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Table S1: Experimental design.  27 

Experiments 
Anthropogenic Emissions of Aerosols and Precursors 

China Other regions of the world 

BASE 2013 2013 

CHN 2019 2013 

OTH 2013 2019 

NAEU 2013 
North America and Europe: 2019; 

Other: 2013 

SASEA 2013 
South Asia and Southeast Asia: 2019; 

Other: 2013 

 28 

  29 
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 30 

Figure S1. Differences in anthropogenic emissions of aerosols and precursors between 2013 31 

and 2019. Spatial distributions of differences in anthropogenic emissions (unit: g m–2 yr–1) of 32 

aerosols and precursors, including black carbon (BC, a), organic carbon (OC, b) and sulfur dioxide 33 

(SO2, c) between 2013 and 2019 (2019 minus 2013). The total changes in China are noted at the 34 

bottom-left corner of each panel.  35 

  36 
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 37 

Figure S2. Comparisons of absolute changes in near-surface PM2.5 concentrations between 38 

observation and model simulation. Spatial distributions of observed (circles) and modeled 39 

(shades) annual mean absoulte changes (2017–2019 minus 2013–2015) in near-surface PM2.5 40 

concentration (unit: μg m–3). Normalized mean bias (NMB) and correlation coefficient (R) 41 

between observation and simulation are shown at the bottom-left corner of each panel. NMB = 42 

100 %  ×  ∑ (Modeli − Observationi)/ ∑ Observationi, where Modeli and Observationi are the 43 

modeled and observed values at site i, respectively. 44 

  45 
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 46 

Figure S3. Comparisons of absolute changes in aerosol optical depth (AOD) between satellite 47 

retrieval and model simulation. Spatial distributions of annual mean absolute changes (2017–48 

2019 minus 2013–2015) in Moderate Resolution Imaging Spectroradiometer (MODIS) (a) and 49 

modeled (b) AOD (unitless). Normalized mean bias (NMB) and correlation coefficient (R) 50 

between modeled AOD  and MODIS AOD are shown at the bottom-left corner of panel a. NMB 51 

= 100 %  ×  ∑ (AOD-modeli − AOD-MODISi)/ ∑ AOD-MODISi, where AOD-modeli and AOD-52 

MODISi are the modeled and MODIS AOD values at grid i, respectively. Note that the magnitudes 53 

of the observed and modeled data are not directly comparable, and the color scales represent 54 

different ranges. 55 

  56 
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  57 

Figure S4. Comparisons of relative changes in near-surface PM2.5 concentrations between 58 

observation and model simulation. Spatial distributions of observed (circles) and modeled 59 

(shades) annual mean relative changes (2017–2019 minus 2013–2015, relative to 2013–2015) in 60 

near-surface PM2.5 concentration (unit: %). Relative changes of observation and model 61 

simulation and correlation coefficient (R) between observation and simulation are shown at the 62 

bottom-left corner of the panel.  63 

  64 
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 65 

Figure S5. Comparisons of relative changes in aerosol optical depth (AOD) between satellite 66 

retrieval and model simulation. Spatial distributions of annual mean relative changes (2017–67 

2019 minus 2013–2015, relative to 2013–2015) in Moderate Resolution Imaging 68 

Spectroradiometer (MODIS) (a) and modeled (b) AOD (unit: %). Relative changes of observation 69 

and model simulation and correlation coefficient (R) between observation and simulation are 70 

shown at the bottom-left corner of panel a.  71 

  72 
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 73 

Figure S6. Comparisons of surface and TOA net total radiative flux under all sky and clear 74 

sky conditions between observation and model simulation. Spatial distributions of surface (a–75 

d) and TOA (e–h) net total radiative flux (unit: W m–2) under all sky (a, b, e, and f) and clear sky 76 

(c, d, g, and h) conditions over Australia in observation (2010–2019 annual averages from ERA5, 77 

a, c, e, and g) and model simulation (annual averages from the BASE experiment, b, d, f, and h). 78 

Regional averages over Australia in observation and model simulation and normalized mean bias 79 

