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Abstract. North Africa, the largest and most active dust source region globally, plays a critical role in the
Earth’s environment by dispersing dust over remote areas, especially in terms of circum-global transport that has
occurred many times since the start of the 21st century. As a key indicator of the thermodynamic structure and
dynamical circulation of the troposphere, the land—sea thermal contrast (LSC) can influence the variability in
dust and subsequent large-scale propagation, but the extent of such influence is still unknown. This study reveals
that in around the late 1990s, the influence of pre-winter LSC on the spring dust transport pathway was reversed
in North Africa, which is attributed to the bridging effect of the North Atlantic Oscillation (NAO). Before 2000,
the warm land—cold ocean (+WLCO) pattern in pre-winter was typically associated with the NAO+ mode, and
the anomalous northeasterly and zonal circulation in the following spring facilitated the westward transport of
dust from the lower troposphere in western North Africa towards the Atlantic. Since 2000, the reversed zonal
temperature pattern (—WLCO) has led to the NAO— mode and enhanced mid-latitude westerlies in winter,
which has persisted into the next spring. Under conditions of unusually dry soil and strong dry convection, dust
has been mixed into the middle to upper troposphere and subsequently transported eastward globally, affecting
regions including West Asia, northern China, the Pacific, and southeastern North America after 2000. This study
underscores the critical role of sea—land—atmosphere interaction in circum-global dust propagation and offers
new perspectives for investigating dust change mechanisms in the context of climate change.
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1 Introduction

North Africa is one of the major sources of dust in the
world (Engelstaedter et al., 2006; Huneeus et al., 2011),
and the long-range transport of dust has profound impacts
on Atlantic hurricanes (Sun et al., 2008; Rousseau-Rizzi
and Emanuel, 2022), global climate change (Westphal et al.,
1987; Sassen et al., 2003; Kok et al., 2023), the carbon cy-
cle (Keith et al., 2006; Swap et al., 1992; Guieu et al., 2002),
and human health (Mallone et al., 2011; Brauer et al., 2012;
Wang et al., 2020).

Under the amplified influence of global warming, North
African dust activity has experienced significant modifica-
tions in recent decades. Pronounced alterations in large-scale
atmospheric circulations, particularly the Hadley circulation
and mid-latitude westerlies (Feng et al., 2018; Cheng et al.,
2022; Toggweiler, 2009), have fundamentally reshaped dust
transport patterns. Observational records from 1980 to 2020
reveal divergent trends in regional dust export: a decreasing
flux towards the Atlantic (—0.29 £0.16 % per decade) con-
trasted by increasing Mediterranean transport (0.24 +0.18 %
per decade), which is potentially associated with the Hadley
cell’s expansion (Adame et al., 2022). Correspondingly,
emerging evidence points to increased frequency of extreme
transcontinental dust events, exemplified by the June 2020
“Godzilla” dust storm that transported 24 £3.2Tg of Sa-
haran material circum-globally through an “express lane” —
mid-latitude westerly wind (Bi et al., 2024; Francis et al.,
2020; Asutosh et al., 2022). The dominant factors of signif-
icant decadal changes in the propagation of dust in North
Africa deserve further exploration.

