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Abstract. The cloudy atmospheric boundary layer is a complex, open, dynamical system that is difficult to
fully characterize through observations. Aircraft measurements provide cloud dynamical, thermodynamical, and
microphysical properties along a flightpath, at high spatial/temporal resolution (order 10 m/0.1 s). These data are
essentially contiguous “snapshots” in time of the state of the cloud and its environment. Polar-orbiting satellite-
based remote sensing yields snapshots of retrieved cloud and aerosol properties once or twice a day at spatial
scales on the order of 250 m, but these are usually averaged to scales of & 20-100 km to reduce data variability.
Neither approach tracks a parcel of air in time, a view that would yield more direct insights into the evolving
system. Nevertheless, our long experience with aircraft and satellite-based remote sensing has taught us much
about atmospheric processes, suggesting that one can gain insights into processes from these snapshots. Using
mostly previously published work we present examples of collections of observation snapshots that reveal var-
ious degrees of process-level understanding. We couch the discussion in terms of the concepts of space-time
exchange, ergodicity, and process vs. observation timescales. It is our hope that this paper will encourage the

atmospheric sciences community to explore the value of these concepts more deeply.

1 Introduction

The atmospheric system, like many other complex, open sys-
tems comprises myriad coupled processes, a very large num-
ber of coupled geophysical variables (GVs), and a huge num-
ber of degrees of freedom. The atmospheric system is thus
notoriously unpredictable (e.g., Bauer et al., 2015; Selz et al.,
2022). Survival instincts have for millennia driven humans
to observe and record the weather, with ever-increasing lev-
els of sophistication, especially over the past century and a
half. Current observational systems include highly sophisti-
cated surface-based in-situ and remote sensing instruments,
aircraft-borne cloud and aerosol microphysics probes, and
passive and active remote sensing systems in space. Aircraft

measurements provide cloud dynamical, thermodynamical,
and microphysical properties along a flightpath at high spa-
tial/temporal resolution (order 10 m/0.1 s). At typical aircraft
speeds of 50-100m s~ these measurements quickly become
spatially de-correlated, which limits what one can learn about
the evolution of a process based on consecutive measure-
ments. Thus these data are essentially snapshots in time of
the state of the cloud and its environment. Satellite-based re-
mote sensing yields snapshots of retrieved cloud and aerosol
properties at spatial scales on the order of 250 m, but these
are usually aggregated to scales of &~ 20-100km to reduce
data variability. The aggregation creates further challenges to
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addressing processes, particularly when process timescales
are short

Ideally the study of processes would track the system as it
evolves in space and time, i.e. from a Lagrangian rather than
an Eulerian perspective. This is particularly true if one seeks
a causal relationship between a perturbation of one variable
on the state of the system, e.g., cloud response to aerosol per-
turbations. Given the speed of most of our measurement plat-
forms and the rate of movement of atmospheric systems this
generally proves to be challenging. The notion that one can
infer time-evolving “process” from static “snapshots” can be
demonstrated through the question of whether one can learn
the rules of football or chess from infrequent snapshots of
the game, and even from different occasions on which the
game is being played. (We will assume that the rules of the
game are invariant.) Atmospheric observing systems provide
glimpses of the state of the system on different days, and
under different large-scale meteorological conditions. Since
cloud systems are highly sensitive to meteorological condi-
tions this can be viewed as a game in which the rules are
changing. Stratification to similar meteorological conditions
becomes essential but there remains a question of the im-
portance of the history of the evolving system on its way to
the observation point, i.e. stratification might have to be ex-
tended to matching air parcel/mass histories. Thus even in a
data-rich world, understanding how best to use data to im-
prove our understanding of the atmosphere requires thought.

Ergodicity is a concept introduced in the late 19th century
that has its origins in the study of systems in equilibrium by
the statistical physics community (Boltzmann, 1884). Ergod-
icity relates to the idea of a system characterized by a motion
in phase space that, given long enough, fills the entire space.
It conveys the notion that the average state of the system can
be equally characterized by either the collection of all the
system states obtained when following one specific system
over time, or, alternatively, and equivalently, by a suitably
sampled collection of individual realizations of the system at
any given time. Consider the challenge of sampling a sys-
tem of moving gas molecules in a confined volume. One ap-
proach would be to track a single molecule with some tem-
poral frequency — say 1000 times — to understand the mean
state of the system. Another might be to take an instanta-
neous snapshot of 1000 spatially separated molecules, well
spread out over that space in the same closed system, to de-
duce these processes. (In reality, for a gas, the number of
samples and molecules would be much larger — on the or-
der of an Avogadro’s number of molecules for the system to
be in thermodynamic equilibrium.) The system is considered
ergodic if the mean state of the system based on these two
approaches is the same, i.e., if a system is ergodic, the dy-
namical description (tracking a single molecule) can be re-
placed by a much simpler probabilistic view (a snapshot of
1000 molecules). Loosely speaking this can be thought of as
a (phase-) space-time exchange: the average of the properties
of many spatially separated molecules at one time (“space’)
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is equivalent to the average of the same properties of one
molecule sampled over many times (“time”). Newer devel-
opments offer that the system does not have to fill the entire
space, and pose the idea of ergodicity weak enough to hold
for a given system, and strong enough to have significant con-
sequences (see e.g., Ashley, 2015). We will not attempt to
cover the huge body of literature that has accumulated on
various aspects of ergodicity; instead we will stick to a much
simpler, conceptual level that ties to a sample of questions in
the atmospheric sciences.

A simple example of a system that is ergodic is the rolling
of a die: Whether 100 people role a die once, or one per-
son rolls a die 100 times, the probability of obtaining a
given number, say 3, is the same (1/6 x 100 = 16.67 %). The
counter example might be that if one person engages in Rus-
sian roulette 6 times or six people engage in Russian roulette
once (each with their own firearm), the outcome will be very
different — i.e. the system is decidedly non-ergodic.

In a social sciences context one can think of tracking one
person 1000 times over a period of interest to study a given
phenomenon vs. sampling 1000 persons at different stages
of this same phenomenon but at one point in time (Hunter
et al., 2024). (In this case “space” refers to the separate in-
dividuals.) In economic theory the goal is to understand how
well expected values of economic metrics compare with time
averages. For example, because economics systems are typi-
cally far from steady state, an individual investor might ques-
tion the relevance of the present-day growth of a collection
of investment portfolios (“space”) to the projected growth of
their personal portfolio (“time”) (e.g., Peters, 2019).

A key component of ergodic systems is that the “rules of
the game” need to be the same. Thus the dice used in the
above example cannot be weighted to bias the outcome dif-
ferently between repeated rolls of the dice. In the social sci-
ences, ergodicity becomes much harder to achieve because
the systems involve people who are not identical and might
behave unpredictably — i.e., the rules of the game are not uni-
form across the population. In atmospheric systems, meteo-
rology is a key determinant of how a system evolves. Meteo-
rological changes thus equate to changes in rules of the game,
which depend on the state of the atmosphere, the particular
attributes of the system being studied, and how far they are
from steady state.

