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Abstract. Dust emissions significantly influence air quality and contribute to nitrate aerosol pollution by alter-
ing aerosol acidity. Understanding how dust interacts with ammonia emission controls is crucial for managing
particulate nitrate pollution, especially in urban environments. In this study, we conducted field measurements of
aerosol chemical components and gases across three cities in eastern China during the spring of 2023. By com-
bining an aerosol thermodynamic model with machine learning, we assessed the relative contribution of dust to
aerosol pH and its impact on nitrate formation. Our results show that changes in ammonia, in both the gas and
particle phases, were the main factors affecting aerosol pH, with dust particles contributing to about 7 % of the
total pH variation. During dust events, high concentrations of non-volatile ions increased aerosol pH, leading to
higher nitrate levels in the particle phase. Machine learning analysis revealed that extreme dust storms caused a
significant change in aerosol pH, enhancing nitrate partitioning. Further simulations indicated that while reduc-
ing ammonia emissions is effective in lowering nitrate levels under normal conditions, this effect is significantly
reduced in dust-affected environments. Dust particles act as a buffer, reducing the sensitivity of nitrate formation
to ammonia emission reductions. These findings emphasize the need to consider dust pollution when design-
ing strategies for controlling particulate nitrate levels and highlight the complex interactions between dust and
anthropogenic emissions.
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1 Introduction

Airborne dust is a major component of atmospheric aerosols,
accounting for approximately 75 % of the global aerosol
mass load (Mahowald et al., 2006; Zhao et al., 2022; Chen et
al., 2023c). Dust exerts multiple impacts on air quality (Jick-
ells et al., 2005; Rosenfeld et al., 2001), climate (Huang et
al., 2011), and human health (Zhang et al., 2025; Goudie,
2014). It can be broadly categorized into anthropogenic dust
and natural dust based on sources and emission mechanisms
(Chen et al., 2018, 2023a). Anthropogenic dust originates
from human activities, such as construction, agricultural, and
non-exhaust vehicular emissions (Liu et al., 2021). In con-
trast, natural dust mainly arises from bare surfaces in arid
and semi-arid regions (Shao and Dong, 2006), which cover
approximately 30 % of the global land area (Soussé Villa
et al., 2025; Xin et al., 2023). Beyond anthropogenic influ-
ences, over 300 countries worldwide are affected by natu-
ral dust pollution (Kurokawa and Ohara, 2020; Notaro et al.,
2015). Dust storms originating in arid regions can be trans-
ported over thousands of kilometers, significantly impacting
downstream air quality and atmospheric chemistry (Tan et
al., 2012; Milousis et al., 2025; Sun et al., 2001).

Dust emissions contain nonvolatile cations (NVCs), such
as calcium and magnesium ions, which are alkaline sub-
stances that can neutralize acidic aerosol components, such
as sulfates, thereby increasing aerosol pH (Wu et al., 2013;
Ding et al., 2019). Dust particles also engage in heteroge-
neous reactions with gaseous nitric acid, buffering acidic
species and modulating pH dynamics (Zhi et al., 2025).
Aerosol pH is a critical factor in atmospheric chemical
processes, influencing gas–particle partitioning of inorganic
aerosols (Guo et al., 2018), secondary organic aerosol (SOA)
formation (Xu et al., 2015; Zhang et al., 2017; Nguyen et
al., 2014), and metal-catalyzed oxidation reactions (Fang et
al., 2017). Regional variations in aerosol pH alter the chem-
ical characteristics of atmospheric pollution, affecting pollu-
tant lifetimes and deposition rates, which in turn have pro-
found implications for ecosystems and public health (Guo et
al., 2016). Despite the incorporation of aerosol pH modules
in some atmospheric chemistry models, inaccuracies in dust
emission inventories can lead to biases in estimated aerosol
pH, thereby introducing systematic errors in simulating as-
sociated chemical processes, such as nitrate formation.

Nitrate has emerged as a dominant component of fine par-
ticulate matter (PM2.5) worldwide (e.g., China, Europe, the
United States, and India), particularly as sulfate aerosol con-
centrations decline due to sustained SO2 emission reductions
(Weber et al., 2016; Geng et al., 2017; Zhai et al., 2021;
Hauglustaine et al., 2014; Beaudor et al., 2025). The reaction
between gaseous nitric acid (HNO3) and ammonia (NH3)
represents one of the primary pathways for the formation
of fine-mode nitrate (Stelson and Seinfeld, 1982; Metzger
et al., 2002). Nitrate formation plays a critical role in atmo-
spheric chemistry and the global nitrogen cycle, including