Global warming has exhibited significant temporal and
spatial heterogeneity. The warming trend accelerated until
the late 1990s, followed by a period of apparent stagna-
tion (Fyfe et al., 2013). This warming pattern has been par-
ticularly evident in terrestrial regions compared to oceanic
areas, a phenomenon known as terrestrial amplification
(TA; Seltzer et al., 2023; Sutton et al., 2007; Byrne and
O’Gorman, 2018). The TA effect alters the magnitude of the
land—sea thermal contrast (LSC) (Joshi et al., 2008; Byrne
and O’Gorman, 2013), which plays a critical role in regulat-
ing the climate system’s energy balance and redistribution,
thereby altering the planetary wave patterns throughout the
entire troposphere (Held and Ting, 1990; Garfinkel et al.,
2020). For instance, the strong land—sea temperature gradi-
ent between the eastern coasts of Asia and North America
is a prominent source of baroclinicity, triggering eastward-
extending storm tracks, which in turn, energetically support
the jet streams (Hoskins and Valdes, 1990; Brayshaw et al.,
2009). As global warming has intensified, changes in the
LSC have substantially influenced key climate patterns, such
as the intensity of monsoon systems (Torres-Alavez et al.,
2014; Tao et al., 2016; Roxy et al., 2015), the frequency
of tropical and Arctic cyclones (Tang et al., 2019; Day and
Hodges, 2018), and perturbations in the westerly belt (He
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et al., 2014, 2018; Portal et al., 2022), all of which could ex-
acerbate the frequency of extreme weather events.

In fact, mid-latitude LSC plays a crucial role in interan-
nual to interdecadal atmospheric variability, potentially in-
fluencing North African dust transport pathways, particu-
larly circum-global circulation processes. According to the
thermal-equilibration theory, the asymmetry of the zonal sur-
face temperature pattern can induce a global-scale wave-like
thermal structure thereby triggering a resonance between the
mid-latitude circulation and temperature structure, or a zonal
flow pattern (Marshall and So, 1990; Mitchell and Derome,
1983). LSC variations, exemplified by the winter cold ocean—
warm land (COWL) pattern, are often closely linked to the
North Atlantic Oscillation (NAO) through tropospheric plan-
etary wave modulation (Molteni et al., 2011). The alternat-
ing phases of the NAO significantly affect the emission and
propagation of Saharan dust. Especially during the NAO+
(NAO—) phase, dust is typically transported westward (east-
ward) into the tropical Atlantic (eastern Mediterranean) by
northeasterly (southwesterly) winds (Moulin et al., 1997;
Chiapello et al., 1997; Ginoux et al., 2004; Riemer et al.,
2006; Doherty et al., 2008; Kaskaoutis et al., 2019; Dai et al.,
2022). Subsequently, the dominant easterly transport of min-
eral dust is further enhanced by the westerly jet stream, fa-
cilitating circum-global dust dispersion and significantly in-
fluencing downstream regions such as Asia (Pu and Ginoux,
2016; Liu et al., 2022; Awad and Mashat, 2014).

Reanalyzed data and model results have demonstrated that
the LSC has induced significant modifications in planetary-
scale atmospheric wave patterns (He et al., 2014, 2018), with
the dominant airflow and dust transport pathways in North
Africa being affected. However, has the LSC affected the
decadal variation in dust in North Africa? And what is its im-
pact mechanism? These issues have not been answered yet.
We find that a regime shift in dust transport dynamics took
place in around the late 1990s. It is shown that, during the
pre-2000 epoch, the COWL pattern, driven by land warming
in pre-winter, affected the westward transport path of North
Africa dust during the subsequent spring. After this period,
a reversed zonal temperature pattern (warm ocean and cold
land, WOCL) continued to enhance the eastward dust trans-
port, facilitating circum-global dispersion as far as southeast-
ern North America. In addition, the mechanisms underlying
the trans-seasonal effects of this large-scale dynamical pre-
cursor signal and its transport have been thoroughly eluci-
dated.
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2 Methods and data

2.1 Methods

2.1.1 SVD of extratropical surface air temperature (SAT)
and North African dust

Surface thermal modes have a significant impact on the alter-
nation of the two possible dynamic equilibria (wave or band
components), which may affect North African dust activity.
Singular value decomposition (SVD) analysis was conducted
to initially explore this relationship by examining the covari-
ance matrices of springtime North African dust concentration
and pre-winter extratropical temperatures.