In addressing the ergodicity of a system, the magnitude
of the process timescale of the system process(es) Tproc rela-
tive to the observation timescale (the duration of the observa-
tion) #ops 1S @ helpful organizing metric. The Deborah number
(Reiner, 1964) is defined as

D = fproc (1)
Tobs

If the duration over which the process is observed is long

enough to detect the characteristic timescale of the process

under investigation then fops 3> Tproc and D is small — e.g.,

a radar tracking a convective storm system over its lifecycle
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allows one to study the microphysical processes (minutes)
associated with the precipitation generated by the storm over
the course of its lifetime (hours). Systems for which D > 1
evolve slowly enough to render them essentially static to the
observer. An example of the latter is the human observa-
tion of geochemical erosion of rocks. For a select process,
a D « 1 coveys the idea that the observation time is long
enough to allow the system to fully explore its state-space,
a necessary (but insufficient) condition for ergodicity. Con-
versely, if the observation time is too short for full explo-
ration of the state space then the system is non-ergodic. Ob-
servation timescales in the atmospheric sciences range from
minutes to multiple days to decades, depending on the anal-
ysis approach, lifetime of the platform, and perspective. (As
will be discussed below, a time snapshot does not necessarily
imply an observation period approaching zero.) The determi-
nation of the Deborah number becomes especially interest-
ing for systems that feature processes on multiple temporal
and spatial scales (Bossen and Mauro, 2024), which trans-
lates into various possible Tproc that could be dominating the
evolution captured in the data. Clouds with processes that
range from the microscale of cloud microphysics (seconds to
minutes) up to the large-scale evolution of cloud-controlling
factors (days) are a prime example of such a multiscale sys-
tem (Alinaghi et al., 2025a, b).

A related concept is Taylor’s frozen turbulence hypothesis
(Taylor, 1938). If one’s goal is to measure the characteris-
tics of a turbulent eddy, the only practical way to do so is to
place a sensor in the medium and allow the eddies to advect
past a sensor. Taylor’s “frozen” hypothesis assumes that the
statistical properties of turbulent eddies do not evolve sig-
nificantly as they advect past the sensor. In other words one
assumes that the eddy is close to steady over the observa-
tion period, or Tproc K fobs- A space-time exchange follows
naturally; e.g., if Tproc <K fobs then a time-height plot from a
vertically pointing radar at a fixed ground site can be con-
verted to a distance-height plot using knowledge of the mean
wind speed.

Below we explore whether process information can be
gleaned from snapshots of cloud systems with a number of
examples, most of which are previously published results
from the peer-reviewed literature. We cast results in terms
of ergodicity, space-time exchange, and observation and pro-
cess timescales that determine the Deborah number. The pa-
per therefore revisits well-known results in a framework that
we believe will benefit the field — both conceptually and prac-
tically. We do not weigh in on whether our systems are er-
godic in the strict sense. We end with a discussion of results
and a perspective on implications for the field of aerosol-
cloud-climate interactions.

https://doi.org/10.5194/acp-25-10869-2025
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2 Examples

In a multiscale system, the Deborah number will depend on
the timescale of the process of interest Tprc as well as the
tools at our disposal to make the observations. We will sur-
vey work that has shown some success in space-time ex-
change and present examples that study process and obser-
vation timescales that fulfill D <« 1 for a process of interest.
We will distinguish between two main types based on the rel-
ative magnitudes of the meteorological timescale Ty, i.e.,
the timescale at which the “rules of the game” change:

1. Type 1: A single snapshot for which meteorological
conditions are essentially constant (invariant “rules of
the game”); Tproc < t()bs < Tmet

2. Type 2: A composite of snapshots for which meteoro-
logical conditions vary (variant “rules of the game”);
Tproc K Tmet < fobs-

The examples below will focus on select processes with their
characteristic temporal and spatial scales. In line with the re-
lation Tproc K fobs, common to both Type 1 and Type 2, we
will see that the timescales of the dominant observed pro-
cesses and of the observation duration are sufficiently sepa-
rated from each other in our examples.

As already noted, data aggregation is often necessary to
reduce variability. This aggregation is likely to lead to the
inclusion of different meteorological conditions/rules of the
game such that processes that control meteorological vari-
ability, and therefore act on meteorological timescales, may
dominate over cloud processes and their timescale, as indi-
cated by Tproc K Tmet (Type 2). We will revisit these consid-
erations below.

2.1 Drop effective radius profiling at the cloud-scale
(Type 1)

Cloud drop effective radius (re = [ r3n(r)dr [r?n(r) dr, the
ratio of the third to the second moments of the drop size
distribution n(r)), is an important GV that is strongly tied
to the radiative properties of a cloud. re can be retrieved
using passive radiometry in the near infrared (e.g., Naka-
jima and King, 1990), but given the nature of passive mea-
surements, and the strong weighting to cloud-top, it is chal-
lenging without hyperspectral measurements to directly pro-
file re over the depth of warm clouds (King and Vaughan,
2012). These profiles are desirable because they enable infer-
ences on dominant cloud-scale processes such as condensa-
tion or collision-coalescence. Rosenfeld and Lensky (1998)
proposed a method to generate Temperature-re (T-re) pro-
files by sorting as a function of temperature the 7, at the tops
of individual cumulus clouds within a single satellite scene.
(Here temperature is a proxy for height since the relationship
between the two can be fairly easily established.) In other
words, the authors looked at data from the same time stamp
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Figure 1. (a) Schematic of the Rosenfeld and Lensky (1998)
method of profiling of drop effective radius re (T-r¢); (b) The cloud
top re of individual clouds in the scene are composited to form a
T-re profile; (c¢) Testing of the method using LES output of shallow
cumulus clouds. Solid line: domain-mean profile of r¢; colored con-
tours: re based on individual cloud tops. Colors indicate percentiles.
Reproduced from Fig. le in Zhang et al. (2011), courtesy of ACP.

and used the spatial variability in cloud-top temperature and
cloud-top r. within the cloud scene to generate T-r. profiles
(Fig. 1). The fundamental idea is that these individual, spa-
tially separated clouds are exemplars of the r. profile in a sin-
gle local cloud of arbitrary height, provided the meteorology
in the field is approximately constant. In essence this means
that “space” (individual clouds separated from one another)
and “time” (temporal evolution of an individual cloud - i.e.,
process) are equivalent.

Ruiz-Columbié (2003) pointed out that the profiling
method proposed by Rosenfeld and Lensky (1998) invokes
ergodicity — the first reference we have found to ergodicity
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in cloud systems. Lensky and Rosenfeld (2006) tested this
idea by analyzing multiple scenes using geostationary satel-
lite retrievals. Individual cloud cells were tracked to study the
temporal evolution of cells. In addition, the standard profil-
ing method as described above, was applied in the different
scenes. The authors were then able to demonstrate an “‘ex-
changeability between time and space”.

