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Abstract. This series of papers explores spatio-temporal patterns of convective cloud occurrence and organisa-
tion. We use a machine-learning-based method to extrapolate a contiguous 3D cloud field of 2D satellite data.
In Part 2, we focus on convective organisation in tropical West Africa between March and August 2019, exam-
ining how it relates to the 3D properties of convective clouds and their core structures. We quantify organisation
using three indices (SCAI, COP, ROME) to capture different aspects of spatial cloud clustering. Our findings
highlight how cloud properties may interact with organisation. Hence, strong organisation may occur with larger
cloud areas, lower cloud tops and core heights, and shorter lifespans compared to the average convective sys-
tem. In contrast, weak organisation may be associated with smaller clouds and fewer cores but similarly shorter
lifespans. We find an increasing frequency of convective organisation in the Northern Hemisphere during boreal
summer months, likely linked to the northward migration of the Intertropical Convergence Zone (ITCZ). From
March to May, patches of strong convective organisation emerge along the African coastlines and over the south-
ern Atlantic Ocean. Between June and August, hotspots shift inland, particularly across the Sahel and wider
West African Plains. Notably, oceanic regions show slightly stronger organisation overall. However, overlap-
ping regions of strong and weak organisation may complicate the interpretation of regional statistics. While the
machine-learning-based 3D perspective helps bridge observational gaps in the representation of cloud structures,
the inherent complexity and variability of convective organisation highlight the need for continued investigation.

the connection between convective organisation and extreme

Atmospheric convection plays an essential role in the climate
system through its contribution to weather and climate vari-
ability (Brune et al., 2020). In the tropics, we observe con-
vective clouds forming as spatially connected structures of
extensive size (Houze, 1977). These mesoscale convective
systems (MCSs) are one of the main drivers for the transport
of heat and moisture through the atmosphere. Furthermore,
they affect the hydrological and radiative variability on Earth
(Hartmann et al., 1984). The spatial clustering of convective
systems — also known as convective organisation — may pro-
mote the occurrence of severe weather events such as hail and
floods (Becker et al., 2021). However, a robust assessment of

weather, in particular in a future climate under global warm-
ing, expresses the need for further research.

Although the term “convective organisation” has become
increasingly popular in climate research, it is often used
vaguely. Mapes and Neale (2011) broadly summarise or-
ganisation as ‘“non-randomness in meteorological fields in
convecting regions”. This definition induces a clustering of
deep convective cells which is ubiquitous in the atmosphere,
particularly in the tropics. However, the underlying mech-
anisms remain insufficiently understood (Muller and Bony,
2015). While convective organisation is difficult to quan-
tify in observational data, an idealised model configured in
radiative—convective equilibrium (RCE) could demonstrate a
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large-scale clustering of convective clouds, which is known
as self-aggregation of convection (e.g, Nakajima and Mat-
suno, 1988; Held et al., 1993; Wing et al., 2017). Following
Bretherton et al. (2005), it occurs on a timescale between
days and weeks and describes the transition of an approxi-
mately random distribution of convective cells into convect-
ing and non-convecting regions that grow upscale over time.
Convective aggregation is driven by either internal dynam-
ics, like cold pools and radiative feedback, or external forces,
such as the land—sea breeze (e.g. Haerter et al., 2019, Coppin
and Bony, 2015, Dauhut et al., 2016). Self-aggregation in-
creases with the size and proximity of convective clouds and
affects the radiative feedback, large-scale circulation, and
moisture distribution in the vicinity of a cloud cluster (Hart-
mann et al., 1984). For instance, an idealised model setup
shows that an aggregated state consists of a single moist re-
gion surrounded by dry regions. Moreover, the feedback be-
tween convection, surface fluxes, and radiation further drives
aggregation (Tobin et al., 2012). Research shows that self-
aggregation may increase with a warming climate (Wing
et al., 2020). However, there remain uncertainties connected
to a large model spread (Blidckberg and Singh, 2022).

Despite these insights derived from models, identifying
and quantifying convective organisation in observational data
continues to be a challenge. This may be due a high variabil-
ity in the quality and quantity of observations. In response,
previous studies have developed various metrics aiming to-
wards a deeper understanding about the underlying physi-
cal mechanisms. The indices analyse the spatial distribution
of the clouds within a defined area to estimate the strength
of convective organisation (Pscheidt et al., 2019). For in-
stance, they help differentiate a regularly distributed, ran-
domly distributed, or organised cloud field using morpholog-
ical attributes such as the number of clouds and their nearest-
neighbour distances, size, shape, pattern, and timing (Pen-
dergrass, 2020; Retsch et al., 2020).

Providing timely forecasts and a robust climate risk assess-
ment requires a correct representation of convective organi-
sation even more. While satellite observations has shown that
organisation within the tropics may increase overall with ex-
treme precipitation (Semie and Bony, 2020), we have limited
knowledge about convective organisation on a regional level.
In this study, we aim to provide a deeper understanding of the
relationship between cloud properties and convective organ-
isation on this regional scale, comparable to the work of Bao
et al. (2024). The area of interest (AOI) covers West Africa
and the tropical Atlantic Ocean between 30° N-30°S and
30°W-30°E and lies within the Intertropical Convergence
Zone (ITCZ). Here, the environmental conditions favour the
development of deep convective clouds, which are often as-
sociated with heavy rain (Takahashi et al., 2023). A heteroge-
neous landmass distribution in the Northern Hemisphere and
Southern Hemisphere and land—ocean contrasts may affect
the development of convection (Zipser et al., 2006). Over the
tropical Atlantic Ocean, a weaker large-scale forcing may in-
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duce lower cloud tops and less intense rain rates than over
continental Africa (Futyan and Genio, 2007). The rainfall
variability between the individual regions of the AOI sub-
stantially depends on the moisture availability and thermal
gradients (Berthou et al., 2019). Overall, the West African
Monsoon (WAM) dominates the West African climate. A
strong temperature gradient between the warm Sahara and
the colder waters of the Gulf of Guinea drives the WAM
(Fontaine and Philippon, 2000). Stronger convection gener-
ally leads to an increase in heavy rain, a larger detrainment,
and a slightly smaller thick anvil emissivity. For instance,
Stubenrauch et al. (2023) found a distinct annual cycle of
convective organisation connected to seasonal shifts of the
convective cloud properties.

In Part 1 of this sequence of papers, we derived contigu-
ous trajectories of convective clouds and their deep convec-
tive core regions (hereafter: cores) in 15 min intervals for
a 6-month period between March and August 2019 (Briin-
ing and Tost, 2025). In this study, we examined cloud and
core properties of tropical convection and the life cycle of
single-core and multi-core convective clouds. In this pa-
per, we aim to complement the findings with an in-depth
analysis of spatio-temporal patterns of convective organi-
sation. Moreover, we aim to investigate the connection be-
tween convective organisation and cloud properties within
the AOL. For this purpose, we quantify convective organisa-
tion at each point in time by employing three organisation
indices. The goal is to derive spatial patterns of organisa-
tion and compare their spatio-temporal variability (Biagioli
and Tompkins, 2023). Our study employs convective cloud
trajectories derived from a 4D time series of contiguous 3D
radar reflectivities, which we predict from a machine learn-
ing (ML)-based extrapolation of 2D satellite data (Briining
et al., 2024). We employ an object-based algorithm to detect
and track convective clouds in the predicted radar reflectiv-
ity field. This perspective allows a simultaneous coverage of
the horizontal (cloud and core area) and vertical (cloud and
core height) properties in the AOI, including remote oceanic
regions over the Atlantic Ocean. Our aim is to showcase how
convective organisation is distributed in the AOI within the
6-month period. Furthermore, we strive to quantify how dif-
ferences in the cloud and core properties are connected to a
weak or strong convective organisation.

We have divided this article into five further sections. In
Sect. 2, we describe the dataset used in this study. Section 3
presents an overview of metrics employed to quantify con-
vective organisation. Section 4 contains an overview of the
results comprising the spatio-temporal variability of organi-
sation indices and cloud properties. Section 5 relates our key
findings to other studies. Moreover, we discuss some lim-
itations we encountered and evaluate the role of the ITCZ
and other environmental drivers in the development of tropi-
cal organisation. Finally, Sect. 6 contains a summary and the
main conclusions.
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2 Data

To quantify convective organisation over tropical West
Africa, we use a ML-based 3D cloud mask built on the
3D cloud reconstruction method described in Briining et al.
(2024) and the convective cloud detection framework by
Briining and Tost (2025). The following section outlines the
workflow for producing the 3D radar reflectivity dataset, de-
tecting convective clouds and cores, and extracting cloud
properties (Fig. 1).

2.1 Satellite data

To identify, track, and analyse convective clouds, we employ
a machine learning (ML) algorithm that generates time se-
ries of 3D radar reflectivity fields based on 2D satellite ob-
servations, as described in Briining et al. (2024). The input
data are derived from the Spinning Enhanced Visible and In-
frared Imager (SEVIRI) on board the Meteosat-11 (MSG)
satellite (Schmetz et al., 2002). The AOI is situated near the
nadir of SEVIRI, which is positioned above the Equator at 0°
longitude. SEVIRI captures multispectral imagery across 12
channels in the visible, near-infrared, and thermal-infrared
ranges. Eleven of these channels offer a temporal resolution
of 15 min and a spatial resolution of 3 km, while one high-
resolution visible channel provides 1 km resolution at nadir.
From these, we use eight channels to train our ML model
(Table 1).