2.1.2 The land-sea contrast (LSC) index

Firstly, the anomaly pattern associated with the “traditional”,
empirically based northern extratropical low-frequency vari-
ability is presented. This is characterized by an empirical
orthogonal function (EOF) associated with the second prin-
cipal component of the 500 hPa height (Z500) anomaly in
the Northern Hemisphere extratropics (20-80° N), which dis-
plays a pronounced zonal asymmetry (Fig. 1). Molteni et al.
(2011) defined the land—sea contrast as the band wave 2 com-
ponent of the net surface heat flux, averaged over four sectors
of 90° longitude each. Considering that latent heat is almost
negligible during the winter months, it is sufficient to con-
sider the difference in sensible heat between the land and
ocean surfaces. Therefore, referring to the approach of He
et al. (2014), the LSC index (LSCI) can thus be expressed in
a straightforward manner as the land—ocean contrast of the
SAT anomaly in the critical zone (east coast of North Amer-
ica and east coast of East Asia) with the following equation:

LSCI = (SATanomA - SATanomB)
+ (SATanomC - SATanomD) . (1)

The heat capacity of the land is considerably less than that
of the oceans, resulting in a significantly greater warming of
the continents during winter compared to the oceans under
global warming. Consequently, a positive LSC value indi-
cates a warmer climate with a reduced temperature gradient
between land and sea. During the winter months, the anoma-
lous warming of the land results in a shift from a negative
to a positive LSC, signifying a reduction in the temperature
disparity between the land and the sea.

2.1.3 Selection of years for composite analysis in the
two periods

In accordance with established climatological standards, nor-
mal values are typically calculated for a minimum of 30 con-
secutive years in order to obtain a meaningful mean. As
our study is concerned with interdecadal climate change, an
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Table 1. List of year selection for composite analysis in this study.

First period  Second period
(1980-2000) (2001-2023)
LSCI>1 1983 2002
1987 2015
1989 2016
1993
LSC < -1 1980 2010
1982 2011
1985 2013
1996 2021

analysis of shorter periods may yield different trends than
those observed for longer climatic periods. However, given
that records of the MERRA-2 dust data only commence in
1980, a compromise was reached. This period division cap-
tures a clear climatological discontinuity, as evidenced by
the sliding ¢ test showing maximum statistical significance
(p < 0.05) for regime shifts centered on 2000 (Fig. S1 in the
Supplement), thus objectively delineating the two study pe-
riods (1980-2000 and 2001-2023).

Further investigation into the LSC-related dust transport
characteristics in North Africa during these two periods is
conducted through composite analyses. The 1-fold standard
deviations of the standardized LSCI serve as thresholds for
selection, with the years corresponding to the positive and
negative phases of the LSC (Table 1). Note that the composite
analysis for the first period uses high-value years (LSCI > 1)
minus low-value years (LSCI < —1), whereas the second pe-
riod uses low-value years (LSCI < —1) minus high-value
years (LSCI > 1), which is related to the interdecadal shift in
the relationship between the winter LSC and spring dust in
North Africa. The significance test is based on the two-sided
Student’s ¢ test.

2.2 Data

The monthly SATSs used to calculate the LSC index are de-
rived from the Met Office Hadley Centre’s observational
dataset HadCRUTS. This is one of the main datasets used
to monitor global and regional surface temperature varia-
tions and trends. In order to obtain the longest possible dust
sequence for the study of relevant interdecadal variability,
the MERRA-2 dust data are selected here. The MERRA-
2 dataset is a reanalysis product developed using the God-
dard Earth Observing System of Systems (GEOS-5.12.4) at-
mospheric model, which simulates global aerosol properties
using the radiatively coupled Goddard Chemistry, Aerosol,
Radiation, and Transport (GOCART) model. MERRA-2 di-
rectly assimilates aerosol optical depths derived from the
AERONET and MISR instruments, as well as bias-corrected
dust concentrations and aerosol data from the Advanced Very
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Figure 1. The second EOF of DJF mean 500 hPa geopotential height (Z500) during 1980-2023, with reference to He et al. (2014). The
regions A, B, C, and D represent East Asia (40-60°N, 80-120°E), the Pacific (40-60°N, 170°E-150° W), North America (40-60° N,
130-100° W) and the Greenland Sea (57.5-77.5° N, 70—40° W), respectively.