Setting aside technical difficulties associated with
satellite-based measurements in broken cloud fields, Zhang
et al. (2011) tested the space-time exchange by analyzing the
output of large eddy simulation (LES) of shallow trade-wind
cumulus clouds (Xue and Feingold, 2006) assuming no
retrieval error. They demonstrated that to a surprising degree
of precision, the profile of r, composited from the tops of
spatially distributed clouds follows that of an individual
cloud. This manifestation of some level of ergodicity in
convective cloud fields is, in our minds, quite profound since
it implies an internal self-consistency of cloud development
within a cloud field immersed in an approximately constant
thermodynamic state (a condition met by the model setup).
Over the course of the day, the clouds do influence their
environment as they transport moisture and evaporate but
apparently the effect of clouds on their environment is suf-
ficiently spatially homogeneous such that subsequent cloud
fields still obey the space-time exchange for r. profiling.
This self-consistency between cloud-evolution cycles would
not hold in the presence of meteorological gradients across
the cloud field (i.e., for fohs > Tmet). For example, in the
presence of a gradient, cloud A on one side of the domain
would be growing at a different rate and experiencing
different interactions with its environment than cloud B on
the other side of the domain, in which case one would not a
priori expect the members of population of clouds to evolve
in the same way. In this way “constant meteorology” equates
to “constant rules of the game”.

When applying this method to satellite-based observa-
tions one has to sample a sufficient number of clouds over
the range of heights of interest. The sample size will vary
with altitude, there being far more small/shallow clouds than
large/deep clouds. To improve statistics, one has to balance
the desire for a large domain with the risk of gradients in
the meteorological state across the domain. We have not at-
tempted to quantify the variance associated with small-scale
process changes (e.g. fluctuations in entrainment-mixing),
meteorological changes (large scale, or perhaps associated
with clouds themselves affecting their local environment), or
sampling statistics.

To put this example in the perspective of the Deborah num-
ber, we interpret f,ps not as the instantaneous snapshot in
time, but as the time represented by the evolution of the full
suite of clouds in the scene. This includes several cycles of
everything from the smallest nascent clouds through to the
deepest, developed clouds, and the small decaying clouds —
yielding a f#,ps on the order of several hours. The relevant
process timescale Tproc is associated with the evolution of
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an individual cloud or, more specifically, the height incre-
ment between the individual clouds, ordered by height (say
100 m). For typical updrafts on the order of meters per sec-
ond Tproc Would be on the order of minutes. Together, this
results in Tproc K fobs K Tmet (Type 1). The underlying rea-
sons for the success of r. profiling are in our minds not
well understood. Lensky and Rosenfeld (2006) have argued
for the “constant renewal of growing cloud tops with cloud
bubbles that replace the cloud tops with fresh cloud matter
from below”. Examining a single cloud, Bretherton and Smo-
larkiewicz (1989) describe the buoyancy difference between
a cloud and its undisturbed surroundings in terms of spread-
ing gravity waves that rapidly equilibrate the buoyancy gradi-
ent via compensating downdrafts. The rate of this equilibra-
tion is much faster than the entrainment-mixing timescale.
These gravity waves are associated with entrainment (de-
trainment) regions when the cloud buoyancy relative to the
environment is increasing (decreasing) with height. This ho-
mogenization of the buoyancy in the cloud field might ex-
plain why cloud bubbles across the cloud field experience
similar histories. Moreover, the rapidity of the equilibration
suggests that the r, profiling would not be dependent on the
detailed nature of the slower entrainment-mixing (inhomoge-
neous vs. homogeneous; Baker et al., 1980). The underlying
reasons for the success of r. profiling would clearly benefit
from a deeper investigation.

2.2 Compositing within a single snapshot to address
mesoscale processes (Type 1)

The next example derives from modeling studies, although
the phenomenon has since been tested through observations.
A recent approach to investigating the nature of complex
cloud systems using LES model output is through the cre-
ation of composites of select variables within a snapshot of
a single cloud field evolving under steady meteorological
conditions. Bretherton and Blossey (2017) studied the ag-
gregation of mesoscale patches of higher humidity in shal-
low cumulus fields. By compositing the model output based
on quartiles of column integrated total water mixing ratio
they were able to elucidate the processes that lead to cloud
clustering, in the absence of external forcing of such pattern
and even without precipitation and radiation. The study by
Janssens et al. (2022) achieved the same effect as composit-
ing via scale filtering, and highlights the intrinsic nature of
moisture aggregation. A similar analysis for the case of shal-
low mesoscale overturning circulations (SMOCs) was pub-
lished by Narenpitak et al. (2021). See also Janssens et al.
(2022) and George et al. (2023) for additional modeling and
observational perspectives, respectively.

Zhou and Bretherton (2019) applied the methodology to
non-precipitating stratocumulus (Sc). We will walk through
this example more carefully to put it into the perspective of
the prior example of space-time exchange. Consider a sin-
gle Sc cloud scene exhibiting a regular closed-cellular struc-
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ture. Sample this scene at various points across the domain
and sort the columns by their total water path (TWP). Then
composite these columns, ordering them in bins of TWP.
Probe the LES output to obtain the dimensions of the cell and
the flow-field in these TWP bins. Following this procedure
reveals a self-sustaining mesoscale circulation with a hori-
zontal scale of ~20-30km in a boundary layer of ~ 1 km
depth. The circulation is characterized by a weak updraft at
the core and thickest part of the of the Sc. Descending free
tropospheric air diverges at cloud top and moves air along
the shallow cloud-top slope from moister regions to drier re-
gions. The circulation is reinforced by the horizontal gradi-
ent in cloud-top radiative cooling between cell core and edge.
Cold, dry air penetrates down into the boundary layer at the
cell edges and convergence of air from the edges towards the
cell core completes the circulation (Fig. 2). Thus, an archety-
pal Sc cell, derived from composite sampling of spatially
disparate parts of the system fits well with our general un-
derstanding of closed-cellular convection. Being based on a
model that resolves the relevant processes, it also lends itself
to a deeper mechanistic understanding of these cells; e.g.,
when the horizontal gradient in cloud-top radiative cooling
between cell core and edge is removed, the circulation is
weaker (Zhou and Bretherton, 2019).

Here too the success of this approach is, in our minds, pro-
found: Composited variables are used to show the typical be-
havior of a mesoscale system based on percentiles of those
variables drawn from non-contiguous parts of the domain.
Similar to the case of T-r, profiling, one can successfully use
spatially separated “fragments” (percentiles) of the broader
cloud field to build the general mesoscale characteristics of a
Sc cell. Closed-cellular convection is an atmospheric analog
of Rayleigh-Bénard convection. Over limited domains (or-
der 100 km), boundary conditions such as sea surface tem-
perature, domain-mean inversion height, and subsidence are
approximately constant. Cell aspect ratios are approximately
30 : 1. Under these homogeneous conditions there is enough
self-consistency within the Sc closed cell for a space-time ex-
change to be useful. Lending success to this approach is that
there is sufficient scale separation between mesoscale pro-
cesses (our focus), small-scale processes such as cloud-top
entrainment or local plume penetration, and longer timescale
variability in inversion height.