reactive nitrogen deposition (Song and Carmichael, 2001).
The gas–particle partitioning of HNO3 and nitrate formation
is strongly influenced by aerosol pH (Guo et al., 2018; Shi
et al., 2019). When total ammonia (gaseous and particulate)
or NVCs are insufficient to fully neutralize aerosol sulfate,
HNO3 does not condense on aerosol due to low pH (Nenes
et al., 2020; Guo et al., 2017b; Vasilakos et al., 2018; Ding
et al., 2019). However, this conceptual framework may over-
simplify the influence of aerosol acidity, as it fails to fully
consider the substantial volatility differences between del-
iquescent aerosols containing sulfates or NVCs and those
dominated by ammonium or nitrate, both of which are highly
sensitive to aerosol pH (Nenes et al., 2020, 2021). In dust-
polluted environments, however, the abundance of alkaline
particles, such as calcium ions, can alter nitrate formation
pathways (Seinfeld et al., 1998; Hrdina et al., 2021; Li et al.,
2023). Quantitative insights into how urban dust influences
nitrate formation and its regulation nevertheless remain lim-
ited.

East Asia, home to some of the world’s major dust source
regions, significantly contributes to global atmospheric dust
pollution. Under the influence of Mongolian cyclones, dust
particles originating from Mongolia are transported long dis-
tances, affecting air quality and atmospheric processes across
East Asia (Fu et al., 2014; Sun et al., 2001; Wang et al., 2021;
Xu et al., 2020). The Yangtze River Delta (YRD) is a densely
urbanized region in eastern China, where air quality is influ-
enced by both natural and local anthropogenic dust sources.
This region provides an ideal atmospheric experiment to in-
vestigate the impact of dust pollution on urban aerosol acid-
ity and nitrate chemistry. Under these contexts, this study ex-
amines changes in aerosol pH and nitrate gas–particle par-
titioning (defined as the gas–particle partitioning of HNO3
combined with its acid dissociation) under the influence of
both anthropogenic and natural dust pollution in spring 2023,
focusing on three representative cities (Xuzhou, Zhenjiang,
and Suzhou) in the YRD. The contributions of chemical and
meteorological components to aerosol pH and the effects of
dust storms on ε(NO3

−) are quantified. By integrating statis-
tical analysis approaches, we further quantify the contribu-
tion of different factors to aerosol pH and ε(NO3

−). Sensi-
tivity analyses are conducted to evaluate the effects of TNHx
(TNHx = NH3+NH4

+), TNO3 (TNO3 = HNO3+NO3
−),

and SO4
2− emission controls on nitrate partitioning across

varying dust pollution levels, providing a scientific basis for
formulating nitrate pollution control strategies during dust
events.

2 Data and methods

2.1 Sampling site and instruments

This study selected three cities in the YRD region, China,
that represent a gradient of dust transport effects: Xuzhou
(32.18° N, 119.48° E), Zhenjiang (32.16° N, 119.49° E), and
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Suzhou (31.29° N, 120.61° E). These cities are distributed
along the north-to-south dust transport pathway, enabling a
systematic investigation of the impacts of dust transport, in-
cluding gradient variations in particle chemical properties,
aerosol acidity (pH), and gas–particle partitioning. The sam-
pling sites comprehensively reflect the gradient effects of
dust across different regions. These sampling sites are repre-
sentative of typical urban environments and reflect the gen-
eral atmospheric conditions within the region.

Water-soluble inorganic ions (e.g., NH4
+, Na+, K+, Ca2+,

Mg2+, SO4
2−, NO3

−, Cl−) in PM2.5 and gaseous compo-
nents (NH3, HNO3, HCl) were continuously monitored using
a Monitor for AeRosols and Gases in ambient Air (MARGA)
system (Trebs et al., 2004; Rumsey et al., 2014). The system
exhibited high correlation between cation and anion mea-
surements (Fig. S1 in the Supplement). Throughout the ob-
servation period, ambient air samples were drawn into the
system, where aerosols and gaseous pollutants were sepa-
rated. Water-soluble gases were removed using a wet rotating
denuder, while aerosol particles with an aerodynamic diam-
eter smaller than approximately 2.5 µm were collected using
a steam jet aerosol collector (Rumsey et al., 2014; Trebs et
al., 2004). Aerosol particles collected using a wet sampler
were dissolved in water to form sample liquid and then an-
alyzed via ion chromatography. For gaseous pollutants, air
samples passed through a membrane filter to remove par-
ticles before entering a scrubbing tower, where gas-phase
components were dissolved in water to form sample liquid
for ion chromatographic analysis (Rumsey et al., 2014). The
MARGA system is equipped with automatic calibration and
cleaning functions, ensuring stability and accuracy during
long-term operation. The entire process is controlled by ded-
icated software, enabling simultaneous monitoring of mul-
tiple components and real-time data output (Schaap et al.,
2004).