We employ vertical cross-sections of radar reflectivity
from the 94 GHz Cloud Profiling Radar (CPR) on board the
polar-orbiting CloudSat satellite to validate our ML-based
predictions. The CPR is an active radar instrument, which
transmits microwave pulses toward Earth to detect vertical
profiles of cloud hydrometeors. It has a vertical resolution of
240 m (distributed across 125 bins) and a horizontal resolu-
tion of 1.4 km across-track and 1.8 km along-track (Stephens
et al., 2008). Our study employs data from the level-2 2B-
GEOPROF product. While the CPR has a reduced sensor
sensitivity at high altitudes, thin ice clouds like cirrus may
be under-represented. Moreover, the radar may be affected
by signal attenuation at low altitudes caused by the topogra-
phy (Sassen and Wang, 2008). To address these limitations,
we limit the data to contain 90 height levels ranging from 2.4
to 24 km. To improve the ML model performance, we filter
the radar reflectivities by the CloudSat cloud mask quality
flag to reduce the number of noisy pixels (Marchand et al.,
2008).

2.2 3D cloud field reconstruction

In the following section, we describe the methodology used
to reconstruct a 3D cloud field, based on the framework de-
veloped by Briining et al. (2024). Our approach utilises a ML
algorithm built on the 2D Res-UNet architecture — a modified
convolutional neural network specifically designed for image
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segmentation tasks (Ronneberger et al., 2015). The model is
primarily trained to reconstruct vertical cross-sections of the
CloudSat CPR using data from the MSG SEVIRI satellite.
Due to the U-Net architecture, the model is capable of pro-
ducing full 3D radar reflectivity volumes rather than just 2D
slices.

The AOI for the reconstructed 3D cloud field spans 60° W
to 60°E and 60°S to 60°N, corresponding to 2400 x 2400
pixels in the horizontal dimensions. MSG SEVIRI satellite
imagery serves as input to the Res-UNet model, setting the
horizontal resolution of the 3D data to 3km x 3km. Ini-
tially, we used 11 spectral channels covering the visible,
near-infrared, and thermal-infrared ranges. However, the vis-
ible channels were excluded in this study to enable daylight-
independent predictions (Tables 1 and 2).

The training data consist of 128 x 128 pixel patches of
MSG SEVIRI imagery, spatially and temporally aligned with
CloudSat overpasses. Each training sample includes a di-
agonal CPR cross-section. To address the resolution mis-
match between MSG SEVIRI and CloudSat, the CPR data
are downsampled to match the horizontal resolution of MSG
SEVIRI pixels. To mitigate the strong class imbalance be-
tween cloudy and cloud-free conditions, cloud-free sam-
ples are limited to a maximum of 10% of the training
data. The model is trained on 9 months of data and vali-
dated on a separate 3-month period. It is optimised to re-
construct CloudSat-like 3D reflectivity volumes with a hor-
izontal resolution of 100 x 100 pixels and 90 vertical lev-
els. Predicted radar reflectivity values range from —25 to
20dBZ and maintain the 15 min temporal resolution of the
MSG SEVIRI input. An L1 loss function (mean absolute er-
ror, MAE) is used during training to evaluate performance.
Direct validation is only possible for the diagonal cross-
section, which constitutes about 10 % of the data points in
each training sample. During the 3-month test period, the
modified daylight-independent model achieves a root mean
square error (RMSE) of 2.99 dBZ, improving upon the orig-
inal model’s average RMSE of 3.05 dBZ (Table 2).

To achieve complete spatial coverage of the domain
(60°W to 60°E and 60°S to 60°N), individual 3D output
patches are stitched together to form a contiguous volume of
2400 x 2400 x 90 pixels (Fig. 1a). This approach may enable
consistent spatial coverage, especially over remote oceanic
regions where active sensors are scarce (Prein et al., 2024).
Visual inspection confirms that no artefacts are present at
tile boundaries, indicating seamless reconstruction across the
domain. However, model accuracy tends to decrease with
increasing distance from the MSG SEVIRI nadir. Finally,
the 3D radar reflectivity volumes are concatenated along the
temporal axis to create a 4D cloud field, which is then used to
detect and track convective clouds. For the purposes of this
study, we crop the domain to 1200 x 1200 pixels, covering
the region from 30° W to 30°E and 30°N to 30°S — effec-
tively focusing on the area between the Tropic of Cancer and
the Tropic of Capricorn.
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Figure 1. Overview of the workflow for this study. In panel (a), we show how to derive a contiguous 3D cloud field from 2D data by a
machine-learning-based extrapolation (Briining et al., 2024). For this purpose, 2D satellite imagery from the MSG SEVIRI sensor is fed into
a 2D Res-UNet and trained to predict a 3D image of radar reflectivities validated against vertical cross-sections of the CloudSat CPR. The
predictions cover 100 x 100 pixels along 90 vertical bins of 240 m. These patches are combined to cover an area between 60° W—60° E and
60°N-60°S. In panel (b), an object-based algorithm is employed to detect convective clouds and their cores within the predicted 3D radar
reflectivity field. The temporal resolution of the data is 15 min. Through each point in time, we link identified cloud objects and filter the
trajectories by the cloud top height (CTH), cloud base height (CBH), and number of cores to identify possible convective tracks (Briining
and Tost, 2025). In the current study (c), we aim to quantify convective organisation by calculating organisation indices that are based on the
area, distance, and number of objects in each cloud mask. The indices are calculated in 15 min intervals for a period between March—August
2019. The results are used to analyse regional differences of convective organisation and to describe the relationship between convective
organisation and cloud properties.

Table 1. Overview of MSG SEVIRI channels used to predict 3D radar reflectivities in this study.

Channel ~ Wavelength  Description Spatial resolution  Retrieval at
(um) at nadir nighttime
IR3.9 3.48-4.36  Near infrared window 3km Yes
WV6.2 5.35-7.15 Upper-troposphere water vapour 3 km Yes
WV7.3 6.85-7.85 Lower-troposphere water vapour 3 km Yes
IR8.7 8.30-9.10  Mid infrared window 3km Yes
1IR9.7 9.38-9.94  Ozone sensitivity 3km Yes
1IR10.8 9.80-11.80  Clean longwave window 3km Yes
IR12.0 11.00-13.00  Dirty longwave window 3km Yes
IR 134  12.40-14.40 CO; sensitivity 3km Yes
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Table 2. Modifications applied in this study to the Res-UNet origi-
nally proposed in Briining et al. (2024).

Parameter Original Modification
configuration

Number of input channels 11 8

Loss function L2 L1

Nighttime predictions No Yes

Average RMSE 3.05 2.99

2.3 Detection and tracking of convective clouds and
cores

Convective clouds are detected and tracked using the fo-
bac package (Sokolowsky et al., 2024), which supports an
object-based analysis of 3D meteorological data. The detec-
tion framework — as described in Briining and Tost (2025)
— proceeds in three stages: the cloud detection and tracking,
the core detection, and the classification of potentially con-
vective clouds. We use the ML-based predictions of the radar
reflectivity as input data for the detection framework. While
radar reflectivity does not directly measure vertical velocity,
it may provide information for detecting hydrometeors asso-
ciated with convective cloud development (Luo et al., 2008).
By merging the 3D data fields along the temporal dimen-
sion, we receive a 4D time series that is fed into the tracking
algorithm to create continuous trajectories with a temporal
resolution of 15 min.

We identify potential candidates of convective clouds
within the 3D cloud field by applying a fixed radar reflec-
tivity threshold of —15dBZ. This threshold is used to dis-
tinguish hydrometeors from background noise in the radar
reflectivity data (Marchand et al., 2008). Although moder-
ately restrictive, this threshold is intended to capture the full
spatio-temporal evolution of convective clouds throughout
their life cycle, thereby supporting the formation of contigu-
ous trajectories (Esmaili et al., 2016). To reduce noise, we
first apply a smoothing Gaussian image filter with an effec-
tive scale of half a standard deviation (o = 0.5) on the 3D
radar reflectivity field. Next, we compute the centroids of po-
tential cloud structures using a weighted centre-of-mass ap-
proach, where the weight of each point is determined by its
reflectivity value above the —15dBZ threshold. Each iden-
tified centroid is assigned a unique identifier, which is re-
tained throughout the subsequent tracking and segmentation
processes. We then apply a 3D watershed segmentation algo-
rithm to delineate the volume of individual cloud structures
associated with each centroid. The algorithm places markers
at the detected centroids within a binary 3D volume, where
all other grid points are set to zero. From these markers, the
algorithm expands outward through the volume, assigning
reflectivity-based pixels to the corresponding cloud until the
—15dBZ threshold is reached. This process produces a la-
belled 3D cloud mask. Subsequently, we analyse the mor-
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phology of each cloud to determine whether any structures
might represent a merger of multiple cloud systems. Each
cloud’s shape is characterised using the best-fitting ellipse,
and we compute the aspect ratio — that is, the ratio of the
major to the minor axis length. If the major axis is more
than 75 % longer than the minor axis, we split the identified
cloud into separate objects for further analysis. We track the
labelled 3D cloud objects over time by linking them based
on their estimated movement speed. At each 15 min interval,
we predict the expected position of a cloud object using its
velocity from previous time steps. To streamline this link-
ing process, we define a maximum search radius between
time steps, within which only cloud objects are considered
potential matches. When new clouds form, we assign them
the average velocity of nearby clouds to estimate their likely
movement (Heikenfeld et al., 2019). We require a minimum
area overlap of 50 % to determine similarity between clouds
across consecutive 15 min intervals.

