difference between A-2 and A-7 is
minor, while the ER of OOA in wheat straw smoke increased
by nearly 63 % from A-2 to A-7.

3.3 Evolution of particle size

The particle number size distribution of freshly emitted
biomass smoke exhibits a unimodal lognormal distribution.
After PAM aging, it exhibits a bimodal pattern, with an addi-
tional small-particle mode (around 20 nm) compared to fresh
smoke, mainly resulting from nucleation. Here we only fo-
cus on the evolution of particles in accumulation mode. The
maximum peak diameter (Dp,) and half-peak widths (o) of
Gaussian fits are shown in Fig. 3. The wheat straw shows the
largest Dy, (239 nm) of freshly emitted biomass aerosols, fol-
lowed by corn straw (233 nm), soybean straw (204 nm), rice
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respectively.

Atmos. Chem. Phys., 25, 11051-11065, 2025 https://doi.org/10.5194/acp-25-11051-2025



Z. Yang et al.: Optical properties of fresh and aged biomass burning aerosols

straw (178 nm), and apple branch (162 nm). The Dy, is within
the range (50-500 nm) reported by Chen et al. (2019). Pre-
vious studies also show that the wheat smoke has a higher
Dy, in residue crops (Fang et al., 2017; Chen et al., 2019).
Variations in Dy, are related to both biomass type and com-
bustion conditions (Park et al., 2013; Maet al., 2019), such as
fuel-to-air ratio, moisture content, and density. Furthermore,
it can be seen that rice straw has the smallest o (0.22), while
apple branch has the largest o (0.28) and error bar (Fig. 3b),
indicating that the particle number size distribution of apple
branch is the widest, while that of rice straw is the narrowest.
A significant increase in Dy, is observed with increasing
OH exposure, about a 15 % and 17 % increase for A-2 and
A-7, respectively. A similar change has also been reported
in previous studies. For instance, Ma et al. (2019) reported
a 1.1-1.4-fold increase in particle size during 4 h of aging,
and Zhao et al. (2022) showed a 1.2-fold increase after 15d
of photooxidation. The increase for 7 d is only slightly higher
than that for 2 d, indicating a significant slowdown in particle
growth. Many studies have also shown that Dy, in biomass
burning aerosols increases slowly after a rapid increase upon
OH exposure (Fang et al., 2017; Reyes et al., 2019). This
could be explained by both the limited availability of precur-
sors and the fact that, as particles grow, more mass is required
to increase their diameter by one unit. Consequently, smaller
particles grow faster in diameter, leading to a narrower size
distribution and a reduced o upon aging (Fig. 3b).

3.4 Light absorption properties

A significant BrC contribution to the total light absorption in
fresh smoke is observed but with a large variability across
different biomass types (fgrc = 29 %—60 %; Fig. 4). These
values are in the middle range of the results in previous stud-
ies (~10%-90%) (Tian et al., 2019; Zhang et al., 2020;
Fang et al., 2022). The presence of BrC makes the AAE of
total aerosol significantly deviate from 1, with the highest
value for rice straw (2.3), followed by corn straw (1.8), ap-
ple branch (1.6), wheat straw (1.5), and soybean straw (1.4).
These AAE values are also within the range of previous stud-
ies for biomass burning aerosols (Laskin et al., 2015). Under
OH exposure, the AAE decreases due to a reduction in BrC
light absorption, with the ER of bups B,c around 0.51-0.85
and 0.63-0.90 at A-2 and A-7, respectively. The difference
is statistically significant with p < 0.05, except for rice sam-
ples. The large decrease in BrC absorption at A-2 implies
a significant effect of photobleaching associated with OH-
driven oxidation in the PAM. No significant difference is ob-
served in the ER of BrC absorption between A-2 and A-7, in-
dicating a limited photobleaching effect after 2 d of aging. It
has been reported that 20 %—64 % of BrC absorption remains
even after a longer aging level (Sumlin et al., 2017; Browne
et al., 2019; Hems et al., 2021), consistent with our results.
Additionally, an exponential relationship between AAE and
fBrc is clearly observed (AAE = 0.97 xexp (1.4 % fgrc), with
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95 % confidence intervals of 0.93—1.02 and 1.29-1.52 for the
former and latter coefficients, respectively). A similar rela-
tionship has also been reported by Sun et al. (2021) for fresh
household biomass burning smoke, with AAE = 1.01 x exp
(1.8 x fBrc), which falls within the uncertainty range of our
results. And our results further demonstrate that the relation-
ship stands for both fresh and aged biomass burning emis-
sions.