Meteorological parameter data (air temperature and rel-
ative humidity) were obtained from corresponding obser-
vation stations, while additional meteorological parameters
were sourced from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5 reanalysis dataset
(https://cds.climate.copernicus.eu/, last access: 21 Novem-
ber 2023). Regional PM10 data were retrieved from the
China National Environmental Monitoring Centre (https://
air.cnemc.cn:18007/, last access: 21 November 2023).

2.2 Aerosol pH estimation

Aerosol pH is a particle property that significantly influ-
ences aerosol formation, yet it is challenging to measure di-
rectly. Traditional methods, such as ion balance and molar
ratio approaches, often fail to provide accurate evaluations
of aerosol pH (Guo et al., 2016; Weber et al., 2016). Cur-
rently, the most widely used approaches include the E-AIM
and ISORROPIA-II thermodynamic model (Fountoukis and
Nenes, 2007), while recent studies have also begun to explore

alternative methods for direct pH measurement (Li et al.,
2025). In this study, we employed the ISORROPIA-II ther-
modynamic model to estimate aerosol pH (see Eq. 1) as well
as the gas–particle partitioning of water-soluble ions, semi-
volatile compounds, and water content. At low RH, aerosols
are unlikely to be in a completely liquid state, and secondary
organic aerosols (SOA) may affect the distribution of semi-
volatile compounds due to reduced diffusion within the par-
ticles, thus influencing the predicted pH values. At high RH
levels, such as RH> 95 %, aerosols may deliquesce, and the
exponential increase in water activity (Wi) can introduce sig-
nificant uncertainty into the pH values (Guo et al., 2017b;
Malm and Day, 2001). To improve the model’s accuracy, we
both applied the forward mode for metastable aerosols and
excluded data with relative humidity (RH) below 35 % or
above 95 % (Nah et al., 2018; Guo et al., 2015). The equation
used to calculate aerosol pH in ISORROPIA-II is as follows
(Liu et al., 2022):

pH=−log10
1000γH+CH+

Wi

. (1)

In Eq. (1), γH+ represents the activity coefficient of hydrogen
ions, which is generally set to 1 (Liu et al., 2022). CH+ de-
notes the hydrogen ion concentration in the aerosol aqueous
phase, expressed in µgm−3.Wi refers to the water content of
the aerosol phase output by ISORROPIA-II (in µgm−3). By
incorporating these parameters, the ISORROPIA-II model
provides a reliable framework for estimating aerosol pH, al-
lowing for accurate analysis of its variation and impact un-
der different environmental and pollution scenarios, includ-
ing those influenced by dust events.

2.3 The gas–particle partitioning of nitrate

Nitrate, owing to its volatility, exists in the atmosphere in
two primary forms. In the particulate phase, it predominantly
appears as semi-volatile ammonium nitrate. However, where
ammonia and NVCs fail to fully neutralize aerosol sulfate,
the formation of semi-volatile ammonium nitrate is inhibited.
Under such conditions, nitrate tends to remain in the gaseous
phase as HNO3, which can subsequently transform into more
stable coarse-mode salts, such as Ca(NO3)2, over time (Vasi-
lakos et al., 2018; Hrdina et al., 2021). Gas–particle parti-
tioning of nitrate [ε(NO3

−)] defined as the ratio between
particle-phase nitrate over TNO3 serves as a key indicator
of nitrate distribution between its gaseous and particulate
phases. Changes in aerosol pH, influenced by varying meteo-
rological conditions, significantly affect ε(NO3

−). This study
employs Eq. (2) (Guo et al., 2018; Nenes et al., 2020) to cal-
culate theoretical values of ε(NO3

−) for each observational
dataset. The results enable a detailed analysis of how varia-
tions in pH across different ranges influence the gas–particle
partitioning of nitrate.
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ε(NO3
−)=

H ∗HNO3
WiRT (0.987× 10−14)

γNO3
−γH+10−pH

+H ∗HNO3
WiRT (0.987× 10−14)

(2)

In the equation, H ∗HNO3
=HHNO3Kn1 (mol2 kg−2 atm−1)

represents the product of Henry’s law constant and the acid
dissociation constant for HNO3. R is the ideal gas constant
(Jmol−1 K−1), and T is the temperature in kelvin (K). The
temperature dependence for HHNO3 and Kn1 can be found in
Clegg et al. (1998). pH is calculated using Eq. (1). The fac-
tor 0.987× 10−14 is a unit conversion factor used to convert
from atm and µg to SI units. γNO3

− and γH+ are the activity
coefficients for NO3

− and H+, respectively. Activity coef-
ficients predicted by ISORROPIA-II are γNO3

−γH+ = 0.28
and γH+ = 1 (Guo et al., 2018, 2017a; Nah et al., 2018).
In the standard S curve, pH varies within a specific range,
and this relationship is influenced by the temperature depen-
dence of Henry’s law constant and the acid dissociation con-
stant. This model allows for a more accurate estimation of
nitrate aerosol behavior under varying environmental condi-
tions. More detailed information about inputs and outputs for
the ISORROPIA-II model can be found in Tables S1–S3 in
the Supplement.