High-Resolution Radiometer (AVHRR) and Moderate Res-
olution Imaging Spectroradiometer (MODIS) instruments.
In the present study, monthly dust properties are consid-
ered, namely dust column mass density and meteorological
and land conditions related to dust activities — Z500, U200,
UV500, potential vorticity (PV), UV10, T2M, soil moisture
(SM), etc. — at a spatial resolution of 0.625° x 0.5°.

In order to investigate the impact of LSC on dust trans-
port in North Africa, a comparison is made between histori-
cal simulations (1980-2014) from the 14 participating Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) mod-
els that contain both dust and meteorological information.
The selected models are detailed in Table S1 in the Supple-
ment. Monthly outputs from CMIP6 are employed to exam-
ine the response of dust aerosols and upper zonal winds to
the land—sea contrast in the model since the 1980s.

Atmos. Chem. Phys., 25, 10853-10867, 2025

3 Result

3.1 Interdecadal LSC signal in pre-winter leads to
change in the circum-global transport path of North
Africa in the following spring

Utilizing the SVD analysis (see “Methods”), coherence is
observed between pre-winter extratropical surface air tem-
perature (SAT) in the Northern Hemisphere (NH) and spring
dust mass column density (hereafter referred to as DUST)
in North Africa. The first mode explains 43.15 % of the to-
tal variance, and substantial correlation of R =0.64 (11-year
filtered correlation, R =0.86) is demonstrated by the time
series of the two variables (PC1-DUST and PC1-SAT). The
spatial pattern of the DUST field is revealed to follow a zonal
tripole mode (Fig. 2a), with an interdecadal abrupt change
around 2000 (Fig. 2¢). The interdecadal variability charac-
teristics of regional dust activity are consistent with previous
research findings (Shi et al., 2021). On the other hand, the ex-
tratropical SAT field highlights the thermal contrast, with an
opposite signal between Asia (Siberia) and the eastern Pacific
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and an even greater thermal contrast between North Amer-
ica and the Greenland Sea (Fig. 2b). This spatial temperature
pattern, called the COWL, has also been found in previous
studies (Wallace et al., 1996; Wu and Straus, 2004; He et al.,
2014). Based on the east coast of North America and east
coast of East Asia, LSCI is defined (see “Methods”), and it
shows a significant correlation of 0.86 with the PC1-SAT.
The interannual variation in the LSCI (Fig. 2d) is consistent
with the two phases of warming (warming acceleration and
warming stagnation). The subsequent study will use this in-
dex to further analyze decadal variability.

The correlation between the pre-winter LSCI and the fol-
lowing spring PC1-DUST exhibits a stepwise change over
time, with a stable and significant relationship between the
two variables emerging only after the late 1990s (Fig. 2e).
The dust-LSC correlation remains statistically significant re-
gardless of window length selection (Fig. 2e), with partic-
ularly stable associations emerging after 2000. The sliding
t test for PC1-DUST indicates a significant abrupt change in
dust in the year 2000 (Fig. S1). To further analyze the decadal
impact of LSC on North African dust, we examine the regres-
sion spatial field of spring dust with respect to the pre-winter
LSCI during the two periods (1980-2000 and 2001-2023;
see “Methods”). Prior to 2000, significant positive regres-
sion coefficients are found in a small region of West Africa,
while the relationship in the central region is not significant
(Fig. 2f). After 2000, distinct negative regression coefficients
are observed in the central region (Fig. 2g).