(NMB) and correlation coefficient (R) between observation and model simulation are shown in 80 

the right boxes.  81 

 82 
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 83 

Figure S7. Comparisons of surface air temperature, surface downward solar radiation, and 84 

10m wind speed between observation and model simulation. Same as Figure S4, but for surface 85 

air temperature (a and b, unit: °C), surface downward solar radiation (c and d, unit: W m–2) and 86 

10m wind speed (e and f, unit: m s–1). 87 

  88 
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 89 

Figure S8. Comparisons of precipitation rate, relative humidity and total cloud cover 90 

between observation and model simulation. Same as Figure S4, but for precipitation rate (a and 91 

b, unit: mm day–1), relative humidity (c and d, unit: %), and total cloud cover (e and f, unit: %). 92 

  93 



manuscript submitted to Atmospheric Chemistry and Physics 

11 

 94 

Figure S9. Spatial distributions of annual mean dry factor (unit: unitless) in Australia during 95 

2010–2019. The data is from fire danger indices historical data from the Copernicus Emergency 96 

Management Service (CEMS, 2019; Vitolo et al., 2020). 97 

98 
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 99 
Figure S10. Spatial distribution of simulated changes in FFDI (unit: unitless) during fire 100 

seasons in Australia between BASE and CHN (CHN minus BASE). Shaded areas indicate 101 

results that are statistically significant at the 90% confidence level. Regional averages for 102 

Australia are noted at the bottom-left corner of each panel. The left panel shows FFDI (DF = 10), 103 

and the right panel shows FFDI (gridded DF). 104 

  105 
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 106 

Figure S11. Simulated changes in convective and large-scale precipitation rate in Australia 107 

due to aerosol changes in China between 2013 and 2019. Spatial distributions of simulated 108 

differences in annual mean convective (a) and large-scale (b) precipitation rate (unit: mm day–1) 109 

in Australia between BASE and CHN (CHN minus BASE). The shaded areas indicate results are 110 

statistically significant at the 90% confidence level. Regional averages of the responses over 111 

Australia are noted at the bottom-left corner of each panel. 112 

113 
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 114 

Figure S12. Linear trends of observed precipitation rate during 2001–2019 based on ERA5. 115 

The time series of annual mean precipitation rate (unit: mm day⁻¹) over Australia during 2001–116 

2019 from ERA5 reanalysis. The linear trends for the periods 2001–2010 and 2010–2019 are 117 

indicated. The time series are also given after removing the influence of Niño 3.4 index. 118 

  119 
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 120 

Figure S13. Scatter plot showing the correlation between SST anomaly in Niño 3.4 region 121 

and precipitation in Australia. The red line represents the linear regression fit to the data, with 122 

the corresponding correlation coefficient (R) and p-value displayed in the figure. 123 

  124 
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 125 

Figure S14. Linear trends of observed precipitation rate in Australia based on ERA5, 126 

GPM, and GPCP. Spatial distributions of linear trends annual mean precipitation rate (unit: mm 127 

day–1) in Australia during 2010–2019 from ERA5 (a), GPM (b), and GPCP (c) datasets. The 128 

shaded areas indicate trends are statistically significant at the 90% confidence level. Regional 129 

averages over Australia are noted at the bottom-left corner of panels. 130 

  131 
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  132 

Figure S15. Time series of anthropogenic SO2 emission in China alongside surface air 133 

temperature and precipitation rate averaged over Australia. SO2 emission (unit: Tg yr–1) data 134 

are sourced from CEDS, while surface air temperature (unit: °C) and precipitation rate (unit: mm 135 

day–1) data are derived from ERA5. Correlations between SO2 emission in China and surface air 136 

temperature averaged over Australia, as well as between SO2 emission in China and precipitation 137 

rate averaged over Australia, are indicated above the figure. 138 

  139 
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 140 

Figure S16. Linear trends of observed precipitation rate, surface air temperature and 141 

relative humidity in Australia during 1940–2019 based on ERA5. Spatial distributions of linear 142 

trends of annual mean precipitation rate (a, unit: mm day–1 yr–1), surface air temperature (b, 143 

unit: °C yr–1) and relative humidity (c, unit: % yr–1) in Australia during 1940–2019 from ERA5. 144 