2.4 Multi-site concentration-weighted trajectory

The concentration-weighted trajectory (CWT) analysis is
widely used to assess the potential origins and transport path-
ways of air pollutants observed at receptor sites. By inte-
grating trajectory analysis, this approach provides insights
into pollutant sources and their atmospheric transport dy-
namics. In this study, we employed the CWT model, coupled
with backward trajectories and multi-site air quality moni-
toring data, to investigate the potential source regions and
long-range transport of the spring 2023 dust storm event ob-
served in Xuzhou, Zhenjiang, and Suzhou. When combined
with data from multiple monitoring sites, the CWT model
demonstrates enhanced robustness and reliability (Boichu et
al., 2019). Briefly, multi-site CWT analysis integrates pol-
lutant concentration data from several monitoring stations
with the corresponding backward trajectories to estimate the
likely origins of the observed pollutants. Air pollutant con-
centrations are spatially allocated to grid cells traversed by
air masses, weighted by the residence time within each grid
cell. Compared to single-site CWT analysis, the multi-site
approach offers broader spatial coverage, minimizes site-
specific biases, and increases the dataset size, thereby im-
proving the accuracy and spatial resolution of source appor-
tionment, particularly for complex transport patterns.

In this study, 48 h backward trajectories at 50 m above
ground level were computed using meteorological data from
the Global Data Assimilation System (GDAS). The CWT
analysis was conducted using the Zefir toolkit implemented

in Igor Pro (Petit et al., 2017). This methodology provided
a comprehensive assessment of dust transport and source at-
tribution, facilitating a deeper understanding of dust storm
dynamics in the region.

CWTij =
∑n
l=1Cl · τij,l∑n
l=1τij,l

(3)

In Eq. (3), CWTij represents the weighted concentration in
the grid at the i row and j column, Cl is the pollutant con-
centration corresponding to the l trajectory, and τij,l is the
residence time of the trajectory in the (i,j ) grid. n denotes
the total number of all trajectories.

2.5 Machine learning model

Aerosol pH and ε(NO3
−) exhibit nonlinear responses to mul-

tiple influencing factors. In this study, we employed a ma-
chine learning approach to investigate the effects of extreme
dust storm conditions on aerosol pH and ε(NO3

−). Specifi-
cally, we used the random forest (RF) algorithm to construct
regression models tailored to aerosol pH and ε(NO3

−) for
each city under investigation. The dataset for the RF regres-
sion models was divided into a training set (80 %) and a test
set (20 %). The training set was utilized to build the models,
while the test set was used to validate their performance. The
input predictive features for both aerosol pH and ε(NO3

−)
models included the water-soluble inorganic chemical com-
position of aerosols (Na+, SO4

2−, NH4
+, NO3

−, Cl−, Ca2+,
K+, Mg2+), gaseous species (NH3 and HNO3), and meteoro-
logical parameters (T and RH). To evaluate the model perfor-
mance, we applied 5-fold cross-validation for parameter tun-
ing. Model performance was evaluated using seven statistical
metrics: mean absolute error (MAE), root mean squared er-
ror (RMSE), normalized mean squared error (NMSE), mean
bias (MB), normalized mean bias (NMB), index of agree-
ment (IOA), and the correlation coefficient (R). Detailed def-
initions and calculations for these metrics are provided in
Sect. S1 in the Supplement. This machine-learning-based
approach enabled us to quantify the complex, nonlinear re-
lationships between aerosol properties, chemical composi-
tions, and meteorological conditions, offering deeper insights
into the drivers of aerosol pH and ε(NO3

−) under varying
dust pollution scenarios.

In addition, SHapley Additive exPlanations (SHAP), a
method derived from the Shapley value concept in game the-
ory, provides an interpretable framework to explain the pre-
dictions of complex machine learning models. SHAP quanti-
fies the contribution of each input variable to individual pre-
dictions, making it a powerful tool for understanding model
behavior (Duan et al., 2024; Lundberg and Lee, 2017). In this
study, SHAP values were employed to assess the influence of
various factors on aerosol pH and ε(NO3

−) under dust storm
and local dust conditions. A positive SHAP value for a given
factor indicates that it contributes positively to the prediction,
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whereas a negative SHAP value implies a suppressive or in-
hibitory impact. This analysis allowed us to disentangle the
relative contributions of chemical composition, meteorologi-
cal conditions, and other variables to the variations in aerosol
properties under different dust scenarios.