In composite analysis, under warming in North America
and East Asia alongside cooling along their eastern coasts
(Fig. S2a), i.e., the LSC positive phase, positive dust anoma-
lies over West Africa predominantly follow westward trajec-
tories to the Atlantic Ocean for 1980-2000 (Fig. 3a). This
westward transport pattern aligns with observations by Evan
et al. (2016), who documented peak Atlantic dust export in
the 1980s followed by a marked post-2000 decline. After
2000, dust related to the negative LSC phase exhibits pref-
erential eastward transport to West Asia and northern China
via the eastern Mediterranean, consistent with the intensifi-
cation of eastward pathways since 1980 reported by Adame
et al. (2022). Notably, a March 2003 North African dust
event traversed continental scales, depositing 50 % of Japan’s
dust load within a week (Tanaka et al., 2005). Moreover, un-
like the westward pathway, LSC-linked dust can be trans-
ported eastward across the North Pacific along a consider-
ably longer path, reaching the southeastern region of North
America in the second period (Fig. 3b and j). The regression
analysis of dust aerosol optical depth (DOD) in relation to
LSC reveals that 43 % (6 out of 14) of CMIP6 models repro-
duce the observed significant spatial correlations (p <0.1)
between LSC and dust variability. Notably, a robust posi-
tive LSC-DOD relationship persists along the Atlantic coast
of West Africa (Fig. S2a), while significant negative corre-
lations emerge post-1990s over North Africa, mid-latitude
Asia, and southern North America (Fig. S3b). This multi-
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model consensus, despite CMIP6’s known dust biases, un-
derscores the interdecadal variability in dust distribution pat-
terns associated with LSC.

During the first period, Atlantic-bound dust transport pre-
dominantly occurred within the low to middle troposphere
(850-500 hPa) (Fig. 3c and e), as evidenced by vertical cross-
sections of dust mixing ratios (DMRs) in the Sahara (Fig. 3i).
The second period reveals an elevated dust layer extend-
ing to 10km altitude (Fig. 3i), demonstrating sustained east-
ward transport — a pattern attributable to springtime North
African dust emissions according to satellite-derived analy-
ses (Yang et al., 2022). Significant positive DMR anomalies
are observed at 500 hPa across nearly the entire zonal belt
in the mid-latitudes (Fig. 3f), consistent with the findings of
Uno et al. (2009). Their CALIOP observations and transport
model simulations suggest that circum-global dust trajecto-
ries persist in the upper troposphere for multiple revolutions
before deposition. Notably, our analysis identifies stronger
DMR anomalies at 500 hPa than at 850 hPa over the North
Pacific (Fig. 3d and f), highlighting mid-tropospheric domi-
nance in trans-Pacific dust transport.

3.2 Mechanisms for the interdecadal shifts of impact of
LSC on dust transport path

For the first period, the composite geopotential height
anomalies at 500 hPa (Z500) are presented in Fig. 4a and c,
illustrating the differences between the LSC positive and
negative phases. During the pre-winter period, a general
positive anomaly in Z500 is observed over the NH mid-
latitudes, including North America, Eurasia, and the Atlantic
Ocean, while a negative anomaly is evident in higher lat-
itudes (Fig. 4a). The NAO+ mode is observed in the ex-
tratropical Atlantic region, accompanied by PV anomalies
(Fig. 4a and g), which typically facilitate downstream Rossby
wave breaking, as reported in previous studies (He et al.,
2014; Molteni et al., 2011). In the following spring, the
anomalous anticyclone over northwestern North Africa, trig-
gered by the winter NAO+ mode, drives anomalous north-
easterly winds, transporting dust from the Sahara to the At-
lantic (Fig. 4c and h). The 10 m anomalous easterly wind
probability in the tropical Atlantic is significantly higher in
the 1980-2000 LSC positive phase compared to the 2000—
2023 LSC negative phase (Fig. 4h; the short red line repre-
sents p < 0.1 for positive LSC). Long-duration, widespread
dusty events are frequently associated with explosive anticy-
clones situated to the rear of the northern Sahara (Knippertz
and Todd, 2012). In addition, during the positive LSC phase,
weakened and poleward mid-latitude westerlies further am-
plify terrestrial warming through a positive feedback mecha-
nism (He et al., 2014), which also enhances dust activity.
From 2001 to 2023, the Z500 field pattern is the complete
opposite of that of the first phase (Fig. 4b), which is consid-
ered the expected outcome of WOCL mode during winter.
However, the lag effect of the pre-winter LSC signal in the