In addition to the variation in BrC absorption, the MAE
of fresh OA emitted from different biomass burning also
exhibits a large range, with the highest value from rice
straw (5.7m? g~ 1), followed by apple branch (3.9m? g™ 1),
soybean straw (3.7 m? g’1 ), corn straw (3.5 m? g’l ), and
wheat straw (2.1 m? g_l) (Fig. 5a). Upon OH exposure, a
large decrease in the MAE is observed, reduced by 32 %-—
64 % and 37 %—68 % at A-2 and A-7, respectively, compared
with fresh BrC. The change in MAE is associated with the
changes in both BrC absorption and OA mass concentra-
tions. In other words, it is due to the combined effect of
bleaching and the formation of SOA with weak absorption.
Compared to fresh smoke, the by Brc at A-2 is reduced by
about 15 %—49 %, accounting for roughly half or more of the
change in MAE. This suggests that the reduction in MAE at
A-2 is dominated by both baps Brc and OA mass. Moreover,
the MAE of rice straw, corn straw, and soybean straw at A-7
is similar to that at A-2, which may imply the resistance of
BrC to photobleaching after the first few days of aging. Sim-
ilarly, Zhao et al. (2022) also reported that 49 % to 67 % of
the initial MAE of rice straw remained after an equivalent 9 d
of aging.

To further distinguish the light absorptivity of different OA
components, we calculated the MAE of the three OA factors
based on the MLR method (Fig. 5b). There exists a signifi-
cant difference in the MAE of the three OA factors, with the
highest value (5.6m? g~!) for HOA-1, followed by HOA-2
(4.0m? g~!) and OOA (0.76 m? g~!). The decrease in MAE
with the increase in O /C ratio is consistent with previous
findings (Sumlin et al., 2017; Schnitzler et al., 2020; He et al.,
2022). As discussed above, the evolutions of three OA factors
are quite different during the aging process; their contribu-
tion to the light absorption thus varies significantly. For A-2
and A-7, the ERs of byps Brc for HOA-1 are 0.85 and 0.60, re-
spectively, and HOA-2 shows similar values of 0.69 and 0.79.
Contrarily, OOA exhibits the highest ERs of b,ps Brc (3.2 and
4.0, respectively). Consequently, the contribution from OOA
absorption increases from 6 % with fresh BrC to 19 % at A-
2 and 26 % at A-7, respectively, while the contribution from
HOA-1 absorption decreases from 65 % with fresh BrC to
59% at A-2 and 43 % at A-7, respectively, and that from
HOA-2 remains similar (23 %—30 %) (Fig. S6). The signif-
icantly different behavior of the three OA factors combined
with their distinct MAE values suggests the importance of
climate models to classify OA into different groups based on
their optical properties, which could be represented by the
oxidation sate in this case.
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Figure 3. (a) The maximum peak diameter (Dp,) and (b) half-peak widths (o) from Gaussian fits for particle number size distribution. The
solid circles and whiskers denote the median and the 25th and 75th percentiles, respectively.
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Additionally, we found that the MAE of OA decreases
with an increase in particle size (Fig. 5d). To explore the
potential influence of particle size on the variation in BrC
MAE, we conducted a theoretical calculation of the MAE
for pure BrC particles as a function of D, using Mie theory.
Assuming that the BrC particles are spherical with a density
of 1.6 gcm™3, the MAE for BrC particles at a specific diam-
eter can be determined, given a particular refractive index.
In this study, we adopt the real part (n) of the refractive in-
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dex of pure BrC, which is 1.7 in Saleh et al. (2014), and the
k varies from 0.6 to 0.02. As shown in Fig. 5d, for a fixed
particle diameter, the BrC MAE increases with k. The rela-
tionship between particle diameter and MAE is more com-
plicated even with the refractive index remaining constant.
For small particles (< 100 nm), the MAE generally increases
with diameter (dashed gray lines). However, for large parti-
cles, the MAE decreases with diameter given a larger k value
but exhibits weak fluctuations and no obvious trends when

https://doi.org/10.5194/acp-25-11051-2025
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Figure 5. (a) MAE of BrC at 370nm and (b) comparison of BrC MAE in this study with previous studies including both laboratory
measurements and field observations (see details and corresponding references in Tables S4 and S5). (¢) The enhancement ratio (ER) of
BrC absorption in different OA factors. (d) The relationship of MAE at 370 nm with particle diameter (Dp); the blue, red, and orange dots
represent the peak sizes of the particle mass size distribution from fresh (F), 2d (A-2), and 7 d (A-7), respectively. Note that the MAE of OC
in some studies has been converted to the MAE of OA assuming an OA / OC equal to 1.8; the MAE dependence on particle size in (d) is

calculated using the Mie model for pure BrC (dashed gray lines).

k is small, which is consistent with previous studies (Hems
et al., 2021). The median diameters of BrC particles in both
fresh and aged biomass burning plumes detected in this study
are in the region where MAE either decreases with diameter
or shows minimal dependence on diameter (Fig. 5d). There-
fore, the large reduction in MAE is mainly driven by changes
in k, specifically, lower k values at larger Dp. As discussed
earlier, upon OH exposure, there is a significant increase in
particle size with new component formation (Fig. 3). The lat-
ter is dominated by a greater contribution from OOA with
high O/ C (Fig. S5b), which has a much lower MAE or k
compared to the other two OA factors.