3 Results and discussion

3.1 Observational evidence of anthropogenic and
natural dust pollution

Dust emissions can be classified into anthropogenic and nat-
ural sources, with Ca2+ and Mg2+ commonly used as trac-
ers. Figure 1 shows the relationship between the concen-
trations of Ca2+ and Mg2+ during the observation period
from March to April 2023 across the three cities (Xuzhou,
Zhenjiang, and Suzhou). It is evident that the concentra-
tions of Ca2+ and Mg2+ exhibit two distinctly different
linear slopes, indicating that the different dust origins dur-
ing this period were influenced by both long-range trans-
port dust storms and local dust emissions. In particular, dur-
ing the period from 11–13 April, a severe dust storm was
transmitted from northern regions, first impacting Hohhot,
and then southward to the southern cities of the YRD re-
gion. As shown in Fig. 2a, the PM10 concentrations in the
cities along the transport path exhibited a distinct gradient,
with peak values reaching approximately 1702 µgm−3 in Ho-
hhot, 1614 µgm−3 in Xuzhou, 925 µgm−3 in Zhenjiang, and
576 µgm−3 in Suzhou, respectively. In Xuzhou, the average
concentration of Ca2+ increased from 0.47± 0.36 µgm−3

during the local dust period to 2.00± 1.66 µgm−3 during the
dust storm period, marking a 4-fold increase. Similarly, the
average Ca2+ concentration rose from 0.30± 0.23 µgm−3

to 1.69± 1.41 µgm−3 in Zhenjiang, while the concentration
increased from 0.35± 0.26 µgm−3 to 0.92± 0.52 µgm−3 in
Suzhou.

Figure 2a and b illustrate the temporal evolution of PM10
and Ca2+ concentrations during the dust storm, showing an
initial spike in Hohhot, followed by a gradual increase across
the Beijing–Tianjin–Hebei (BTH) region, and eventual dis-
persion into several cities in Jiangsu Province. This progres-
sion is consistent with the concentration-weighted trajectory
patterns shown in Fig. 2c and d, which delineate the trans-
port pathways of the dust storm. The maps highlight sig-
nificant contributions from Mongolia – the dust storm’s ori-
gin – to regions including Hohhot, Beijing, Tianjin, Shiji-
azhuang, Jinan, Zhengzhou, and Jiangsu. This finding cor-
roborates the results of Chen et al. (2023b), who attributed
the dust storm to a strong, cold high-pressure system and
cold front that transported substantial quantities of coarse
dust aerosols southward into the YRD region. Southward-
moving cold fronts play a critical role in the diffusion and
transport of atmospheric pollutants. In arid and semi-arid re-
gions, these storms mobilize large amounts of crustal ele-
ments, such as Ca2+, with high winds lifting dust from sur-

Figure 1. Relationship between Ca2+ and Mg2+ concentrations in
PM2.5 in Xuzhou (triangle), Zhenjiang (square), and Suzhou (cir-
cle). Dust types are distinguished based on the slope of the Ca2+

to Mg2+ concentration ratio, with local dust (gray) and dust storm
(brown) periods indicated. Light-gray dots represent the concentra-
tions of Ca2+ and Mg2+ observed in the three cities during March–
April 2023.

face sources, including city streets, construction sites, and
other exposed land areas (Ding et al., 2019).

Figure 3 presents the relative contributions of water-
soluble inorganic species (WSIS) in PM2.5 during local dust
and dust storm periods in Xuzhou, Zhenjiang, and Suzhou.
Across all three cities, the combined contribution of sulfate,
nitrate, and ammonium consistently accounted for over 80 %
of WSIS, highlighting the important role of secondary in-
organic aerosols in fine particulate pollution. Among these,
nitrate was the most abundant species during both periods,
particularly during local dust events, with an average contri-
bution ranging from 49.3 % to 52.6 %. However, during dust
storms, its relative contribution declined to 34.0 %–40.8 %.
In contrast, the relative contribution of sulfate increased, with
increments of 5.2 %, 5.0 %, and 6.7 % observed in Xuzhou,
Zhenjiang, and Suzhou, respectively. Similar trends in the
relative increase of sulfate and reduction of nitrate during
dust events have also been widely reported in previous stud-
ies (e.g., Song et al., 2023; Zhu et al., 2022). This shift in
WSIS composition was likely influenced by both meteoro-
logical conditions and chemical processes associated with
dust. To evaluate this hypothesis, we constructed separate
random forest regression models for nitrate and sulfate con-
centrations, using meteorological parameters (Table S4 in the
Supplement) as input predictors. SHAP analysis was then ap-
plied to quantify the aggregated contributions of dispersion-
related variables, such as winds and planetary boundary layer
height. As shown in Fig. S2 in the Supplement, nitrate ex-
hibited a stronger response to dispersion and dilution ef-
fects than sulfate, indicating its higher sensitivity to me-
teorological variability during the dust storm. In addition
to meteorological effects, heterogeneous reactions involving
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Figure 2. Time series of PM10 and Ca2+ concentrations and their concentration-weighted trajectories for cities along the dust transport path.
(a) Time series of PM10 in 14 cities along the BTH region and (b) time series of Ca2+ concentrations in Xuzhou, Zhenjiang, and Suzhou
and the correlation of Ca2+ and PM10. (c) 48 h concentration-weighted spatial distribution of PM10 concentrations in 14 cities from 5 to
20 April and (d) 48 h concentration-weighted spatial distribution of Ca2+ concentrations in Xuzhou, Zhenjiang, and Suzhou (units: µgm−3).