Atmos. Chem. Phys., 25, 10853-10867, 2025
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Figure 2. The relationship between pre-winter land—sea thermal contrasts (LSCs) and spring North African dust. The SVD first mode
between detrended spring (MAM) MERRA-2 dust mass column density (DUST) in North Africa (a) and pre-winter (DJF) surface air tem-
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sliding correlations between the DJF LSC index and PC1-DUST index under different moving windows (15, 17, 21, 23 years). The regression
patterns of detrended DUST in relation to LSCI (standardization) during (f) 1980-2000 and (g) 2001-2023 (shading; 1075 kg m_z). The

black dots indicate that the correlation coefficients pass the 90 % confidence test.
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DIJF 500 hPa geopotential height (Z500) anomalies (shading; gpm) with 320 K potential vorticity (PV320) anomalies (green contours; only
absolute values > 0.3 are shown; solid lines represent positive and dashed lines represent negative phases; PVU), (¢) MAM Z500 anomalies
(shading; gpm) with PV320 and 500 hPa horizontal wind (UV500) anomalies (vectors; ms~! ), and (e) 200 hPa U-wind (U200) anomalies
(shading; ms_l) for 19802000 (positive LSC minus negative LSC). Composite (b) pre-DJF Z500 with PV320, (d) MAMS500 with PV320
and UV500, and (f) U200, for 2001-2023 (negative LSC minus positive LSC). (g) The pre-DJF LSC associated with a 21-year sliding
correlation with the NAO over the same period (black line) and in the following spring (red line). The significance at the 90 % (gray) levels
is shown by the dash-dotted line. Histogram of surface wind directions at all grid points within (h) the tropical Atlantic during positive
LSC (white bars) and during negative LSC (blue bars) in 1980-2000. For surface wind directions, “NE”, “SE”, “SW”, and “NW” indicate
northeasterlies, southeasterlies, southwesterlies, and northwesterlies, respectively. Panels (i), (j), (k), and (1) represent West Asia, northern
China, the mid-latitude Pacific, and southeastern North America, respectively, in 2001-2023. The boxes are marked on top in red and blue
when positive LSC and negative LSC are statistically significant and pass the 90 % confidence test. The black dots indicate that the anomalies
pass the 90 % confidence test.
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subsequent spring differs from that in the first phase, likely
due to interdecadal variability in heat retention in the ocean
memory (Pan, 2005; Yu et al., 2024; Khatri et al., 2024; Han
and Wu, 2025). Specifically, the strengthening of the tripo-
lar pattern of the sea surface temperature anomaly (SSTA)
from DJF to MAM (Fig. S4b and d) leads to the maintenance
of the NAO— pattern into the spring (Fig. 4d and g). The
anomalous cyclonic circulation in the Atlantic strengthens
the southwesterly (Fig. 4d and 1), which directs dust plumes
towards the Eurasian border region. For example, the NAO—
phase in March 2018 caused surface dust concentrations in
the eastern Mediterranean to be approximately 200 ugm™3
higher than the climatological value, due to a strong south-
westerly (Kaskaoutis et al., 2019). The prevailing stronger
westerlies continue to transport dust eastward (Figs. 4f, S3d,
and S5). Meanwhile, under the effect of downward momen-
tum, the probability of there being westerlies near the surface
in these regions increases (Fig. 4i-1; the short blue line rep-
resents p < 0.1 in negative LSC), leading to dust deposition
in northern China, the Pacific, and the southeastern United
States.