We aim to detect convective cores for each cloud object at
every time step throughout its life cycle. For this purpose, we
use the previously generated labelled 3D cloud mask. Core
centroids are identified by locating local maxima in a com-
bined metric that incorporates both smoothed radar reflec-
tivity and the vertical extent of a contiguous potential core
layer. Specifically, we calculate the mean radar reflectivity
for each vertical cloud column and determine the height of
the core layer by counting the number of pixels with reflec-
tivity values greater than 0 dBZ located above 5 km altitude.
To fill isolated gaps in otherwise vertically continuous cores,
we expand the threshold from 0 to —5dBZ in columns that
contain at least one pixel exceeding 0 dBZ (Luo et al., 2008;
Igel et al., 2014). We then combine both indicators — aver-
age reflectivity and potential core vertical depth — for each
pixel associated with a cloud label, resulting in a 2D layer
where we search for local maxima. If at least one local maxi-
mum is detected, the corresponding locations are considered
candidate core centroids. If no local maxima are found — for
example, if no columns contain pixels above 0 dBZ at alti-
tudes higher than 5 km — the cloud is recorded as having zero
cores for that time step. Otherwise, we use a 3D watershed
segmentation algorithm to delineate the core volumes sur-
rounding each centroid, allowing for multiple cores to exist
within a single cloud at the same time.

2.4 Extraction of cloud properties

We use the labelled cloud masks to extract cloud and core
properties at each point in time. Moreover, we compute aver-
age properties across the cloud’s lifetime to derive distinct
key properties that may characterise the trajectory. These
properties include the cloud lifetime, cloud area, cloud top
height (CTH), number of cores, and mean core area and
height (Table 3). The cloud area is computed from the
column-wise maximum horizontal extent of the 3D cloud
mask, while CTH is derived from the vertical extent. For
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the cloud lifetime, we extract the time (in hours) between
the first and last detection of each trajectory of the labelled
pixels. Each cloud track is classified as either marine (sea) or
continental (land) using a binary land—sea mask. For this pur-
pose, we determine the most frequent (modal) surface type
across all grid points along the cloud trajectory. While this
method does not capture changes in surface type through-
out the cloud’s life cycle, it may provide insights on the ef-
fect of the most frequently occurring surface type. For clouds
with one or more cores, we count the maximum number of
cores associated with the trajectory. Moreover, the core area
and height are derived from the column-wise maximum hor-
izontal extent and vertical extent of the previously identified
cores, similar to the cloud area and CTH.

2.5 Filter convective cloud trajectories

We filter the cloud trajectories to exclude possibly non-
convective tracks from the analysis. For that purpose, we em-
ploy three criteria occurring for at least a single time step of
15 min: (a) One or more core regions, (b) radar reflectivity
of higher than 0 dBZ at 10 km height, and (c) minimum CTH
of 10 km and maximum cloud base height (CBH) of less than
5 km. While we do not require the convective clouds to have a
CTH higher than 10 km at every time step during their trajec-
tory, we discard trajectories that never reach the CTH thresh-
old. After filtering the dataset, we receive 375 000 uniquely
labelled 3D cloud objects, each associated with a continuous
time trajectory and structural information about cloud and
core properties (Fig. 1b).

For further analysis, we exclude cloud tracks detected for
a single time step of 15 min. This results in a refined dataset
of 354 073 convective cloud trajectories between March and
August 2019. In Fig. 2, we showcase the spatio-temporal
distribution of the cloud trajectories. Most clouds are lo-
cated between 5°S and 20°N, with peak activity from 5-
10°N (Fig. 2a). Approximately 75 % of cloud tracks occur
over ocean, with land-based tracks comprising the remaining
25 % (Fig. 2b). Compared to the land—sea distribution of grid
points across the AOI, we observe a 10 % shift toward ocean
for detected clouds (Briining and Tost, 2025). Most trajecto-
ries contain a single convective core (70 %), while the pro-
portion of multi-core systems declines with increasing core
count (Fig. 2c). Cloud frequency is higher in March—-May
(MAM) than in June—-August (JJA) (Fig. 2d). The diurnal
variability is less pronounced than these monthly differences
during the period (Fig. 2e). We observe a high proportion of
clouds have a lifetime between 0-3 h (42 %) or 3—-6h (37 %).
Hence, about 80 % of the cloud tracks last for less than 6 h.
The proportion of cloud tracks with a longer lifetime is con-
siderably lower (Fig. 2f).

While this framework enables a seamless tracking of con-
vective systems along the ML-based 4D time series, it re-
mains subject to several limitations. The predicted data dis-
play a ML-based extrapolation of the received CloudSat CPR
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reflectivities. Hence, they include uncertainties connected to
the ML model, such as the blurriness of predictions induced
by the loss function, which optimises towards the mean. We
receive little information on thin ice clouds due to a reduced
sensitivity of the CloudSat CPR to ice clouds in high altitudes
(Sassen and Wang, 2008). Moreover, the detection frame-
work rests on an object-based perspective to investigate at-
mospheric processes. We note the identified trajectories may
underlie simplifications caused by an inherent subjectivity of
the thresholds applied in the cloud detection step. Neverthe-
less, the approach may help to bring further insights into the
structure and organisation of convective clouds.

3 Method

3.1 Quantifying convective organisation

Convective organisation describes the contrast between con-
vective cells randomly distributed in space and time from
those clustering together inducing a stronger convective or-
ganisation (Pendergrass, 2020). While there are various or-
ganisation indices to quantify the spatial clustering, each in-
dex alone may not sufficiently characterise convective organ-
isation (Stubenrauch et al., 2023). Instead, all indices have
specific limitations, such as a sensitivity to the mean cloud
area or to the number of individual objects. In response, we
chose a combination of three organisation indices (SCAI,
COP, ROME). All indices are designed to work on 2D data.
Their input is a binary field, in this case the cloud mask de-
rived in Sect. 2.3, representing the location of labelled con-
vective objects (Semie and Bony, 2020). We calculate the
three organisation indices for the AOI between 30° W—30°E
and 30° N-30° S at each time step of 15 min (Fig. 1c).

The first index is the simple-to-compute and straightfor-
ward Simple Convective Aggregation Index (SCAI). SCAI
describes the ratio of the degree of convective disaggrega-
tion to a potential maximal disaggregation within a domain
(Tobin et al., 2012). The index is unitless and inversely pro-
portional to the number of grid boxes. SCAI compares the
number of objects in the domain (N) and the geometric mean
distance (Dg) between the centroid positions of all possible
object pairs to the possible maximum number of objects that
can exist in the domain (Nyax) and the characteristic domain
size (L).

Dy

N
SCAI =

max

1000 ey

SCALI is a unitless index between 0 and infinity, whereas
lower values point towards a stronger convective organisa-
tion. By design, calculating SCAI requires the presence of
multiple cloud clusters.

The Convective Organisation Potential (COP) was devel-
oped by White et al. (2018) as an adaptation of the Iog index.
It assumes objects that are larger and closer together are more
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Table 3. Cloud and core properties derived from the contiguous convective cloud trajectories.

Feature type  Feature name Definition
Cloud Cloud area Area of the cloud (kmz)
Cloud top height (CTH)  Height of the cloud (km)
Lifetime Lifetime of the cloud trajectory (h)
Surface type Value of land—sea mask
Core Number of cores Number of identified convective core regions
Core area Average area of convective cores (km?)
Core height Depth of the core in the vertical column (km)
(a) i (b) (c)
025 Latitude 10 Surface type 10 Number of cores
0.20 08 0.8
C
S 015 0.6 0.6
£
o
Q
S 0.10 0.4 0.4
o
0.05 ﬂ ﬂ} 0.2 0.2
OOOW—I—H—V[ /S 00 0.0 F—"—‘V—M—M—\
I RN & V\ $ ' Sea Land Y1 2 3 4 5 6910+
IR
(d) (e) i (f) ifeti
Month 0.25 Daytime [h] 05 Cloud lifetime [h]
0.25! mm
0.20 0.20 0.4t Il
s
S o1s 0.15 0.3
o o
: | |
£ 010 0.10 ‘ ‘ ‘ 0.2
0.05 ‘ 0.05 ‘ 0.1 H
0.00 S R s 000 > o 9 0 00 > o 9 F] ﬁ% 7
N N v - - 93 2 s
& 'o‘(' \?Qﬂ \‘(o \QQ \o 00})‘9 [N S q\, ,» Q 5 © q'\’ (,V\/ 7\

Figure 2. Summary of cloud tracks retrieved between March—August 2019 (n =354 073). We show the spatial and temporal distribution of
the data based on (a) the latitude grouped in 3° intervals between 30° S and 30° N, (b) the surface type derived from a land—sea mask, (c) the
number of cores, (d) the month, (e) the daytime, and (f) the cloud lifetime.

likely to interact with each other. In contrast to SCALI, the in-
dex takes the cloud size into account. COP uses the number
of objects (N), the area of the ith object (A;) and the jth
object (A ), and the distance between the centroids of the ith
and the jth object (d;;). It adds the characteristic domain size
(L) and the total image size (L). The index is defined by

2 N VAT +/Aj]w
COP_mZZ : @)

i=1 j=i+1 ’/

which is the mean over all the possible pairs of the interac-
tion potential. COP is a positive and unitless index between
0-1, whereas higher values indicate a stronger convective or-
ganisation. Larger and closer objects have a higher increase
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in COP than small and widespread objects (Pscheidt et al.,
2019).

Additionally, we calculate the Radar Organisation MEt-
ric (ROME). The index considers the average size, prox-
imity, and size distribution of convective clouds. Initially, it
was designed to analyse radar observations. However, it also
worked well with other data (Bldckberg and Singh, 2022).
The index assesses connections between pairs of continuous
convective regions and assigns a weight to each pair that in-
creases with their respective areas and decreases with their
separation distance. The weight is equal to the area of the
larger contiguous convective region plus a contribution from
the smaller contiguous convective region that depends on
the separation distance (Retsch et al., 2020). It employs the

Atmos. Chem. Phys., 25, 10797-10822, 2025
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smallest distance between the edges of the ith and the jth
object in the domain (d;;) to define

RoME=__2 3 Y
N(N_ ) =1 j=i+1
A(min)
(max) (min) . ij
. |:Aij +Al.j -min <1, 7 ):| ) 3
ij

where Ag.nax) =max(A;,A;) and Agmn) =min(A;, Aj).
ROME is a positive index measured in units of area. Its value
consists of a contribution from the mean area of contiguous
convective regions and the distribution of sizes and interac-
tion between different contiguous convective regions. The in-
dex is positive, with an increasing ROME value correspond-
ing to a stronger aggregation.