mineral dust also likely influence the observed variations
in WSIS. For instance, Ca(NO3)2 and Mg(NO3)2 coatings
could tend to form preferentially on aged mineral particles
rich in calcite and dolomite. Previous studies have shown that
the abundance of such nitrate-coated particles increases with
dust transport distance due to their relatively low deliques-
cence relative humidities (DRH> 11 %), which facilitate ni-
tric acid uptake under humid conditions (Li and Shao, 2009;
Tobo et al., 2010; Laskin et al., 2005). Given the widespread
presence of calcite and dolomite in Asian dust, long-range-
transported particles during dust storms provide abundant al-
kaline surfaces for heterogeneous nitrate formation. Consis-
tent with this, our results showed an average increase of ap-
proximately 10 % in the relative contributions of Ca2+ and
Mg2+ during the dust storm period across all three cities
compared to local dust events. This enhancement in alka-
line mineral content suggests more effective neutralization
of acidic species such as HNO3 and H2SO4, thereby promot-
ing the formation of particulate nitrates and sulfates during
regional dust transport. While secondary chemical formation
was possible, meteorological dispersion and dilution appear
to be the dominant factors leading to the observed concentra-
tion decreases.

Figure 3. Relative contributions of water-soluble inorganics
(SO4

2−, NH4
+, NO3

−, Ca2+, Na+, Mg2+, K+, and Cl−) within
the PM2.5 fraction in Xuzhou, Zhenjiang, and Suzhou during dust
storm and local dust pollution periods, respectively.

3.2 Driving factors of aerosol pH

Aerosol pH plays a crucial role in influencing aerosol for-
mation and chemical composition. By regulating the parti-
tioning of semi-volatile compounds between the gas and par-
ticle phases, aerosol pH directly affects the distribution of
particulate matter in the atmosphere (Guo et al., 2017a). To
examine the factors influencing aerosol pH, we utilized the
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ISORROPIA-II thermodynamic model and sensitivity anal-
ysis to quantify the relative contributions of chemical and
meteorological factors, such as T and RH, in Xuzhou, Zhen-
jiang, and Suzhou. The correlation between simulated and
observed concentrations of NH3 and particulate NO3

− is pre-
sented in Fig. 4. Across all three cities, the simulated values
exhibit strong agreement with measurements (R2

= 0.94–
0.99). Additionally, Fig. S3 in the Supplement shows high
correlations (R2

= 0.90–0.97) for particle-phase ammonium
and chloride between ISORROPIA-II predictions and obser-
vations, confirming the robust performance of the thermody-
namic model in this study.

To assess the impact of individual factors (TNO3, TNHx ,
Ca2+, SO4

2−, T , and RH) on aerosol pH, we estimated their
relative contributions using methods like those proposed by
Zheng et al. (2020) and Zheng et al. (2022). First, we calcu-
lated the monthly average values for each factor in March and
April, referred to as pHi(3,3)

and pHi(4,4)
, respectively. Here,

pHi represents the influence of factor i on pH, with the num-
bers in parentheses indicating the respective months. For ex-
ample, for the analysis of a specific factor, we used the March
average value of that factor while holding the other variables
at their average levels for April. This yielded the aerosol pH
value, denoted as pHi(3,4)

. Similarly, when using the April
average value of the factor and maintaining the other vari-
ables at their March average levels, we recorded the resulting
pH as pHi(4,3)

. The relative change in pH, denoted as 1pHi(3)
and 1pHi(4)

was calculated as the mean difference between
pHi(3,3)

and pHi(4,3)
, and between pHi(4,4)

and pHi(3,4)
, respec-

tively (see Eqs. 4 and 5). Finally, the overall impact of each
factor on aerosol pH could be estimated (see Eq. 6).