Considering the Deborah number analysis for this case,
tobs amounts to the number of stratocumulus cells over the
duration of the simulation, similar to the number of cloud
cycles considered in the previous example. Even when re-
stricting simulation time to less than 1 h to avoid variability
within the diurnal cycle, one will still sample several cells,
resulting in Zops ~ h. In contrast, the process timescale Tyroc
is related to the eddy turnover time of about 20 min. With
Tproc K fobs and Tmer > fobs (fixed meteorology) we consider
this example as Type 1.

Atmos. Chem. Phys., 25, 10869-10885, 2025
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Figure 2. Schematic describing the processes associated with a typical stratocumulus cell. The schematic is based on the compositing of
spatially separated parts of cells in a LES-generated cloud field (Fig. 15 in Zhou and Bretherton, 2019, courtesy of Wiley).

2.3 Cloud microphysics: autoconversion (Type 2 and
Type 1, depending on the methodology)

The initiation of precipitation via collision-coalescence is a
topic of great interest to cloud physicists and climate mod-
elers. Collision-coalescence is commonly separated into the
self-collection of cloud droplets less than about 40 um in di-
ameter to form a raindrop (“autoconversion”) and the col-
lection of small cloud droplets by larger raindrops (“accre-
tion”). Stephens and Haynes (2007) presented a means to
quantify autoconversion timescales using satellite-based pas-
sive (visible and infrared wavelengths) and active (3-mm
radar) measurements. These respectively yield cloud opti-
cal depth COD, effective radius re, and radar reflectivity Z
(x f rOn(r)dr, the 6th moment of the drop size distribution
n(r)). Central to this idea is that the Moderate Resolution
Imaging Spectroradiometer (MODIS)-derived COD and r.
provide information on the cloud droplet mode of the drop
size distribution while the radar-derived Z is highly sensitive
to larger drops. The method is facilitated by the relative ro-
bustness of the modal diameter of the cloud droplets, even
as the concentration decreases as a result of autoconversion.
(Naturally the system is more complicated if one includes
other cloud processes like advection, sedimentation or drop
breakup in a dynamically evolving system.) The framework
for the Stephens and Haynes (2007) retrieval is a simple theo-
retical model of the continuous collision-coalescence process
(Bowen, 1950), plus an assumption of the collection kernel
(Long, 1974). Some manipulation of the equations yields

2 _ _
P-h=c13pwre COD ZHIZ ~ Zc), 2)

where P is the collision-coalescence rate, & the column depth
over which P is measured, Z, a mean cloud-averaged radar
reflectivity, H, the Heaviside function, expressing a sampling
of all radar data for which Z > some critical value Z., and
c1 is a function of the collection kernel and has units of
m~3s~!. Of note is that the appearance of Z in Eq. (2) de-
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rives from Long’s collection kernel for small drops, which
has an r® dependency. (For details see Stephens and Haynes,
2007.)

To demonstrate the approach, the aforementioned authors
used MODIS retrievals of 7. and COD, together with Cloud-
Sat Z to derive the column collision-coalescence rate P - h
[g m~—2 s~ 1. Data were collected over oceans between 60° N
and 60° S for June, July, and August 2006, and importantly
were limited to —15dBZ < Z < 0dBZ in order to emphasize
the initiation of rain formation via autoconversion. Column
collision-coalescence rates were then plotted as a function of
liquid water path LWP (e r. -COD) [g m~2] such that the ra-
tio of the ordinate to the abscissa represents a timescale for
autoconversion. Figure 3 reproduces Fig. 3 in Stephens and
Haynes (2007) where one sees a rather broad scatter of the
points but that the majority (73 %) of the measurements fall
between a timescale of 26 min and 3 h. Because the kernel
function is a function of r6, the range of time-scales sim-
ply reflects the variability in Z bracketed between —15 and
0dBZ.

This example raises a number of interesting points. In
keeping with our theme, it utilizes snapshots of data to infer
process understanding (autoconversion timescales), in this
case constrained by a simple model. A question that arises
is why the process rates are relatively poorly constrained.
In part we believe that this is due to the larger number of
degrees of freedom in the system (e.g., a cloud plus a rain
mode). Other reasons might include the fact that a column
of air might include drops that have been advected into the
column, or that the data sorting (—15dBZ < Z < 0dBZ) is
not rigorous enough to exclude accretion; in other words,
the data might reflect processes not considered in the simple
model. Or even if the data is dominated by autoconversion,
Eq. (2) might be too simple.

From a measurement perspective, the cloud and rain com-
ponents from which the autoconversion rate is derived are
separated spatially and temporally because the radar is on a
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Figure 3. Autoconversion timescales (r) based on satellite-
based radar and spectrometer data using Eq. (2). Autoconversion
timescales derived from the slope of Eq. (2) vary between 5.6 min
and 3 h, with 73 % of data between 26 min and 3 h (from Stephens
and Haynes, 2007, Fig. 3, courtesy of Wiley, with permission).

different satellite trailing the r. and COD measurements by
a few minutes. The use of multiple GVs derived from differ-
ent instruments with different view volumes might also be a
problem. Moreover, data from many different cloud scenes
are aggregated. These suggest a limit to how well the auto-
conversion timescale can be quantified with this approach.

For this example, the GVs used in the retrieval are sen-
sitive to the full range of drop sizes, with Tpyc the time
it takes for drops to grow from newly formed droplets to
raindrops, i.e., on the order of 15-20 min. The large num-
ber of days included in the analysis corresponds to a large
observation timescale because many different environmental
states—which translate to different cloud dynamical states—
are being observed. The changing dynamical state is im-
portant because it introduces variability in processes such
as droplet nucleation, in-cloud residence times, and fallout,
which could obscure the collision-coalescence process. The
observation timescale #,ps 1S therefore considered to be on
the order of many days (et < fobs)- We therefore categorize
this as Type 2 because the process under consideration (auto-
conversion) is obscured by the varying large-scale dynamical
conditions. Thus, the uncertainties in the derived timescales
are likely a result of changing rules of the game as well as be-
cause of uncertainties associated with the retrieval methodol-
ogy. Depending on the goals of the study and quantification
requirements, such analyses may still be useful.

A related topic is the use of space-based radar and spec-
trometer retrievals of Z and COD, respectively, to interpret
the relative importance of condensation growth (higher COD
but almost no change in Z) and collision-coalescence growth
(higher Z but little to no change in COD) (Suzuki et al.,
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Figure 4. Profiling of r43 — the ratio of the 4th to the 3rd moments
of the drop-size distribution — following the method of Rosenfeld
and Lensky (1998). Data points are derived from the tops of in-
dividual clouds within a field of cumulus using the LES output in
Zhang et al. (2011). The solid line represents the mean profile based
on all clouds in the field.

2010). Based on the arguments above, when applied to sin-
gle storm systems one expects such data to be of Type 1, but
when compositing over many storms with different dynamics
the analysis is expected to be of Type 2.