While SCAI and COP are easy to compute, the calculation
of ROME is less convenient. Since it has been designed to
retrieve information from radar reflectivities, we include the
index in our study. In contrast to SCAI and COP, ROME may
also be computed when only a single object is present. As
evaluated by, for example, Mandorli and Stubenrauch (2024)
and Biagioli and Tompkins (2023), each index has its own
strengths and weaknesses. SCAI is insensitive to the size
of the objects and mainly dominated by the variability in
the number of clouds. However, it is less affected by shifts
in time and space which induce high fluctuations of the in-
dex values, e.g, due to changes in the resolution of the input
image or between two consecutive time steps. In contrast,
the calculation of COP includes the object area. While COP
correctly increases with the proximity and size, it is sensi-
tive to noise caused in a domain with only a few objects.
The index is correlated to the image resolution and shows
a high variability for consecutive time steps. While ROME
is more noise-safe and independent of the dataset resolution,
it strongly connects to the object size. Compared to SCAI
and COP, ROME shows a lower variability along consecu-
tive time steps, and it is less sensitive to the proximity of
objects. Despite these limitations, we employ these indices
that have been applied before in our studies to retrieve com-
parable results. However, building an adapted methodology
for assessing convective organisation may benefit future re-
search.

3.2 Calculating grid-based organisation indices

To assess regional variability in convective organisation, we
refrain from computing organisation indices over the en-
tire domain. Instead, the AOI is partitioned into overlapping
3° x 3° grid cells (e.g. Semie and Bony, 2020; Tobin et al.,
2012). Given that the spatial extent and number of convec-
tive cloud elements affect the resulting index values, it may
be beneficial to mitigate artefacts arising from cloud systems
intersecting grid boundaries. In response, we implement a
moving-window approach. The initial window is anchored
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Figure 3. Visualisation of the moving-window approach used to
calculate the organisation indices from the labelled 3D cloud mask.
When using a fixed grid cell size (a), clouds may be split at the bor-
ders, leading to an enhanced small-scale value variability between
the subsets. In this study, we employ a moving window which it-
erates along the grid cells with a kernel size of 1° x 1°. At each
iteration, we update the index value by calculating the mean be-
tween the index at the former and current subset (b). In contrast to
panel (a), the indices are less influenced by a single grid cell and
rather represent the average composed of all window locations.

at the northwestern corner of the AOI (27-30° N, 27-30° W)
and is incrementally shifted by 1° in both the zonal and
meridional directions (Fig. 3). For each time step, the spatial
organisation indices (SCAI, COP, and ROME) are computed
within a 3° x 3° window. To enhance statistical robustness
and reduce sensitivity to window placement, we calculate
a local mean across adjacent overlapping windows, assign-
ing the averaged value to the central grid cell. This approach
may reduce boundary-related discontinuities and contribute
towards a more stable representation of convective structure,
particularly in regions where cloud systems span multiple
windows (Jin et al., 2022).

4 Results

4.1 Distribution of organisation indices

This section analyses the spatial and temporal distributions
of the three convective organisation indices: SCAI, COP,
and ROME. Lower SCAI values (or higher COP and ROME
values) are indicative of enhanced convective clustering, re-
flecting stronger spatial organisation. Conversely, high SCAI
(low COP or ROME) values correspond to more scattered
convective structures, implying weaker organisation (Biagi-
oli and Tompkins, 2023).

Figure 4a shows that SCAI values range between 0 and 1,
with a peak concentration between 0.2—0.4. Oceanic regions
have a slightly higher frequency of SCAI values lower than
0.4, whereas values higher than 0.4 are more common over
land. This finding may suggest SCAI detects stronger con-
vective organisation over water. COP values are mainly dis-
tributed between 0.2 and 0.6. Over the ocean, values above
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Figure 4. Distribution of convective organisation indices grouped by the surface type (for clouds over the sea, over land, and for all cloud
tracks independent of the surface type). We see the frequencies of (a) SCAIL (b) COP, and (¢) ROME.

0.4 are more frequent, whereas over land, lower values domi-
nate — again pointing to stronger convective organisation over
the ocean (Fig. 4b). ROME displays a right-skewed distri-
bution, with most values falling below 20 000. Differences
between land and ocean are minor compared to SCAI or
COP (Fig. 4c). Overall, the results may indicate a marginally
stronger convective organisation over oceanic regions, with
ROME showing the weakest land—sea contrast.

Figure 5 compares the diurnal cycle, changes to core num-
bers, and latitudinal averages of the indices over land and
ocean within the 30° S-30° N domain. For SCAI, we find
predominantly lower values over land throughout the day.
The diurnal cycle exhibits minima between 09:00-12:00 and
21:00-00:00 UTC, particularly over land. SCAI increases be-
tween 00:00-06:00 and 12:00-21:00 UTC (Fig. 5a). COP
shows a weaker temporal variability than SCAI but with
values consistently suggesting higher organisation over the
ocean (Fig. 5d). Diurnal variations in SCAI and COP reach
up to 10% of the indices’ scales. ROME shows daytime
(06:00-18:00 UTC) and nocturnal (00:00-03:00 UTC) peaks
over land and mostly nocturnal peaks (21:00-06:00 UTC)
over the ocean (Fig. 5g). Collectively, the indices indicate
maximum convective organisation occurs over land in the af-
ternoon and over the ocean in the night and early morning;
minima occur at night over land and from noon to afternoon
over the ocean. SCAI and ROME decrease with increasing
numbers of convective cores (Fig. 5b, h). For ROME, or-
ganisation decreases up to five cores but increases beyond
six, particularly over land (Fig. 5h). COP, by contrast, re-
mains largely unaffected by core number as it points out only
a slight decrease in convective organisation with increasing
core numbers and an increase for clouds with more than six
cores (Fig. 5e). This finding suggests for SCAI a stronger
convective organisation for higher core numbers, which op-
poses the results for COP and ROME. Latitudinally, all in-
dices show stronger organisation near the Equator, although
the spatial variability differs for the three indices. As SCAI
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is sensitive to object numbers, a higher frequency of detected
clouds near the Equator and fewer clouds near the borders
of the AOI may contribute to the variability of the index
(Figs. 2, 5¢). COP varies less with latitude, whereas we ob-
serve slightly higher values between 20° S-20° N (Fig. 5%).
For ROME, we find the highest variability between latitu-
dinal averages and surface types, with peaks over land be-
tween 20° S and the Equator and over oceanic regions near
the Equator and between 20-30°S (Fig. 5i). Compared to
other regions in the domain, the results show a considerably
stronger convective organisation over the southern Atlantic
Ocean (30°S) for SCAI and ROME.

4.2 Spatial patterns and statistical relationships

Figure 6 presents the spatial distribution of the three or-
ganisation indices (SCAI, COP, ROME), along with associ-
ated cloud and core properties, interpolated onto a 3° x 3°
grid and displayed as latitudinal cross-sections. Distinct re-
gional patterns emerge across the AOI, highlighting poten-
tial links between convective organisation and cloud struc-
ture. Near the Equator — particularly over continental Africa
— higher SCAI values may coincide with a smaller cloud
area, elevated cloud top height (CTH), and taller convective
cores. In contrast, lower SCAI values are found primarily
over the Atlantic Ocean and in subtropical zones of northern
and southern Africa (15-30° N/S). These regions are charac-
terised by larger cloud areas, a lower CTH, and lower core
heights (Fig. 6a, d, e, i). For the cloud lifetime, the number
of cores, and the core area, we observe a less distinct con-
nection. They show a high spatial variability along the AOI,
whereas a longer cloud lifetime, a higher number of cores,
and a larger core area may be related to a smaller cloud area,
higher CTH, and higher core height in near-Equator regions
(< 15°N/S) and to a larger cloud area, lower CTH, and lower
core height near the tropics (> 15° N/S) (Fig. 6d-i). COP ex-
hibits low spatial variability, with most values between 0.2—
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Figure 5. Comparison of the organisation indices (a—c) SCAI, (d—f) COP, and (g-i) ROME. The columns show the diurnal cycle (grouped
in 3 h intervals), the number of cores, and the latitude (in 10° intervals) grouped by the surface type (land, sea). Vertical error bars show the

standard error of the mean.

0.5 (Fig. 6b). ROME, in contrast, displays pronounced spa-
tial differences: high values occur between 15-30° N/S, par-
ticularly over the Atlantic Ocean and near African coastlines
and near the Equator over the Gulf of Guinea and continen-
tal Africa (Fig. 6¢). Over the Sahel, clouds tend to be large,
with numerous, wide but relatively shallow cores. Over the
South Atlantic (15-30° S), cloud systems exhibit large areas,
long lifetimes, and a high number of cores. This pattern may
reflect the fact that cloud clustering in the AOI may be influ-
enced by oceanic circulation and adjacent landmasses (Atiah
et al., 2023). Overall, regions with stronger convective or-
ganisation — indicated by low SCAI and high COP or ROME
— tend to exhibit smaller clouds with low CTH and core
heights. For the number of cores, the core area, and cloud
lifetime, a higher regional variability may be apparent. These
contrasts are most apparent between equatorial and subtrop-
ical regions.