1pHi(3)
= pHi(3,3)

− pHi(4,3)
(4)

1pHi(4)
= pHi(4,4)

− pHi(3,4)
(5)

1pHi =

[
1pHi(3)

]
+
[
1pHi(4)

]
2

(6)

The impact of each factor could be positive or negative,
which is detailed in Fig. S4 in the Supplement. As shown
in Fig. 5, atmospheric total ammonia emerged as the most
significant driver of aerosol pH changes in all three cities,
contributing 42 %, 57 %, and 43 % of the observed pH in
Xuzhou, Zhenjiang, and Suzhou, respectively. Total ammo-
nia led to 1pHTNHx increases of 0.6, 1.3, and 0.5 units in
these cities during spring 2023. For Zhenjiang, T and Ca2+

were the next most influential factors, contributing 0.6 and
0.15 units to 1pHT and 1pHCa2+ , respectively. Sulfate ex-
hibited the smallest influence on aerosol pH, where a concen-
tration change of 0.3 µgm−3 corresponded to a 1pHSO4

2− of
approximately 0.05 units. These results align with the find-
ings of Weber et al. (2016), which suggest that aerosol pH is
less sensitive to changes in sulfate concentrations compared
to ammonia levels.

To further explore the response of aerosol pH to varia-
tions in SO4

2− and NH3 concentrations under different dust

conditions (non-dust, local dust, and extremely dust storm),
we conducted sensitivity simulations constrained by obser-
vations from Zhenjiang as a case study. As illustrated in
Fig. 6a–c, we extended the NH3 and SO4

2− concentration
ranges beyond their observed values to encompass poten-
tial variations across the YRD region. The input concen-
trations of Na+, SO4

2−, total chloride (TClx = Cl−+HCl),
K+, and Mg2+ were fixed at the average levels observed
in Zhenjiang during the study period (see Table S2). Simu-
lations were carried out under three distinct Ca2+ concen-
tration scenarios: (1) non-dust (Ca2+

= 0 µgm−3), (2) lo-
cal dust (Ca2+

= 0.7 µgm−3), and (3) extremely dust storm
(Ca2+

= 3.00 µgm−3). In these simulations, total ammonia
(TNHx = NH4

+
+NH3) and total nitrate (TNO3 = NO3

−
+

HNO3) concentrations were independently changed and in-
put into the ISORROPIA-II model. Under non-dust condi-
tions (Ca2+

= 0 µgm−3), the model predicted lower aerosol
pH values. As shown in Fig. 6a and b, a 5–10-fold increase in
NH3 concentration led to a pH increase of approximately 1
unit, whereas aerosol pH demonstrated limited sensitivity to
SO4

2− concentration changes. This finding is consistent with
previous studies (Zheng et al., 2022; Weber et al., 2016; Xie
et al., 2020). However, under high Ca2+ concentration condi-
tions, such as during extremely dust storm events, the influ-
ence of NH3 on aerosol pH was notably mitigated (Fig. 6c).
At relatively low SO4

2− concentrations (i.e., below approxi-
mately 8 µgm−3, as indicated in Fig. 6c), aerosol pH exhib-
ited diminished sensitivity to SO4

2− levels, while showing
greater responsiveness to variations in NH3. This behavior is
modulated by the buffering capacity of Ca2+, which pref-
erentially reacts with SO4

2− before interacting with NH3
(Vasilakos et al., 2018), thereby limiting sulfate’s ability to
regulate aerosol acidity. These findings highlight that Ca2+, a
prominent component of mineral dust, plays a critical buffer-
ing role in mitigating the influence of NH3 and SO4

2− on
aerosol acidity under dust-influenced atmospheric environ-
ments.

3.3 Impact of aerosol pH on the partitioning of nitric acid

In eastern China, nitrate has become a key component of
PM2.5, instead of sulfate (Xu et al., 2023; Gao et al., 2023).
As a semi-volatile compound, nitrate is strongly influenced
by the gas–particle partitioning process in the atmosphere.
Aerosol pH not only determines the stability of nitrate but
also governs whether it exists in the particulate phase or
volatilizes as HNO3 in the gas phase (Guo et al., 2018). At
higher pH, nitrate tends to exist in the particle phase due to
the oxidation of NOx , while under lower pH conditions, ni-
trate is more likely to volatilize into the gas phase as HNO3
(Nenes et al., 2020). Using Eq. (2), we analyzed the relation-
ship between the nitrate particle-phase fraction (ε(NO3

−))
and aerosol pH for three cities – Xuzhou, Zhenjiang, and
Suzhou – under dust storm and local dust conditions. Fig-
ure 7 shows the S-shaped curve representing this relation-
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Figure 4. Correlation between ISORROPIA-II simulated and observed values of NH3 and NO3
− in three cities. Panels (a)–(c) show the cor-

relation between NH3 predictions and observations, while panels (d)–(f) show the correlation between NO3
− predictions and observations.