Building on the success of r. profiling presented in
Sect. 2.1, we consider another approach to quantifying au-
toconversion and accretion, this time in the form of process
rates. Taking advantage of new passive remote sensing in-
struments such as the Research Scanning Polarimeter (RSP;
Alexandrov et al., 2015) and the HyperAngular Rainbow Po-
larimeter (HARP; McBride et al., 2024) that provide infor-
mation on cloud top effective variance ve as well as cloud
top r., we explore whether the added information on cloud-
top ve can quantify these collection rates. By definition

[ —re)*r? n(rydr
ré [r2n(r) dr

Ve =

which reduces to

_ [ n(r)dr [ r*n(r)dr
T (PBarydr

Some rearrangement yields

Ve

fr4 n(r)dr

= = 1 s
r43 fr3 n(r) d}" (VC+ )re

which is an effective drop size with more weight on higher
order moments than r.. Since both cloud-top . and cloud-top
Ve can be retrieved, we explore whether this higher weighting
can provide information on drop collection. First we apply
the re profiling technique to r43 using the same bin micro-
physics LES output used by Zhang et al. (2011) to demon-
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Figure 5. (a, b) Autoconversion rates and (¢, d) accretion rates as a function of r43 color-coded by liquid water mixing ratio ¢¢ (a, ¢) and
drop concentration N (b, d). Note how autoconversion rates decrease for 743 > 20 um while accretion rates continue to rise. The relatively
low values of autoconversion and accretion rates at high r43 can be seen to be associated with co-occurrence of low gc and low N.

strate that cloud top measurements of r43 provide very sim-
ilar profiling capabilities to re (Fig. 4). This means that, ig-
noring remote sensing uncertainties, one can retrieve re(z) as
well as r43(z). Next we calculate the collection rates of the
drop size distributions associated with this bin microphysi-
cal model output and separate them into autocoversion and
accretion rates. Figure 5a, b show that autoconversion rates
increase robustly with r43 but then begin to level off and
decrease at some larger r43. In contrast, accretion rates in-
crease steadily with increasing r43, as expected, dominating
the collection process once drops become sufficiently large
(Fig. 5c, d). Of note is that high values of r43 are not always
a strong constraint on autoconversion and accretion rates be-
cause large r43 may derive from low values of liquid water
mixing ratio g co-occurring with low values of N. Neverthe-
less the self-consistency exhibited by shallow cumulus con-
vection — at least in terms of the manifestation of how ratios
between moments evolve — provides insights beyond the re-
trieval of GVs themselves. The uncertainties are large, but
typical of those associated with modeling (e.g., Khairoutdi-
nov and Kogan, 2000). Whether this approach is useful will
require more rigorous testing for a broad range of conditions.

As in the case of the T-r. profiling this approach can be
considered Type 1 since tper 1S infinitely large (it is con-
stant across the scene of interest), Tproc is on the order of
15-20 min, and #.ps is on the order of hours.

Atmos. Chem. Phys., 25, 10869-10885, 2025

2.4 Liquid water path — drop concentration relationships
(Type 2 or Type 1 depending on the methodology)

LWP and drop concentration (N) are GVs that characterize
the bulk properties and microphysical structure of a cloud
system and are central to aerosol-cloud interactions. Much
has been written on the influence of aerosol particles on N,
and the resultant effects on cloud albedo A, as well as LWP
and cloud fraction f;. Twomey (1977) considered aerosol ef-
fects on A, without the complications of adjustments to LWP
and f. but more recently these adjustments have been shown
to be critical to the evaluation of aerosol-cloud-climate forc-
ing (Bellouin et al., 2020). A satellite-based view of a very
large number of snapshots of cloud systems in LWP-N space
exhibits an interesting separation into two branches (e.g.,
Gryspeerdt et al., 2019), often referred to as an “inverted V”
(Fig. 6a). These have been interpreted as the low N, precip-
itating branch 1 where LWP increases with N as a result of
precipitation suppression and the high N, non-precipitating
branch 2 where LWP decreases with N as a result of aerosol-
related enhancement in droplet evaporation. Note that the
interpretation of these diagrams presupposes a relationship
between state-space sampling and processes, which is not a
priori justified. Nevertheless these arguments are not with-
out merit given our understanding of aerosol-cloud inter-
actions in detailed (typically single case) large eddy sim-
ulations (LES). For example, Xue et al. (2008) showed a
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Figure 6. (a) Example of an LWP vs. N analysis based on MODIS data demonstrating an inverted V (Gryspeerdt et al., 2019, courtesy
ACP). The positive and negative slopes are associated with precipitation suppression and evaporation feedbacks, respectively. The slopes
associated with the inverted V (blue lines) are given as m; and my,. The yellow line is a best fit line to all the data while the thick black line
indicates an re of 15 um; (b) Connecting inverted Vs to processes. The figure shows LWP tendencies based on analysis of a large ensemble of
LES. Blue regions indicate losses associated with precipitation and evaporation while the prominent red region is associated with very weak
precipitation evaporating just below cloud based strengthening updrafts. (Adapted from Hoffmann et al., 2020, courtesy of the American
Meteorological Society, with permission.); (¢) LWP-N analyses of the stratocumulus-to-cumulus transition after Goren et al. (2025, courtesy
ACP) suggesting that inverted Vs are a consequence of large-scale boundary layer processes and co-variability of meteorology and aerosol.
See text for further discussion.

similar inverted V in f; -N diagrams, and the role of N- But can we strengthen this intuition that a compilation
dependent droplet evaporation has been elucidated by Wang of snapshots does indeed inform us about processes? Glass-
et al. (2003), Ackerman et al. (2004), and Bretherton et al. meier et al. (2019) and Glassmeier et al. (2021) analyzed
(2007). large ensembles (order 130) of LES to explore the evolution

of cloud systems covering a large range of boundary layer
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temperature and water vapor profiles. The output of these
nocturnal LES in LWP-N space shows a remarkable conver-
gence of cloud systems towards a steady-state line that also
exhibits an inverted V shape and is qualitatively similar to
the satellite snapshots. Hoffmann et al. (2020) examined the
same large ensemble of LES to address the extent to which
the LWP-N diagram represents physical processes captured
by the LES. By applying mixed layer theory to the individ-
ual LES the authors showed a breakdown of LWP tendencies
(dLWP/dr) due to radiation, surface fluxes, evaporation, pre-
cipitation, and cloud top motion. The topographical maps in
LWP-N space show the clear dominance of individual pro-
cesses in the very regions that they are expected (Fig. 6b).
Evidence for process understanding from inverted Vs can
also be found in Zhou et al. (2025) where lead-lag analysis is
applied to satellite data to help establish causal relationships
between N and LWP or LWP and N. Of note is that during
the daytime, solar heating has been shown to have a flattening
effect on the negative LWP-N slope using large ensembles of
diurnal LES (Zhang et al., 2024; Chen et al., 2024).