To quantify the relationship between organisation indices
and cloud properties, we compute Spearman’s rank correla-
tion coefficient R using data from all cloud tracks (Fig. 7).
The logarithmic distributions reveal a general skew toward

Atmos. Chem. Phys., 25, 10797-10822, 2025

low values for SCAI, ROME, cloud area, lifetime, number of
cores, and core area. The correlation analysis shows that COP
and ROME may be positively associated with cloud area,
lifetime, CTH, number of cores, and core height (Fig. 7g—
r). In contrast, SCAI is negatively correlated with all of these
properties except for CTH and the core height (Fig. 7a—f).
For the core area, we see a weak negative correlation to all
indices. The findings suggest that stronger convective organi-
sation may be statistically linked to larger, longer-lived cloud
systems, a higher CTH and core height, and more cores. In-
terestingly, these statistical relationships contrast with some
spatial patterns in Fig. 6. For instance, while higher ROME
values spatially co-occur with smaller clouds and shorter life-
times in some regions, correlation coefficients suggest that,
overall, organisation increases with cloud area and duration.
However, most correlations are weak, with maximum coef-
ficients around 0.26 between ROME and the cloud lifetime.
They highlight the complex and regionally variable nature of
these relationships.
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Figure 6. Mean values for (a) SCAL (b) COP, (¢) ROME, (d) the cloud area, (e) the CTH, (f) the cloud lifetime, (g) the number of cores,
(h) the convective core size, and (f) the core height. The plot shows the spatial distribution in the AOI interpolated on a 3° x 3° grid (left)
and the average for each latitude between 30° N and 30° S (n =354 073).
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Figure 7. Histogram showing the logarithmic frequency distribution for the SCAI, COP, and ROME against the (a, g, m) the cloud area,
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p <0.1).
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4.3 Temporal variability of cloud properties and
organisation indices

The previous analysis suggests the overall correlation be-
tween convective organisation indices and cloud/core prop-
erties is generally weak. In this section, we aim to capture
changes in convective behaviour during the period that may
help to explain observed patterns. For this purpose, we filter
the dataset into two subsets between March and May (MAM,
n =212984) and June and August (JJA, n =141 089). Here,
we analyse monthly means over land and ocean (Fig. 8).
Overall, differences between land and ocean typically span
up to 10% of each index’s dynamic range (Fig. 4). For
the monthly changes, most variables do not exhibit a lin-
ear trend. SCAI, COP, and the number of cores remain rel-
atively stable, while the CTH and core height vary non-
monotonically (Fig. 8a, b, e, g, 1). SCAI generally decreases
over the ocean and increases slightly over land until June,
returning to near-March values by August (Fig. 8a). COP
displays similar changes over land, while over the ocean, it
increases marginally throughout the period (Fig. 8b). ROME
exhibits the strongest variability, increasing over both surface
types, especially over the ocean (Fig. 8c). Notably, average
CTH, cloud lifetime, and core height are consistently higher
over land, whereas cloud and core areas are larger over the
ocean, particularly from May to August (Fig. 8d—f, h-i). The
number of cores remains fairly constant across the time se-
ries (Fig. 8g). Over the ocean, we observe a steady increase
in cloud and core area and a decrease in CTH. Core height
peaks in May and July, followed by a decline in August. Over
land, temporal changes are less pronounced, though the core
area shows a slight dip until May and then rises again by
August.

Figure 9 illustrates the mean differences between boreal
spring (MAM) and boreal summer (JJA), calculated as MAM
minus JJA. The data are interpolated onto a 3° x 3° grid and
averaged along latitudes. While SCAI shows only a weak
monthly variability (Fig. 8a), we observe regional differ-
ences of up to £ 0.4 across the AOIL. Notably, SCAI in-
creases between 15-30° N and decreases south of 15° N, es-
pecially over the Gulf of Guinea and central Africa (0-15°S)
(Fig. 9a). COP tends to increase between 0—15°N and de-
crease north of 20° N during JJA, although these changes are
generally small, remaining within £0.2. More pronounced
decreases of up to —0.4 are seen south of 15°S, over the
Sahel, and near the Canary Islands (Fig. 9b). ROME shows
small localised decreases during JJA across northern Africa,
the Canary Islands, and coastal southern Africa. In contrast,
it increases between 15°N and 15°S, especially near the
Equator and around 15°S (Fig. 9c). The spatial patterns of
the cloud properties partly align with (cloud area, cloud life-
time) or oppose (CTH, core height) those observed for the
organisation indices. For instance, both cloud area and life-
time tend to increase in the Southern Hemisphere during
JJA, though the magnitude and intensity of these changes
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vary considerably across the AOI. Over northern continen-
tal Africa and the Congo River basin, cloud area and lifetime
decline from MAM to JJA (Fig. 9d, f). In contrast, the CTH
increases north of 15°N and decreases south of 15°S during
JJA (Fig. 9¢e). The number of cores reveals a less consistent
pattern, with a high spatial variability. Increases are observed
during JJA over the Atlantic Ocean, the West African coast,
northern continental Africa, and the equatorial rainforests.
Conversely, declines are noted over coastal areas north of
15° N and south of the Equator (Fig. 9g). Similarly, the core
area displays a rather fragmented spatial pattern across the
AOI, with slightly larger values in the Northern Hemisphere
and a particular increase south of 20° S during JJA (Fig. 9h).
The core height broadly follows the same pattern as CTH,
rising north of 15°N and declining south of 15°S. Addition-
ally, core heights increase between 0—10° S in boreal summer
(Fig. 91). Observed increases of the cloud area, core area, and
cloud lifetime may coincide with a reduction in CTH, core
height, and core number. However, there appear spatial and
temporal variations which may reflect the influence of, e.g.
local circulations and land—sea contrasts on convective de-
velopment across the AOL.

We evaluate how the relationships between organisation
indices and cloud/core properties evolve along the two sea-
sonal subsets by comparing the correlation coefficients be-
tween MAM and JJA (Table 4). Overall, SCAI maintains
negative correlations with cloud properties, while COP and
ROME remain positively correlated. The direction of corre-
lation does not change during the period, though some coeffi-
cients vary in strength. From boreal spring to summer, corre-
lations between SCAI and cloud properties increase slightly
— except for the CTH and core height. Correlations between
COP and cloud properties predominantly increase, whereas
the differences are lower than for SCAI. For ROME, we see
an increase for the correlation to the cloud lifetime, CTH,
and core height and a decrease for the correlation to the
cloud area and core area. However, these shifts are small,
with changes up to 0.11 (SCAI vs. cloud lifetime, CTH, and
core height). Despite apparent spatial patterns and tempo-
ral shifts in convective cloud organisation and structure as
seen in Figs. 8 and 9, statistical relationships remain overall
weak. These weak correlations suggest that relations may be
affected by additional factors which were not integrated in
our analysis, such as the large-scale circulation, interannual
variations (caused by, for example, the El Nifio—-Southern Os-
cillation (ENSQ)), or local topography.

4.4 Investigating effects of convective organisation

To identify regional patterns of convective organisation and
their effects on cloud properties, we adopt a percentile-driven
approach. There are no universally defined thresholds to dis-
tinguish between weak and strong convective organisation.
In response, we compute the 10th, 25th, 75th, and 90th per-
centiles based on the distribution of each organisation index
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Figure 8. Monthly changes of the organisation indices and cloud and core properties between March and August 2019. We show (a) the
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size, and (i) the core height grouped by the surface type. Line plots show the mean value (solid line) with a confidence interval of 95 %.

Table 4. Spearman’s R for the SCAI, COP, and ROME against the cloud area, the cloud lifetime, the CTH, the number of cores, the
convective core size, and the core height. The table shows the correlation coefficient for boreal spring (MAM) and summer (JJA) and the
difference (MAM — JJA).

SCAI \ cop \ ROME

MAM  JJA Difference | MAM  JIA Difference | MAM  JJA  Difference

Cloud area —-0.06 —0.13 0.07 0.12 0.12 0.00 0.09 0.07 0.02
Cloud lifetime -0.01 -0.12 0.11 0.05 0.10 —0.05 0.08 0.11 —0.03
CTH 0.24 0.12 0.11 0.04 0.07 —0.03 0.04 0.07 —0.03
Number of cores —0.04 —0.08 0.05 0.07 0.09 —0.02 0.05 0.05 0.0
Core area —-0.04 —-0.04 0.00 0.02 0.01 0.01 0.01 —-0.03 0.02
Core height 0.12 —0.01 0.11 0.05 0.08 —0.03 0.05 0.07 —0.02

(SCAI, COP, and ROME) using the cloud tracks between SCAI and high COP/ROME and weak organisation to high
March and August 2019 (Table 5). These percentiles serve SCAI and low COP/ROME (Biagioli and Tompkins, 2023;

as thresholds to classify the data into subsets of weak and Semie and Bony, 2020). Following this, regions of strong
strong convective organisation, as induced by the interpreta- convective organisation are defined as cloud tracks with an
tion of the indices: strong organisation may be related to low index value below the 10th percentile for SCAI or above the
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Figure 9. Changes between boreal spring (MAM, n =212984) and summer (JJA, n = 141 089), showing the average differences for MAM
minus JJA. The plot shows the spatial distribution in the AOI interpolated on a 3° x 3° grid (left) and the average value for each latitude
between 30° N and 30° S (right). Values are derived for (a) SCAL (b) COP, (¢) ROME, (d) the cloud area, (e) the CTH, (f) the cloud lifetime,
(g) the number of cores, (h) the convective core size, and (f) the core height.

90th percentile for COP and ROME. Conversely, regions of
weak organisation correspond to values that lie above the
90th percentile for SCAI or below the 10th percentile for
COP and ROME. To identify spatial and temporal patterns
of convective organisation, we create two subsets from all
data points in the dataset, where one represents the 10 %
strongest convective organisation (Q10 for SCAI; Q90 for
COP and ROME, hereafter: P90),w and the other represents
the 10 % weakest convective organisation (Q90 for SCAI;
Q10 for COP and ROME, hereafter: P10). These may rep-
resent so-called “hotspots”. We also define the interquartile
range (IQR, values between the 25th—75th percentile) to rep-
resent a baseline, which is used to contrast the spatial distri-
bution of average organisation against the identified hotspot
regions.