For better comparison, Fig. 5b also summarizes MAE val-
ues for biomass burning OA reported from both laboratory
measurements and field observations. The MAE of fresh BrC
either measured in the laboratory or derived from ambient
observations shows a large variability but has a similar range
to that of our results. This large variability is primarily at-
tributed to differences in biomass type and burning condi-
tions. As mentioned above, the MAE or k of biomass burn-
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ing OA could be expressed as a function of BC / OA, ac-
counting for the influence of burning conditions (Saleh et al.,
2014; Pokhrel et al., 2016). Here, we found a similar rela-
tionship with a linear regression slope of 8.0 (Fig. S5a). Xie
et al. (2017a) and Park et al. (2020) also reported a slope of
approximately 0.63 and 28, respectively, for biomass burning
smoke. The large differences in the slope may be due to vari-
ations in the biomass type and combustion conditions. The
MAE for aged OA is still very limited in laboratory mea-
surements, with a value around 1.3m? g~ that largely de-
pends on the simulated aging levels. This is also consistent
with our results, 2.1 and 1.8 m? g_1 for OA at A-2 and A-7,
respectively. The MAE of SOA derived from ambient obser-
vations is slightly lower. This is because SOA from ambient
studies includes precursors from sources other than biomass
burning. It has been shown that SOA from biogenic sources
is less light-absorbing compared to that from anthropogenic
sources, including biomass burning (Du et al., 2014).

Atmos. Chem. Phys., 25, 11051-11065, 2025



11060

4 Conclusions

The optical, physical, and chemical properties of the biomass
burning smoke upon aging were monitored simultaneously to
better understand the evolution of biomass burning aerosol,
especially BrC, and its driving factors. Upon OH exposure,
the fraction of secondary components increases significantly,
and the increase in OA is associated with the rising value of
O / C. However, the behavior of the secondary components
differs significantly at different aging levels. The ER of NO5
at A-2 is similar to or lower than A-7, probably due to the
replacement of NO;™ by more acidic SOﬁ_ or the photolysis
of particulate nitrate. The ER of OA at A-2 and A-7 are also
very similar due to the limited availability of precursors. The
particle number size distribution of fresh biomass smoke ex-
hibits a unimodal lognormal distribution. Particle growth is
mainly dominated by the formation of SOA and thus shows
a similar trend to OA upon aging.

The optical properties of the biomass burning obtained in
this study are in general within the wide range reported in
previous studies, including the relationship between the AAE
of total aerosol and the fraction of BrC absorption as well as
the dependence of BrC MAE on the BC / OA ratio. The large
variation in the quantified relationship, however, emphasizes
the significant influence from the biomass type and warrants
more studies. The extent of the bleaching and the formation
of SOA with weak absorptivity together determine the evo-
lution of BrC MAE at different aging levels. There exists a
large decrease in BrC MAE from fresh smoke to A-2, con-
tributed comparably by both the bleaching in BrC absorp-
tion and the increase in SOA. We also observed a negative
correlation between the MAE and the particle size. How-
ever, based on the Mie theory calculation, we found that the
change in MAE is mainly driven by the change in k of OA
instead of the particle size, implying lower k values at larger
particle sizes. This is consistent with the formation of SOA
with lower MAE (i.e., k) upon aging, which dominates the
particle growth. Therefore, it is important to distinguish the
behavior of different OA components and their contribution
to BrC absorption.

The study further classified the OA into three factors based
on the PMF model, among which HOA-1 and HOA-2 are
more related to fresh smoke, while OOA is associated with
secondary formation with a higher O / C value. The MAEs
of different OA factors also differ from each other, decreas-
ing as the O/ C value increases. The behavior of different
OA factors upon aging also shows distinct patterns, with a
significant decrease in HOA-1 and HOA-2 but an increase in
OOA. For A-2 and A-7, the ERs of by rc for HOA-1 are
0.85 and 0.60, respectively, and HOA-2 shows similar values
of 0.69 and 0.79. Contrarily, OOA exhibits the highest ERs of
babs,Brc (3.2 and 4.0, respectively). Our results thus demon-
strate the necessity of classifying OA into different categories
based on their distinct MAE and behavior upon aging. Future
studies should focus on the evolution of different OA groups
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rather than the whole OA, which could be classified by their
O / C value, solubility, etc., to develop more appropriate BrC
parameterization in model studies for better assessing its cli-
mate effects.
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