The view based on the synthesis of these large ensem-
bles of LES has recently been augmented by a heuristic
model based on equations representing basic microphysi-
cal processes such as evaporation and collision-coalescence,
and thermodynamical cloud water recharge (Hoffmann et al.,
2024). The model also generates inverted Vs and explores the
model parameters that change the slopes of the two branches
and how these relationships are affected by stochastic pertur-
bations. By varying the timescale ;¢ and thus importance of
these perturbations, the heuristic model clarifies the role of
different internal processes (Fig. 7). For infrequent perturba-
tions (Fig. 7b), the evolution remains dominated by the deter-
ministic mesoscale processes as discussed above. Here Tproc
is a mesoscale timescale of about 10 h, which is < 7ops (mul-
tiple days in these simulations) such that D < 1, enabling
the long-time evolution of the stochastic system to ergod-
ically explore its steady state. This ergodicity implies that
snapshots would equally sample this steady state and as the
steady state is characterized by balancing processes, this in
turn implies a tight relationship between processes and snap-
shots. For the most frequent perturbations (Fig. 7¢), however,
the stochastic component of the evolution might dominate,
resulting in Tproc = Tprt <K fobs- In this situation, the sampling
reflects the stochastic external forcing rather than the internal
processes of the mesoscale evolution of the cloud field. We
still have D <« 1 and a relationship between snapshot and
process but the dominant process is the stochastic perturba-
tion. The heuristic model also explores the effect of external
variability and shows that the shape and position of the in-
verted V changes with the large-scale conditions. Such exter-
nal variability blurs the relationship between snapshots and
mesoscale cloud processes, similar to the effect of stochastic
perturbations. The effect of the external variability can be in-
terpreted as variability in meteorological conditions in aggre-
gated satellite-based LWP-N data, suggesting that a compos-
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Figure 7. Heuristic model output exploring the effect of microphys-
ical processes and LWP recharge on LWP vs. N; (a) multiple tra-
jectories for different initial conditions converging to an inverted V
(thin grey lines). Blue and red lines are based on the LES output of
Glassmeier et al. (2021). The dashed line indicates an re of 14 um;
(b) as in (a) but with long timescale external perturbations (Type 1)
that still reproduce the essence of results in (a); (¢) as in (b) but
with short timescale external perturbations that significantly disrupt
the shape of the inverted V (Type 2). In panels (b) and (c) the color
shading reflects all the model output while the thick black line rep-
resents the mean. All panels derive from Hoffmann et al. (2024,
courtesy ACP), with details furnished therein.
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ite based on many different meteorological conditions will be
associated with uncertain slopes.

Against this conceptual background, we classify LWP-
N analysis as performed by Gryspeerdt et al. (2019) as
Type 2 for the following reasons: Tyroc is on the order of 10h
(Chen et al., 2025), and the compositing of large numbers
of satellite snapshots means that Tproc <K fops (Order many
days), meeting the requirement that D < 1. However with
fobs > Tmet, meteorological variability will limit the ability of
this type of analysis to quantify cloud processes.

Goren et al. (2025) go so far as to argue, that cloud-
field processes are completely dominated by large-scale pro-
cesses, 1.€., Tproc = Tmet amounts to the timescale of large-
scale evolution. In this case the inverted V is simply a con-
sequence of a spatial change in cloud depth as one follows
the prevailing winds off the coast of a Sc-capped area out
over warmer waters, together with aerosol-meteorological
co-variability. Initially the boundary layer is shallow and
characterized by high N because of proximity to continen-
tal aerosol sources. As one moves southwestward over the
warmer ocean, the boundary layer deepens, allowing for
higher LWP. At the same time, N decreases because of in-
creasing distance from aerosol sources. This describes the
negative LWP-N branch. At some point clouds become thick
enough to precipitate, which decreases N — thus defining the
positive branch. To calculate the Deborah number from the
perspective of Goren et al. (2025) analysis, Tyroc is on the
order of days and, as a result of compositing, f,ps iS many
days. Again, meteorological variability obscures the process
(tobs > Tmet) and we classify this analysis as Type 2.

Zhang et al. (2022) and Zhang and Feingold (2023) offered
an alternative by analyzing LWP-N at a 20 km footprint-level
within 1° x 1° boxes under approximately constant meteoro-
logical conditions. In this case quantitative information on
microphysical processes is likely more reliable (zobs << Tmet;
Type 1).

The analysis of Goren et al. (2025) relates slopes to bound-
ary layer processes as opposed to the microphysical pro-
cess view of Gryspeerdt et al. (2019) or Zhang and Fein-
gold (2023). Both are valid and both suggest a connection
between snapshot and process. The study by Possner et al.
(2020) might be considered an attempt to disentangle the two
contributions by controlling for boundary-layer depth. Thus
the interpretation of inverted Vs requires thorough reflection
on the processes that are included/resolved by the temporal
observation timescale.

2.5 Boundary layer and microphysical processes in cold
air outbreaks: snapshots plus reanalysis (Type 1)

A variation on the examples of a snapshot that yields infor-
mation on the cloud field is an approach that combines mul-
tiple snapshots with meteorological reanalysis data to study
temporally-evolving systems, thus more directly addressing
causality. (The study of Goren et al. (2025) discussed above

https://doi.org/10.5194/acp-25-10869-2025
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falls into this category.) Gryspeerdt et al. (2021) used thou-
sands of MODIS snapshots from the Aqua satellite, reanaly-
sis wind fields, and ship emission information to assess the
temporal evolution of cloud responses to ship emissions. The
use of satellite snapshots to unveil the temporal dimension in
cloud adjustment provides a better sense of process, espe-
cially given the multi-hour timescale associated with LWP
and f. adjustments to aerosol perturbations. More recently
Murray-Watson et al. (2023) studied cold-air outbreaks at
higher latitudes by spatially and temporally matching wind
trajectories based on reanalysis-derived meteorological fields
with MODIS retrievals of cloud properties. While the use of
reanalysis data in these examples is helpful, the methodology
still relies on compositing, which inevitably increases fops to
multiple days, meaning that meteorological confounders can-
not be avoided.