4.4.1 Characteristics of percentile-based subsets

We filter the dataset by the percentiles from Table 5 to create
the subsets of weak (P10) and strong (P90) convective organ-
isation. Both subsets include 84 132 samples. Our analysis
reveals that the frequency and location of convective clouds
— and their strength of organisation — are not evenly dis-
tributed spatially or temporal. The majority of cloud tracks
was detected between 10° S and 20° N (Fig. 2). However, we
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Table 5. Percentiles for the organisation indices (SCAI, COP,
ROME) derived from the time series between March and August
2019. The table contains the percentiles Q10, Q25, Q75, and Q90
which are used as thresholds to filter subsets of strong or weak con-
vective organisation.

Q10 Q25 Q75 Q90
SCAI 0.165 0.224 0.418 0.528
coP 0.237 0.278 0.381 0.443
ROME 3260327 5652496 14695356 22659.608

observe distinct temporal and land—sea contrasts reflected in
both P90 and P10. During March—-May (MAM), strong con-
vective organisation (P90) is more prevalent over land in the
Southern Hemisphere and over ocean regions between 10—
30°S and 5° S-10° N. From June—-August (JJA), P90 occur-
rences shift northward, peaking over land between 10°S—
5°N and over ocean between 5-15°N. A persistent local
minimum appears around 0-5° N in both seasons (Fig. 10a,
¢). In contrast, weak convective organisation (P10) is rare
north of 15°N in boreal spring and south of 15°S in JJA.
In MAM, it is more frequent over land from 10° S—10° N and

https://doi.org/10.5194/acp-25-10797-2025
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Figure 10. Distribution of detected clouds grouped in 3° intervals between 30° S and 30° N. The histograms show the proportions of cloud
tracks grouped by the surface type (land, sea) for (a) the 10 % strongest convective organisation (P90, n = 84 132) and (b) the 10 % weakest
convective organisation (P10, n = 84 132) between March—-May (MAM) and June—August (JIA).

over ocean between 0—10° N. In JJA, we see an overall north-
ward shift of the distribution (Fig. 10b, d).

Comparing the surface types of all cloud tracks and both
percentile subsets, we observe a higher proportion of clouds
over the ocean than over land for all datasets. However,
there are differences within the surface-type distribution for
the organisation-based subsets: when comparing all three
datasets (all cloud tracks, P90, P10), strong convective or-
ganisation occurs about 5 %—15 % more frequently over the
ocean, whereas the proportion of cloud systems with a weak
convective organisation is about 10 %—15 % higher over land
(Fig. 11a). P10 clouds are generally associated with fewer
cores and shorter lifetimes than both P90 and the full dataset.
They may be associated with a higher proportion to single-
core clouds (15 % higher than P90) and clouds with a lifetime
between 0-3h (30 % higher than P90). We observe more
clouds from P90 with a cloud lifetime of more than 3h.
However, the longest lifetimes in the dataset may be found
for clouds not connected to the percentile subsets (Fig. 11b,
d). Clouds were detected slightly more frequently in MAM
than JJA. In March, the proportion is especially high for P10
(15 % higher than P90). In contrast, occurrences of P90 are
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less common in MAM and increase in JJA (10 % higher than
P10). These findings may indicate an increase in strong con-
vective organisation during boreal summer (Fig. 11c).

4.4.2 Relationship between organisation subsets and
cloud properties

To explore how the relationship between cloud and core
properties differs for weak (P10) and strong (P90) convec-
tive organisation, we compare the correlation coefficients
between all cloud tracks and the two subsets. As noted in
Sect. 4.2, SCAI tends to correlate negatively with cloud prop-
erties, while COP and ROME show positive associations. For
all cloud tracks, correlations between the indices range from
—0.08 to 0.26 (Fig. 7). Figure 12 highlights that inter-index
and intra-cloud property correlations are stronger than those
between indices and cloud properties. Here, COP and ROME
exhibit moderate to strong positive correlation, while COP
and SCAI are moderately negatively correlated (Fig. 12a).
SCAI and ROME show a weak to moderate inverse relation-
ship. Among cloud and core properties, the strongest posi-
tive correlation is between cloud area and number of cores,
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lifetime after first detection.

followed by CTH and core height. The number of cores,
core area, and core height are also moderately correlated.
Cloud lifetime, however, shows only weak to moderate as-
sociations with these properties. In the P90 subset, all three
indices are positively correlated — a departure from the ex-
pected negative SCAI-COP/ROME relationship seen for all
cloud tracks. Correlations between cloud and core properties
in P90 remain largely similar to the full dataset, though some
relationships (e.g. between COP/ROME and core height or
area) strengthen slightly (Fig. 12b). In P10, we find similar
property-to-property correlations, though the strength varies
more. The strongest correlation remains between the num-
ber of cores and core area and the core and cloud height
(Fig. 12c). For all data, the strongest correlation between
SCAI for the indices and CTH for the cloud/core properties is
not yet found. Uniquely, SCAI and ROME show a high pos-
itive correlation in both P10 and P90, despite being theoret-
ically opposed in their interpretation of convective organisa-
tion (Sects. 3, 4.1). This apparent contradiction underscores
the complexity of the indices, particularly when filtered by
percentiles.

To assess whether differences between datasets are statis-
tically significant, we compare parameter distributions for
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all cloud tracks, P90, and P10 subsets. We apply Welch’s
t test, which may be more robust for unequal sample sizes
(Derrick and White, 2016). For instance, we complement
this with Cohen’s D to estimate the effect size as small
(<0.2), medium (0.2-0.5), or large (higher than 0.8) (Co-
hen, 2013). The organisation indices show statistically sig-
nificant differences across the three subsets, with large ef-
fect sizes for SCAI, COP, and ROME. Here, the effect size
is largest between all data and P10 (Fig. 13a—c). Cloud and
core properties exhibit more nuanced differences. The cloud
area shows the largest effect size between all data and P10,
while the CTH shows higher differences between all data and
P90 (Fig. 13d, e). Compared to all cloud tracks, P90 clouds
tend to be larger, with lower CTH, slightly shorter lifetimes,
and slightly fewer, larger, and lower cores. P10 clouds are
smaller, with a higher CTH, shorter lifetimes, fewer cores,
and a larger core area and lower core height than clouds in
the full dataset (Fig. 13d—i). For the number of cores, we find
very low differences between all data and P90. As seen in
Fig. 2, single-core clouds dominate the dataset. This skew-
ness may affect statistics — in particular of data in P10 —
which are heavily weighted toward fewer cores. Core area
is larger in P90 and P10, whereas core height is lower in P90

https://doi.org/10.5194/acp-25-10797-2025
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Figure 12. Correlation matrix for the organisation indices and cloud and core properties. We calculate Spearman’s R to quantify the corre-
lation coefficient on a scale between —1 and 1 for (a) the whole dataset of cloud tracks (n =354 073), (b) the 10 % most organised clouds
(P90, n =84 132), and (c) the 10 % least organised clouds (P10, n = 84 132).

and P10. However, for the core area, we observe only very
small differences between the subsets (Fig. 13f-i).

While we detect statistically significant differences be-
tween percentile-based subsets and the dataset with all cloud
tracks, the effect sizes for cloud and core properties remain
mostly small to moderate. Our results indicate that strong
convective organisation (low SCAI, high COP and ROME)
tends to co-occur with larger cloud and core areas, slightly
fewer and lower cores, and slightly shorter lifetimes. The
highest effect sizes may be found for the CTH, core height,
and cloud lifetime. Weak organisation (high SCAI, low COP,
and ROME) is associated with smaller clouds, lower CTH,
fewer cores, a smaller core area, lower core height, and
shorter lifetimes. Here, we observe the highest effect sizes
for the cloud area, number of cores, and cloud lifetime (Ta-
ble 6). These findings — and the differences between the two
percentile-based subsets — suggest that different aspects of
cloud and core morphology may contribute to the strength of
convective organisation.

4.4.3 Spatial distribution of percentiles

To identify how convective organisation may be spatially dis-
tributed for each of the three organisation indices (SCAI,
COP, ROME), we filter the dataset of all cloud tracks by the
percentiles (Q10, Q90), and we map the frequency of cloud
occurrences across the area of interest (AOI) between 30° N—
30°S and 30°W-30°E. The data are interpolated using a
3° x 3° grid and smoothed with a Gaussian filter (o = 0.5).
In addition to the percentiles Q10 and Q90, we visualise the
interquartile range (IQR; 25th—75th percentile) for each or-
ganisation index. Frequency values (0-140 per grid cell) are
colour-coded to represent absolute counts.