The shaded areas indicate trends are statistically significant at the 90% confidence level. Regional 145 

averages over Australia are noted at the bottom-left corner of each panel.  146 

  147 
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 148 

Figure S17. Changes in vertically-integrated total, low, mid-level, and high cloud cover in 149 

Australia due to aerosol changes in China between 2013 and 2019. Spatial distributions of 150 

simulated differences in annual mean vertically-integrated total (a), low (b), mid-level (c), and 151 

high (d) cloud cover (unit: %) in Australia between BASE and CHN (CHN minus BASE). The 152 

shaded areas indicate results are statistically significant at the 90% confidence level. Regional 153 

averages of the responses over Australia are noted at the bottom-left corner of each panel. 154 

 155 

  156 



manuscript submitted to Atmospheric Chemistry and Physics 

20 

 157 

Figure S18. Simulated changes in vertically-integrated moisture flux and its divergence in 158 

Australia due to aerosol changes in China between 2013 and 2019. Spatial distributions of 159 

simulated differences in annual mean vertically integrated moisture flux (unit: kg m–1 s–1, vectors) 160 

and its divergence (unit: kg m–2 s–1, shades) in Australia between BASE and CHN (CHN minus 161 

BASE). Only moisture fluxes which are statistically significant at the 90% confidence level are 162 

shown. The shaded areas indicate divergences are statistically significant at the 90% confidence 163 

level. 164 

 165 



manuscript submitted to Atmospheric Chemistry and Physics 

21 

 166 

Figure S19. Simulated changes in 10m wind speed, AOD, dust burden, and sea salt burden 167 

in Australia due to aerosol changes in China between 2013 and 2019. Spatial distributions of 168 

simulated differences in annual mean 10m wind speed (a, unit: m s–1), AOD (b, unitless), dust 169 

burden (c, unit: kg m–2), and sea salt burden (d, unit: kg m–2) in Australia between BASE and CHN 170 

(CHN minus BASE). The shaded areas indicate results are statistically significant at the 90% 171 

confidence level. Regional averages of the responses over Australia are noted at the bottom-left 172 

corner of each panel.  173 

 174 

 175 
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 176 

Figure S20. Simulated changes in surface specific humidity and specific humidity differences 177 

between surface and 850 hPa in Australia due to aerosol changes in China between 2013 and 178 

2019. Spatial distributions of simulated differences in annual mean surface specific humidity (a, 179 

unit: kg kg–1) and differences in specific humidity between surface and 850 hPa (b, Surface minus 180 

850 hPa, unit: kg kg–1) in Australia between BASE and CHN (CHN minus BASE). The shaded 181 

areas indicate results are statistically significant at the 90% confidence level. Regional averages 182 

over Australia are noted at the bottom-left corner of each panel. 183 

  184 
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 185 

Figure S21. Linear trends of observed precipitation rate in Australia during 2013–2019 186 

based on ERA5. Spatial distributions of linear trends annual mean precipitation rate (unit: mm 187 

day–1) in Australia during 2013–2019 from ERA5. The shaded areas indicate trends are statistically 188 

significant at the 90% confidence level.  189 

  190 
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 191 

Figure S22. Linear trends of observed precipitation rate in Australia during 2010–2023 192 

based on ERA5. Spatial distributions of linear trends annual mean precipitation rate (unit: mm 193 

day–1) in Australia during 2010–2023 from ERA5. The shaded areas indicate trends are statistically 194 

significant at the 90% confidence level.  195 

  196 
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 197 

Figure S23. Simulated changes in precipitation rate in Australia due to aerosol changes in 198 

China between 2013 and 2019. Spatial distributions of simulated differences in annual mean 199 

precipitation rate (unit: mm day–1) in Australia between BASE_FAST and CHN_FAST 200 

(CHN_FAST minus BASE_FAST). The shaded areas indicate results are statistically significant 201 

at the 90% confidence level. These experiments were run for 30 years, with the last 15 years 202 

analyzed using the CESM atmospheric component (CAM5) with fixed sea surface temperature. 203 

  204 
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