Zhang et al. (2025a) take a pseudo-Lagrangian approach
to studying cloud systems that uses the GOES-16 geostation-
ary satellite retrievals of r. and COD (and derived LWP) but
avoids compositing. We show here one example that exem-
plifies this technique. A single GOES snapshot of a cold-air
outbreak with a resolution of ~ 3 km over the western North
Atlantic Ocean is the start point. 1000 hPa winds from ERA-
5 reanalysis at the snapshot time are used to generate instan-
taneous trajectories, along which GOES cloud micro- and
macro-physical retrievals are extracted. In contrast to con-
ventional Lagrangian tracking of cloud evolution in a series
of geostationary satellite images, this instantaneous trajec-
tory approach invokes space-time exchange and allows one
to infer time-evolving microphysical and boundary layer pro-
cesses in one single GOES snapshot. Here the justification
for the space-time exchange is that the large-scale meteoro-
logical conditions are evolving much more slowly than the
rate of cloud evolution, i.e., the timescale of changes in the
rules of the game is much larger than the timescale of target
processes. In this case the dominant timescale of variability
is that of cloud evolution, which is often the case for marine
cold-air outbreaks. A plot of LWP vs. N shows a trace that
contains valuable information about the underlying bound-
ary layer and microphysical processes along the trajectory
(Fig. 8). Figure 8 also shows a diagram that identifies the
effect that processes have on the directionality of the trace.
These include microphysical processes that are strongly in-
fluenced by the large-scale forcing, e.g., the SST gradient:
(i) drop activation — increases in LWP and N (arrow 1);
(ii) condensational growth — an increase in LWP at constant
N (arrow 2); (iii) collision-coalescence — a decrease in N at
constant LWP (arrow 3); (iv) precipitation and evaporation —
a sink for N and LWP (arrow 4); and (v) entrainment-mixing
— a reduction in N and LWP, with directionality depending
on whether the mixing is homogeneous or inhomogeneous
(arrows 5.1 and 5.2). While the approach does not provide
an unambiguous parsing of processes, it does provide pro-
cess fingerprinting over the spatial dimension of a snapshot

Atmos. Chem. Phys., 25, 10869-10885, 2025
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Figure 8. Analysis of a cold air outbreak demonstrating the ability
to infer processes from GOES retrievals in a single satellite image
together with information on the airflow through the image from
ERA-5 reanalysis. (a) Snapshot of a cold-air outbreak scene sam-
pled by GOES with superimposed instantaneous trajectories based
on ERA-5 reanalysis; (b) Trace of the family of instantaneous tra-
jectories through the scene in LWP-N space; (¢) A diagram iden-
tifying how individual processes drive the system in LWP-N space
(1: activation, 2: condensation, 3: collision-coalescence, 4: precipi-
tation, 5: entrainment (5.1: homogeneous, 5.2: inhomogeneous)).

and demonstrates the usefulness of space-time exchange in
process inference.

Considering the Deborah number for this example, an
instantaneous trajectory spans more than 10°, equivalent
to an fops of ~ 12h for a boundary layer wind-speed of
20ms~!. This allows one to consider both microphysical
processes (Tproc ~ min) and boundary layer deepening pro-
cesses (Tproc ~h). D is less than 1 for both of these process
timescales. On the other hand, the rate of change in SST
spatial gradient is on the order of days and thus not ergod-
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ically sampled such that variability is dominated by cloud
processes. Thus, this example is considered as Type 1.

3 Discussion

We now discuss a number of topics that emerge from the
examples shown above.

3.1 Gleaning causality from state-space diagrams

The sampling of one system at multiple times is the case
study/timeseries approach that is frequently applied in the
atmospheric sciences. The reason for its popularity may be
historical since it can be accomplished with fewer resources.
Based on a case study — either modeling or observations —
one might show a clear relationship between Y and X, e.g.,
the deepening of clouds (Y) in response to an aerosol per-
turbation (X). With time, such responses tend to become the
cornerstones of our understanding, but often without suffi-
cient recognition that the result derives from one case. The
case study approach stands in contrast to the use of large
samples of data that attempts to generalize the results for a
wide range of conditions. The development of networks of
surface observations, satellite-based remote sensing, and re-
gional models has pushed the field towards generalization.
For the aerosol-cloud deepening example given above, sam-
pling many cases under different conditions provides gen-
erality in terms of responses but makes it far more difficult
to attribute the deepening to aerosol. The large data sets or
model ensembles contain many different meteorological con-
ditions that might themselves be driving the deepening, with
aerosol manifesting as a confounding factor. Some have ar-
gued for more focus on understanding the co-variabilities be-
tween system variables — an approach that seeks to expose
the confounders (Miilmenstddt and Feingold, 2018). Others
stratify the large data sets by the variables considered most
likely to explain the response, hoping that the stratification is
fine enough to ensure that results are robust. Machine learn-
ing is also proving useful as a means of teasing out counter-
factual conditions, i.e., would these clouds have changed in
response to a perturbation had the meteorological conditions
been the same? (see e.g., Zhang et al., 2025b; Chen et al.,
2022). As discussed elsewhere (e.g., Harte, 2002; Feingold
et al., 2016), an iterative consideration of the time-oriented
(case study) and (phase-)space-oriented (attempt to general-
ize) approaches is essential to solidifying our understanding.
Ergodic thinking and space-time exchange therefore lies at
the interface of the case-study/generalization interface.

3.2 The geostationary satellite view

With the new generation of geostationary satellites that pro-
duce time derivatives of GVs from advanced imagers and ra-
diometers, it can be argued that we can observe processes
more directly, e.g., (Christensen et al., 2020), so why focus

https://doi.org/10.5194/acp-25-10869-2025
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on snapshot data? The program of record comprises a wealth
of relatively untapped atmospheric data from polar orbiting
satellites that can be mined for insights. Aircraft data also fall
into this category. Exploring ways to maximize the informa-
tion content of these data is therefore worthwhile.

While Type 1 data applications don’t necessarily require
geostationary satellite data, more frequent snapshots of the
same scene provide the opportunity to compare geostationary
retrievals of the evolving cloud state with inferences about
processes based on polar orbiting satellite retrievals, albeit
based on instruments with different data characteristics, res-
olution, and precision. In principle this could be a more rig-
orous test of the space-time exchange.

The geostationary point of view might be especially valu-
able when accompanied by knowledge of the meteorology
(e.g., from reanalysis). For example, the study of aerosol-
cloud interactions would be able to discern temporal changes
in cloud fields in response to aerosol perturbations (response
time on the order of 10 min) as well as adjustments in LWP
and cloud fraction that have timescales on the order of 10h
(Chen et al., 2025; Glassmeier et al., 2021) — within the con-
text of the evolving meteorology. This approach would have
to take into account uncertainties in retrievals, particularly at
high solar zenith angles (e.g., Grosvenor et al., 2018). As al-
ready noted, extant studies have utilized composites of satel-
lite snapshots to construct temporal evolutions of aerosol-
cloud interactions in ship-tracks (Gryspeerdt et al., 2021). By
enabling higher resolution temporally contiguous observa-
tions of a given cloud process, the geostationary view should
provide more confidence in the causal nature of the process.