The composite analysis from 1980 to 2000 shows
that anomalous northeasterly winds (maximum anomaly
1.4ms~!, Fig. 4c) lead to significant positive anomalies of
wind speed in the western and central regions of North Africa
(Fig. 5a), which align with the spatial distribution of the sec-
ond empirical orthogonal function (EOF) of 10 m wind speed
(Evan et al., 2016). This wind speed anomaly facilitates
dust emission south of 20° N (Fig. 5e), explaining 58 % of
the variation in westward dust transport across North Africa
(Evan et al., 2016). In contrast, soil conditions exert a smaller
influence on dust emission (Fig. 5b). The cold northeasterly
cools the eastern region, triggering anomalous zonal temper-
ature gradients (Fig. 5c) and alterations in zonal circulation
patterns (Fig. 5d). These changes further amplify the vertical
uplift of dust, carrying it into the middle—lower troposphere
of the Atlantic. Additionally, radiative heating effects in the
source regions strengthen the upward motion of dust (Carl-
son and Benjamin, 1980).

From 2000 to 2023, anomalous southwesterly winds
cause significant warming in the northwestern part of North
Africa, with maximum anomalies capable of exceeding 4 K
(Fig. 5h). This is due to the weakening of the subtropical high
(Fig. 4d), which triggers strong westerly warm advection and
enhances vertical mixing in the atmospheric boundary layer
under the NAO— phase (Zhou et al., 2023). The warming of
the surface has two major impacts. First, the LSC-induced
soil moisture deficit, quantified through composite analysis
in Fig. 5g (peak anomalies of 0.03 m> m~3 at 25-30° N), sig-
nificantly reduces soil cohesion, promoting dust emissions
north of 25°N (Fig. 5j). Second, the intensified meridional
temperature gradient (Fig. 5h) generates anomalous circu-
lation patterns, with pronounced upward motion extending
to 200 hPa (Fig. 5i), creating favorable conditions for long-
range dust transport.

https://doi.org/10.5194/acp-25-10853-2025

10861

4 Conclusions and discussions

This study primarily reveals that the dust transport path-
way from North Africa in the subsequent spring, influ-
enced by the preceding winter LSC, shifted from a west-
ward to a long-range eastward trajectory in the late 1990s.
The schematic in Fig. 6 outlines the dynamical processes,
ranging from large-scale to local-scale, that control dust
emission, uplift, and subsequent transport. The 1980-2000
LSC+ phase (Fig. 6a) amplifies zonal temperature gradi-
ents between warming Eurasian/North American continents
and cooling oceanic basins, driving the NAO+ mode that
establishes intensified anticyclonic systems over northeast-
ern North Africa. These synoptic configurations generate
anomalous northeasterlies that enhance both dust emission
and westward Atlantic transport, corroborated by the dom-
inance of wind-driven emission mechanisms (Evan et al.,
2016). Post-2000, the reversed LSC— phase (Fig. 6b) pro-
motes NAO— persistence into spring, with anomalous south-
westerly advection inducing Saharan soil desiccation and
convective uplift. Mid-latitude westerly intensification en-
ables circum-global dust transport extending to southeastern
North America. Overall, the variation in the LSC-related dust
transport directions along the westward and eastward path-
ways is closely related to the climatic variability determined
by the phases of the NAO. The significant role of the second
dry period in dust emissions, which is similar to findings for
Gobi dust events (Zhu and Liu, 2024), highlights the signif-
icant influence of regional drought on dust emissions in the
context of global warming, particularly as a consequence of
intense heatwaves.