https://doi.org/10.5194/acp-25-10797-2025

As shown in Sect. 4.1 and 4.2, high SCAI values — indi-
cating weak convective organisation — are typically concen-
trated near the Equator. In MAM, low SCAI values (Q10)
occur over the equatorial Atlantic Ocean and land-sea ar-
eas south of 15°S. High values (Q90) appear over equa-
torial Africa (0-15°N), especially in rainforest zones, and
Cameroon. The IQR peaks near the Equator, particularly over
Cote d’Ivoire, Guinea, Benin, Angola’s coast, and Lake Vic-
toria (Fig. 14a—c). In boreal summer, values shift north to 0—
15° N, with SCAI Q10 regions over the Atlantic and coastal
West Africa. High SCAI (Q90) values occur in MAM over
the Congo and Central African Republic. The IQR also shifts
north in JJA, with hotspots over the West African Plains,
Jos Plateau, and Congo River basin (Fig. 15a—c). COP ex-
hibits weaker spatial variability than SCAI or ROME. We
detect clusters of low (Q10) COP near the Equator in both
seasons, over the Atlantic in MAM and across continental
Africa in JJA. For high values (Q90) in MAM, strong peaks
are found along West and Central African coasts and off-
shore in the Atlantic Ocean — many overlapping with re-
gions of low COP, suggesting coexisting weak and strong
organisation (Fig. 14d—f). In boreal summer, peaks of high
COP (Q90) are concentrated over the Atlantic Ocean near
Cabo Verde and coastal zones between Senegal and Sierra
Leone. Secondary peaks appear inland across West Africa
(Fig. 15d-f). The IQR aligns closely around the Equator but
shifts northward in JJA, with dominant peaks over Central
Africa’s rainforest and minor peaks across the West African
Plains (Figs. 14b, e, 15b, ). ROME shows greater latitu-
dinal variability than SCAI and COP. In MAM, low val-
ues (Q10) values focus primarily along 15-30° W near the
Equator and secondarily between 15°S—15° N. High values
(Q90) are concentrated along the West African coast and be-
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distribution of (a) the SCAI, (b) the COP, (c¢) the ROME, (d) the cloud area, (e) the CTH, (f) the cloud lifetime, (g) the number of cores,
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tween Cameroon and Gabon. IQR peaks are dispersed over
the equatorial rainforest and coastlines (Fig. 14g—i). In JJA,
low ROME (Q10) clusters around the Congo River and more
diffusely across continental Africa. Peaks for high values of
ROME (Q90) appear over the Jos Plateau, Congo River, and
the Atlantic. Like COP, ROME shows overlapping regions
of weak and strong organisation over rainforests and oceans.
IQR values peak between 0—15° N and extend to coastal West
Africa (Fig. 15g-i).

The spatial patterns of COP and ROME are closely
aligned, with the 10th and 90th percentiles showing often
spatial overlaps. SCAI has an inverse pattern due to its op-
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posing index scale: regions with high COP/ROME may cor-
respond to low SCAI (and vice versa). This inverse relation-
ship is evident throughout the period, with all three indices
exhibiting consistent spatial patterns. The IQR maps, con-
sistent across indices, reveal a northward shift of the indices
which aligns with convective cloud occurrences during bo-
real summer as depicted for the percentile-based subsets in
Fig. 10.

4.4.4 |dentifying hotspots of convective organisation

In contrast to the former analysis, we examine the spatial dis-
tribution for clouds in the two subsets (P90, P10) (Sect. 4).
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Table 6. Summary of differences between cloud and core properties for all cloud tracks against the percentile-based classification of weak
(P10) and strong (P90) convective organisation. The table contains the arithmetic mean of all properties for the three datasets. We show in
which direction the subset mean differs from all tracks (Direction) and the effect strength (Cohen’s D) for all tracks compared to P90 or P10.

All tracks P90 \ P10
Arithmetic  Direction  Arithmetic = Cohen’s D | Direction  Arithmetic  Cohen’s D
mean mean mean
SCAI 0.331 - 0.198 large + 0.433  large
COP 0.334 + 0.449 large - 0.240 large
ROME 11858.977 + 24274.897 large — 4413.081 large
Cloud area 421.225 + 485431 small — 223.537 medium
CTH 16.077 — 15.696 medium — 15.755 small
Cloud lifetime 4.119 — 3.691 small — 2.501 medium
Number of cores 1.774 — 1.740  small — 1.305 medium
Core area 44.976 + 50.074  small + 47.636  small
Core height 10.704 - 10.428  small - 10.266  small
Qlo0 Q25 - Q75 Q90
(n =21299) (b) (n =106492) (c) (n =21299)
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Figure 14. Spatial distribution of the percentiles Q10, Q25-Q75, and Q90 for the convective organisation indices (a—c) SCAI, (d—f) COP,
and (g-i) ROME between March and May (MAM, n =212984). The values represent the frequency distribution interpolated on a 3° x 3°

grid.

These subsets of the 10 % strongest (P90) and the 10 % weak-
est (P10) convective organisation may help to identify cumu-
lative hotspot regions averaged over the three indices. The
data may allow us to analyse spatial patterns and temporal
changes of convective organisation across two seasons from
boreal spring (March to May, MAM) to summer (June to Au-
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gust, JJA). The occurrences are interpolated onto a 3° x 3°
grid between 30°N-30°S and 30° W-30°E and smoothed
using a Gaussian filter with a kernel size of 0.5.

In MAM, the highest proportion of strong convective or-
ganisation (P90) occurs over the Atlantic Ocean, with a no-
table concentration near the Equator and between 15 and

Atmos. Chem. Phys., 25, 10797-10822, 2025
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Figure 15. Spatial distribution of the percentiles Q10, Q25-Q75, and Q90 for the convective organisation indices (a—c) SCAI, (d—f) COP,
and (g-i) ROME between June and August (JJA, n = 141 089). The values represent the frequency distribution interpolated on a 3° x 3° grid.

30° S. Additional hotspots are found along the West African
coastlines, the Gulf of Guinea. Moreover, we observe small
peaks over the equatorial rainforest, Angola, and parts of
the Sahel. Overall, most of the data points for the 10 %
strongest convective organisation during boreal spring are
located south of the Equator (Fig. 16a). Weak convective
organisation during MAM displays two primary clusters.
The first is located over the equatorial Atlantic Ocean, par-
ticularly between 15 and 30°W. The second spans conti-
nental Africa, where more dispersed peaks emerge between
Cameroon and the Congo River. Across the belt from 15°N
to 15°8, the frequency of the 10 % weakest convective or-
ganisation is generally high (Fig. 16b). In boreal summer, the
spatial distribution of strong convective organisation shifts
northward. Regions with a frequent occurrence of strong con-
vective organisation emerge over the Atlantic Ocean and be-
come more widespread across the West African Plains, in-
cluding areas around the Niger and Congo rivers (Fig. 16¢).
Weak organisation, on the other hand, is concentrated primar-
ily over continental Africa, especially between 15 and 30°E,
with a peak located just north of the Congo River (Fig. 16d).

As suggested in Sect. 4.4.3, we observe overlapping re-
gions of weak and strong convective organisation through-
out the period. In MAM, this overlap is evident over both

Atmos. Chem. Phys., 25, 10797-10822, 2025

ocean and land, whereas in JJA, it is mainly confined to con-
tinental Africa. Overall, cloud occurrences and spatial pat-
terns suggest a shift between MAM and JJA, which is con-
sistent to the imbalance between cloud tracks over land and
ocean observed in Fig. 11. In boreal spring, strong convec-
tive organisation is more frequently observed over the ocean,
while weak organisation is distributed across both land and
sea. By boreal summer, strong organisation becomes more
prominent over land, and weak organisation is largely con-
fined to the African continent. This migration of convective
hotspots appears consistent with the northward movement of
the ITCZ, as described in Atiah et al. (2023).

5 Discussion

5.1 Summary of key findings

Our analysis reveals that convective cloud occurrence and
convective organisation vary considerably across both space
and time. While the study spans only 6 months and does not
provide a full climatology, the results highlight spatial and
temporal changes of convective organisation during the pe-
riod. Notably, the frequency of the 10 % strongest convec-
tive organisation increases during the boreal summer months
(June to August, JJA), particularly north of the Equator
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Figure 16. Spatial distribution of convective organisation based on
an aggregation of the percentiles for SCAI, COP, and ROME in
boreal spring (MAM, upper row) and summer (JJA, lower row).
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represent the frequency distribution interpolated on a 3° x 3° grid.

(Figs. 11, 16¢c—d). In boreal spring (March to May, MAM), it
may occur more frequently south of the Equator (Fig. 16a-b).
Between March and May, we observe a higher concentration
of strongly organised convection over the Atlantic Ocean,
primarily between O and 30°S. This peak shifts northward
to between 0 and 15° N in JJA, with additional hotspots ap-
pearing over the equatorial rainforest and West Africa. Mean-
while, weakly organised convection tends to dominate over
the Atlantic Ocean in boreal spring and shifts to continental
Africa in JJA. These findings suggest a broader northward
movement of convective cloud occurrences throughout the
study period (Sect. 4.2, 4.4).

Correlations between convective organisation indices
(SCAI, COP, ROME) and cloud/core properties suggest gen-
erally weak to medium relationships for all cloud tracks.
SCALI is negatively correlated to the properties, except for
the CTH and core height, while COP and ROME show pos-
itive correlations except for the core area. In all cases, the
coefficients remain below 0.3 (Sect. 4.2). These correlations
partly change for the 10 % strongest and 10 % weakest con-
vective organisation. Within these subsets, we find the high-
est correlation coefficient between SCAI and the CTH for
clouds with a strong convective organisation. However, the
relationships between the cloud and core properties remain
similar over all subsets (Sect. 4.4.2). In contrast, we observe
pronounced changes in both the indices and the associated
cloud characteristics during the period and across the AOIL.
These changes reflect a high variability for average values,
though the correlation strength remains limited (Sect. 4.3).
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The distribution of cloud and core properties within iden-
tified hotspot regions differs from that observed in the full
dataset of all cloud tracks. We analyse the effect size using
Cohen’s D to reveal how organisation strength may influ-
ence cloud characteristics. Compared to all cloud tracks, the
cloud systems of the 10 % strongest organisation tend to have
larger cloud and core areas, a lower CTH and core height,
a shorter lifetime, and a lower number of convective cores.
In contrast, weaker convective organisation may be typically
associated with smaller clouds and larger cores, fewer cores,
shorter lifetimes, and lower vertical extent. Strong convective
organisation differs the most from all cloud tracks regard-
ing the CTH and from weak organisation regarding the cloud
lifetime. Between weak convective organisation and all cloud
tracks, we identify the cloud area to have the highest effect
size (Sect. 4.4.2). Hence, the cloud area appears to be more
important to identify weak convective organisation, whereas
strong convective organisation may be stronger driven by the
CTH. Despite these differences in the distribution of cloud
and core properties, we detect partly the same direction for
correlations in the case of strong and weak convective organ-
isation, highlighting the complexity of involved processes.