4 Summary and Outlook

In an era of increasingly large volumes of atmospherically-
relevant data, we have addressed the question of how much
one can learn about atmospheric processes from infrequent
snapshots of the state of the system. It is common in the
atmospheric sciences to aggregate large samples of instan-
taneous ‘“‘snapshots” of data — usually in the form of geo-
physical variables (GVs) — and attempt to infer knowledge
of the underlying processes that produce relationships be-
tween the GVs. To quote Miilmenstddt and Feingold (2018)
“...temporally evolving system[s] with an inherent memory
[are] studied with a Markovian, ‘snapshot- in-time’ method-
ology, which assumes that processes are related to the cur-
rent state of the system, and have no memory of past states.”
In doing so we inherently assume causal relationships be-
tween these variables and ignore the spatiotemporal unfold-
ing of the system with its inherent timescales. Here we have
attempted to provide some perspectives on this approach
through the use of commonly applied GV state diagrams. The
framework for discussion is the statistical physics concept of
ergodicity, which we apply ad hoc rather than adhering to its
manifold and more rigorous definitions.
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A central concept of ergodicity is the exchange of “space”
and “time”. For example, one may attempt to relate a snap-
shot of spatially separated parts of a system (“space”) to the
temporal evolution of a part of that system (“time”) and in
so doing infer knowledge of “process”, which is inherently
causal. Aircraft in-situ measurements and satellite-based re-
mote sensing retrievals tend to be used in this way since there
is no way to track the evolution of the relevant (process-
dependent) small volumes of the atmosphere with time. (An
exception in recent times is the use of geostationary satellite
systems with their new and improved GV retrieval capabil-
ities.) Missions such as the A-Train of satellites (Stephens
et al., 2018) were conceived to provide statistics of the state
of the system through retrievals of GVs. The temptation to
equate statistical correlation with causation is at the heart of
this paper and the existence of huge volumes of high quality
data does not obviate the need for a deeper look at method-
ology.

The examples shown here point to some of the oppor-
tunities and limitations of the use of snapshots beyond a
broad statistical analysis of geophysical variable space. They
serve to demonstrate examples of whether and which pro-
cesses (cloud scale or large scale) one might infer from snap-
shots within the (here) loosely defined framework of ergodic-
ity and space-time exchange and with the added perspective
of Deborah number analysis. We have deliberately avoided
detailed discussion or rigorous adherence to the many as-
pects of ergodicity and instead focused on its chief deriva-
tive, space-time exchange, as applied to real-world studies
of atmospheric systems. The Deborah number (D = (process
timescale) / (observation period)) is a useful way of quanti-
fying whether the observation period is long enough for the
system to have fully explored its state space with respect to a
certain process scale.

Our examples have been characterized into two distinct
types of data categories, the primary difference being the rel-
ative magnitude of the observation period and the timescale
of meteorological variability:

1. Type 1: D K 1, Tproc K fobs K Tmet. “Space” is associ-
ated with different and separated cloud elements within
the same scene and “time” is associated with the evolu-
tion of a single cloud element. The two examples that
seem to show the most promise are the profiling of r.
in cumulus and the compositing of closed cellular stra-
tocumulus. In both of these examples, spatially sepa-
rated parts of the cloud field are composited in ways that
allow the evolution of an individual component to be an-
alyzed. The ability to constrain meteorology such that a
cloud process and its timescale dominate variability in
the data is likely key to the success of this approach.

2. Type 2: D K 1, Tproc K Tmet < fobs- The large compos-
ites of data associated with Type 2, including climato-
logical studies, translate to the inclusion of a large range
of meteorological conditions, or changing “rules of the
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game”. Examples are autoconversion of cloud droplets
to rain (Stephens and Haynes, 2007) and LWP-N anal-
yses after Gryspeerdt et al. (2019). The changing mete-
orology likely limits our ability to quantify autoconver-
sion timescales and the slopes of the inverted V in the
LWP, N analyses. Careful stratification of the data by
similar conditions might help to improve quantification
(e.g., Zhang et al., 2022).

An interesting case is the LWP-N state-space since both
Type 1 and Type 2 classification has been arrived at. Hoff-
mann et al. (2024) used a heuristic model that considers
simple equations for microphysical processes such as evap-
oration, collision-coalescence, and rain formation, as well
as thermodynamic cloud-water recharge and entrainment to
show that inverted V shapes emerge quite naturally. For fixed
meteorology (no perturbations), the timescale analysis sug-
gests Type 1. On the other hand, Goren et al. (2025) con-
sidered LWP-N in a Lagrangian sense; they composited tra-
jectories as they move away from the west coasts of conti-
nents and transition from closed-cell stratocumulus to broken
cumulus to precipitating conditions, and showed that they
also manifest inverted Vs. In this view, the inverted V is de-
scribed as driven primarily by meteorology and co-variability
of meteorology with aerosol. The timescale analysis indi-
cates Type 2 as a result of the compositing of the data. Both
views hold merit since different processes and timescales are
being targeted.

The use of additional information afforded by meteoro-
logical reanalysis is an interesting variation on the “process-
from-snapshot” efforts. The analysis of LWP-N evolution in
cold air outbreaks (Sect. 2.5) is an example of how ancillary
meteorological data describing a trajectory through such a
system can be used together with LWP and N retrievals to
glean information on both boundary layer and microphysi-
cal processes. The success of this example rests on the fact
that the cold-air outbreak event changes much more slowly
than the winds advected through the scene. The approach is
similar to Gryspeerdt et al. (2021), and Murray-Watson et al.
(2023) in that boundary layer winds are used to advect the
system, but is fundamentally different in that that our pro-
posed approach uses a single snapshot instead of a large com-
posite, thus avoiding the meteorological confounders.

While most of the results presented here derive directly
from previously published work, an extension of the T-r, pro-
filing proposed by Rosenfeld and Lensky (1998) has been
explored. We have shown that similar to the usefulness of r,
profiling demonstrated by measuring r. at the tops of spa-
tially separated clouds in the cloud field, new remote mea-
surements of cloud top drop spectral variance v might allow
one to retrieve both r. and r43 (the ratio between 4th and 3rd
moments of the drop size distribution). The latter is shown
here to have the potential to provide useful constraints on au-
toconversion and accretion rates.
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In closing, we hope that exploring the concept or ergodic-
ity, or its more accessible “space-time exchange” will lead to
better understanding of how snapshot data (and large collec-
tions thereof) are useful for inferring process understanding.
By examining the ratio of process timescales to the duration
of observation, the Deborah number provides a useful way to
quantify how well a system can explore its state space over
the period of observation for a given process, and the ex-
tent to which meteorology might confound quantification by
changing the rules of the game.

We proffer that strict definitions of ergodicity may not be
necessary for snapshots to be useful for understanding pro-
cesses but encourage the community to dig much deeper into
ergodicity in atmospheric systems — as has occurred in the
fields of statistical physics, economics, and social sciences.
When doing so, a primary concern should be the extent to
which the physical drivers (e.g., meteorology and aerosol)
or the “rules of the game” are consistent. Thus we advocate
for targeting processes that (i) occur on timescales that are
much shorter than the timescales of processes that control
relevant meteorological variability and (ii) are conducive to
full sampling of the state space for selected observational pe-
riods, while avoiding compositing of data derived from dif-
ferent meteorological conditions. Finally, we note that while
in-situ measurements and remote sensing retrievals continue
to improve, practical limitations may get in the way, e.g., our
ability to retrieve remotely r. in small, broken clouds. Chal-
lenges posed by retrievals should not prevent us from refining
our conceptual thinking of how to derive better understand-
ing from large data sets.
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