This study is based on statistical and dynamical di-
agnostics, and its results can be validated through some
other numerical simulations of land—ocean contrasts. Pre-
vious research into idealized atmospheric circulation simu-
lations has demonstrated that continental warming (LSC+)
induces planetary wave modes, with a dipole resembling
NAO emerging as the dominant regional feature (Molteni
et al.,, 2011). This is accompanied by anomalous disper-
sion of the tropospheric Eliassen—Palm fluxes in the mid-
latitudes, which reduces the net meridional vortex heat flux
into the stratosphere and weakens the westerlies (Portal
et al., 2022). This, in turn, supports the conclusions of this
paper regarding the eastward transport paths of the sec-
ond LSC— phase. Additionally, the critical role of NAO-
modulated land—atmosphere interactions receives further val-
idation from Sahelian climate studies, where vegetation—
precipitation feedbacks amplify dust emission sensitivity to
circulation anomalies (Lu and Delworth, 2005; Folland et al.,
1986). Our findings align with GOCART model simulations
that quantitatively link NAO phases to North Atlantic dust
load variability (Ginoux et al., 2004), though they extend this
paradigm by revealing LSC effects on transcontinental trans-
port efficiency. The use of only rlilplfl ensemble members
in our CMIP6 analysis prevents evaluation of intra-model
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variability, suggesting the need for future work with multi-
member ensembles. Moreover, the global signal response is
primarily driven by Asian warming across the zonal bound-
ary region (Portal et al., 2022). This highlights the need for
further investigation into the impact of subregional LSC vari-
ations on dust transport.

This study elucidates a novel mechanism whereby pre-
winter LSC modulates spring dust transport via NAO phase
shifts, providing a reference for improving the ability of sand
and dust forecasting. The established LSC-NAO—-dust path-
way provides an operational framework to improve seasonal
forecasts through winter LSC indicators and refine impact
assessments via phase-dependent evaluation (pre-/post-2000
regimes), particularly for downwind regions like West Asia
and North America that are now experiencing intensified
dust impacts under the new transport paradigm. These find-
ings have immediate applications for transcontinental dust
early warning systems, climate model parameterizations, and
the management of dust-sensitive sectors like aviation and
renewable energy. However, the considerable nonlinearity
inherent in these dynamics, particularly through complex
LSC-NAO interactions (Molteni et al., 2011), atmospheric
blocking linkages (Athanasiadis et al., 2020; Croci-Maspoli

https://doi.org/10.5194/acp-25-10853-2025

et al., 2007), and jet stream variability (He et al., 2014; Por-
tal et al., 2022), introduces important uncertainties regard-
ing future dust activity under changing climate conditions.
High sensitivity to the land—ocean boundary response and
to scenarios of future CO, concentration pathways has been
demonstrated in changes to climate patterns (Kamae et al.,
2014). Although it has been predicted in many studies that
the overall trend of global and regional dust may decrease
in the future (Evan et al., 2016; Shao et al., 2013; An et al.,
2018; Yang et al., 2020), the long-range transport of dust and
its impacts on climate under the modulation of LSC and its
associated nonlinear dynamical mechanisms remain a critical
area requiring further urgent research.

Code availability. The data were analyzed using Python. All rel-
evant codes used in this study are available upon request from the
corresponding author.

Data availability. All datasets utilized in this study are pub-
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MERRA-2 dataset for aerosol and meteorological products
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logical products: https://doi.org/10.5067/RZIK2TV7PP38
(Global Modeling and  Assimilation  Office, 2015a),
https://doi.org/10.5067/LTVB4GPCOTK2 (Global
Modeling and Assimilation Office, 2015b),
https://doi.org/10.5067/V9208XZ30XBI (Global
Modeling and Assimilation Office, 2015¢) and

https://doi.org/10.5067/SESKGQTZG7FO (Global Mod-
eling and Assimilation Office, 2015d), the Met Office
HadCRUTS dataset for land sea surface temperature:
https://doi.org/10.1029/2019JD032361 (Morice et al., 2021)
the monthly CMIP6 mode output for aerosol and meteorological
products: https://aims2.1lnl.gov/search/cmip6/ (last access: 18
September 2025), and the NOAA Global Inventory Monitoring and
Modeling System (GIMMS) dataset (version number 3g.v1) for the
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