5.2 Spatio-temporal drivers of organisation

Our results show that convective organisation tends to be
stronger for cloud properties typically associated with large
convective systems containing multiple core regions, such as
MCSs (Stubenrauch et al., 2023). In line with Briining and
Tost (2025), we observe that cloud area, lifetime, cloud top
height (CTH), core area, and core height all grow with the
number of convective cores (Fig. 12). While multiple cores
may enhance cloud longevity, promote cloud area growth,
and strengthen vertical updrafts, the number of cores may
also be a key factor in determining the strength of convective
organisation. Interestingly, our findings contrast with Taka-
hashi et al. (2017), as we observe stronger convective or-
ganisation — reflected in higher COP and ROME values and
lower SCAI values — more frequently over the ocean. Over
continental Africa, spatial patches of weak convective organ-
isation appear in both seasons (Sect. 4.2, 4.4.4). However,
the difference between land and ocean remains small and
may partly stem from an uneven distribution of cloud tracks
(Fig. 2).

Spatial patterns of convective hotspots show differences
over land and ocean. Around the Equator, we observe a great
share of cloud systems with a weak and strong organisation.
This spatial overlap occurs between March—May, in particu-
lar over the ocean, and between June—August, especially over
continental Africa (Sect. 4.4.4). Overall, the distribution of
convective organisation varies notably between hemispheres
and between equatorial and tropical zones (Sect. 4.3). These
differences may be driven by a mix of local surface features
(Vondou, 2012), monsoonal dynamics (Futyan and Genio,
2007), and topographic influences such as katabatic flows
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(Nicholson, 2018). Although our study reveals distinct ge-
ographical patterns, isolating the role of topography will re-
quire more targeted analysis.

We also detect a link between convective core occurrence
and organisation that may follow the northward migration of
the ITCZ in boreal summer. As the ITCZ shifts, it may al-
ter regional circulation, surface energy balance, and mois-
ture availability — particularly influencing cloud develop-
ment over the northern Sahel and southern Sahara, as ob-
served by, for example, the spatial distribution of SCAI be-
tween June and August (Sect. 4.4.3). These changes may
be associated with increased humidity, reduced subtropical
subsidence, and deeper ascent within the tropical rainbelt
(Fontaine and Philippon, 2000). Together with strengthened
meridional pressure gradients (Lavaysse et al., 2009), they
may contribute to the occurrence of large convective systems
with multiple cores. This observation may be reflected in our
results as a northward displacement of convective clouds and
an increase in cloud area, core area, and core number over
continental Africa in July and August (Sect. 4.2, 4.3). While
our findings highlight the variability of convective organi-
sation, the limited 6-month time frame prevents a climato-
logical interpretation. Extending this analysis across multi-
ple years may provide deeper insights into the annual cycle
of convective organisation and help refine operational fore-
casting and early-warning systems (Pendergrass, 2020).

5.3 Uncertainties and limitations

Our analysis may offer additional insights into the spatio-
temporal distribution of convective organisation in the trop-
ics. However, overall statistical relationships between con-
vective organisation indices and cloud properties remain
weak as we observe mostly small to medium effect sizes and
low to moderate correlation coefficients (Sect. 4.2, 4.4.2).
They highlight the complexity of quantifying convective or-
ganisation across space and time. Although our study may
help to map patterns of convective organisation across the
AOI, gaining a deeper understanding of the underlying pro-
cesses may require incorporating additional cloud parame-
ters — such as cloud radiative properties — or associated pre-
cipitation rates (e.g. Stauffer and Wing, 2024; Stubenrauch
et al., 2023). Moreover, addressing the imbalance between
land and ocean cloud occurrences could strengthen the ro-
bustness of our findings. Currently, the cloud track distribu-
tion is skewed, with a heavy concentration near the Equa-
tor. Notably, all indices indicate overlapping occurrences of
both weak and strong organisation within the same regions
— particularly over the Atlantic Ocean and continental Africa
in boreal spring and over the Congo River basin in summer.
These spatial overlaps may obscure clearer statistical signals
(Sect. 4.4).
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Our dataset describes the three-dimensional structure of
the tracked clouds, which may enable segmentation of cloud
and core regions across horizontal and vertical dimensions
at each point in time. Still, it is constrained by the perfor-
mance of the ML model and the underlying tracking algo-
rithm. Based on evaluations from Briining et al. (2024) and
Briining and Tost (2025), the ML-predicted radar reflectiv-
ities exhibit a mean error of 2.99 dBZ. While suitable for
building contiguous 3D cloud fields, the predictions strug-
gle to accurately represent shallow cumulus and cirrus clouds
— limitations inherited from the CloudSat CPR (Sassen and
Wang, 2008). Incorporating higher-resolution satellite data
or ground-based radar could enhance prediction accuracy.
Other sources of uncertainty include the chosen thresholds
for the detection algorithm and the skewed distributions un-
derlying our percentile-based classifications of convective
organisation. The indices themselves are sensitive to cloud
object count (SCAI) or area (COP, ROME), which may af-
fect spatial patterns, especially since equatorial convective
clouds tend to be smaller and more frequent than those near
the tropics (Sects. 2.5, 3.1). Additional uncertainties involve
the influence of the terrain on cloud organisation (Biagioli
and Tompkins, 2023). Future research could benefit from us-
ing combined indices or integrating temporal and spatial fac-
tors into a unified metric for 3D data. Our current method
uses a moving-window, grid-based approach (Sect. 3.2), dif-
fering from past studies that partitioned the AOI into equal-
area subsets (e.g. Tobin et al., 2012; Stubenrauch et al., 2023;
Retsch et al., 2020). While a moving window may reduce
noise from small-scale fluctuations, its kernel size is man-
ually chosen. To address this, we plan to explore unsuper-
vised clustering techniques such as the Density Based Spa-
tial Clustering of Applications with Noise (DBSCAN) (Es-
ter et al., 1996) or the extended Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
(Campello et al., 2013) as a more data-driven alternative.
Zuo et al. (2022) successfully applied DBSCAN to identify
cloud clusters in 3D radar data, while Kim et al. (2023) used
the approach to derive precipitation probabilities from geo-
stationary satellites. In future work, we aim to test whether
such algorithms may reliably quantify convective organisa-
tion across space and time.

6 Conclusions

This study explores the spatial and temporal patterns of con-
vective organisation in tropical West Africa using ML-based
3D radar reflectivities. We focus on the relationship between
convective organisation, cloud structure, and core properties,
using three organisation indices to statistically identify re-
gional hotspots through a percentile-based classification.
Our analysis reveals that convective organisation tends to
be slightly stronger over the ocean. However, differences
between the indices over different surface types and dur-
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ing the period remain low and average around 10 %—15 %.
We observe a considerable spatial variability and a tempo-
ral shift in the distribution of strong convective organisa-
tion, which appears to be linked to the northward migration
of the ITCZ. From March to August, COP and ROME val-
ues increase, while SCAI decreases, especially in the North-
ern Hemisphere, indicating an enhanced spatial clustering
of convective clouds. Our regional analysis shows that most
cloud systems with a strong convective organisation dur-
ing boreal spring (March-May) are concentrated over the
Atlantic Ocean and coastal West Africa, predominantly in
the Southern Hemisphere. In boreal summer (June—August),
these hotspots shift inland toward the equatorial rainforest,
West African Plains, and Sahel region. Notably, both weak
convective organisation and strong convective organisation
frequently co-occur in the same regions, complicating statis-
tical interpretation and underscoring the complexity of con-
vective systems.

While correlations between organisation indices and cloud
or core properties are generally weak to moderate, we ob-
serve that clouds with the 10 % strongest convective organ-
isation tend to have larger cloud areas, lower cloud top and
core heights, and more fewer but larger cores than the aver-
age cloud trajectory. In contrast, the 10 % weakest convective
organisation is associated with smaller cloud areas, shorter
lifetimes, fewer but larger cores, and a lower cloud and core
height. Differences in CTH appear to be the most important
for identifying cases of strong convective organisation. In
contrast, the cloud area, cloud lifetime, and number of cores
appear to be a driver of weak convective organisation. De-
spite these findings, observed relationships and spatial pat-
terns vary notably across the indices. The indices themselves
often yield opposing results, reflecting their individual sensi-
tivities and limitations. This variability is further influenced
by the characteristics of the ML-based dataset. As the cur-
rent study relies on 2D indices, developing a 3D organisa-
tion metric could provide a more accurate and holistic view.
In summary, our findings highlight substantial variability in
convective organisation across time and space. Given its in-
fluence on extreme weather, understanding these variations —
and the mechanisms behind them — is crucial for improving
climate risk assessments and forecasting capabilities in West
Africa and beyond.

Code and data availability. The level 2B-GEOPROF CloudSat
data used in this study are available at the CloudSat Data Pro-
cessing Center at CIRA/Colorado State University and can be re-
trieved from https://www.cloudsat.cira.colostate.edu/data-products
(CloudSat Data Processing Center, 2024). The Meteosat SEVIRI
level 1.5 data used in this study are freely and openly available
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product/EO:EUM:DAT:MSG:HRSEVIRI (EUMETSAT Data Ser-
vices, 2024). The dataset of convective cloud tracks and organisa-
tion indices used in this study is available at the following repos-

https://doi.org/10.5194/acp-25-10797-2025

10819
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