The first column represents Xuzhou, the second column represents Zhenjiang, and the third column represents Suzhou.

Figure 5. Relative contribution of different factors, including
TNO3 = HNO3+NO3

−, TNHx = NH3+NH4
+, Ca2+, SO4

2−,
RH, and T , to aerosol pH during the entire observation period in
(a) Xuzhou, (b) Zhenjiang, and (c) Suzhou.

ship, calculated based on the average T and aerosol Wi dur-
ing dust storm and local dust conditions, assuming ideal solu-
tion behavior (activity coefficient γH+ = 1). This curve visu-
ally demonstrates the regulation of nitrate phase partitioning
by aerosol pH under these conditions and provides a theoret-
ical basis for controlling the effect of ammonia on particulate
nitrate formation by adjusting aerosol pH (Guo et al., 2018).

As cities along the dust storm transport path, Xuzhou,
Zhenjiang, and Suzhou experience varying degrees of dust
influence, leading to significant differences in aerosol pH. On
average, aerosol pH is elevated during dust storms compared
to local dust conditions. During non-dust periods, aerosol pH
values in the three cities were significantly lower than during
dust events (Xuzhou: 2.7–4.0, Zhenjiang: 2.2–3.7, Suzhou:
2.0–3.6). This lower pH corresponds to a marked decrease

in ε(NO3
−), indicating a shift toward gaseous HNO3, espe-

cially in Suzhou, where ε(NO3
−) dropped to approximately

40 % under the lowest pH conditions. During dust storms,
the mean aerosol pH values were 5.50± 1.65 in Xuzhou,
5.44± 1.69 in Zhenjiang, and 5.30± 1.67 in Suzhou. Under
local dust conditions, these values were lower, at 4.12± 0.52,
3.92± 0.32, and 3.74± 0.69 respectively. Xuzhou, situated
at the northern edge of the dust storm transport path, ex-
hibited the highest aerosol pH during both periods, reflect-
ing the substantial impact of transported dust pollution. The
S-shaped curve in Fig. 7 demonstrates that under both dust
storm and local dust conditions, the average aerosol pH
aligns with nitrate particle-phase fractions exceeding 99 %,
indicating that nitrate predominantly resides in the particle
phase. This finding highlights the promoting effect of dust
pollution on the gas–particle transformation of nitrate.

When aerosol pH drops below 3, however, ε(NO3
−) de-

creases sharply, signifying the onset of nitrate volatilization
into the gas phase. Notably, when aerosol pH lies in the range
of 1 to 3, ε(NO3

−) exhibits heightened sensitivity to aerosol
pH changes. This trend was consistently observed across all
three cities. Reducing NH3 concentrations is particularly ef-
fective in influencing nitrate gas–particle partitioning when
aerosol pH is within this sensitive range, offering a promis-
ing strategy to mitigate regional particulate nitrate pollu-
tion. However, environments with dust pollution may dis-
rupt this theoretical relationship. NVCs (such as Ca2+) in
dust can neutralize acidic aerosol components, maintaining
aerosol pH at relatively high levels (e.g., pH> approximately
3.5) (Fig. 7). This neutralization effect limits the ability to
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Figure 6. Sensitivity of the pH to ammonia (NH3) and sulfate (SO4
2−) concentrations based on ISORROPIA-II model predictions under

different Ca2+ concentration conditions: (a) 0 µgm−3, (b) 0.70 µgm−3, and (c) 3.00 µgm−3.

Figure 7. S-curve distributions for ε(NO3
−) under the condi-

tions from different cities. Based on Eq. (2), the relationship be-
tween ε(NO3

−) and pH was calculated using the average T and
Wi during dust storm, local dust, and non-dust periods (assuming
γNO3

−γH+ = 0.28, γH+ = 1). The vertical dashed lines represent
the minimum (left side) and maximum (right side) pH values under
local-dust conditions calculated using ISORROPIA-II for the three
cities. Error bars indicate the sample standard deviation of aerosol
pH during local dust and dust storm events.

lower particulate nitrate concentrations solely by reducing
NH3 emissions, necessitating alternative approaches to ad-
dress nitrate-driven air quality challenges in dust-influenced
regions.

To further quantify the impact of dust storms on aerosol
pH and ε(NO3

−), we utilized the RF model combined with
SHAP values for both prediction and sensitivity analysis.
The correlation between the observed and predicted results
from the RF model is shown in Fig. S5 in the Supple-
ment. The index of agreement (IOA) values ranged from
0.93 to 0.97, indicating a high level of model agreement.
Meanwhile, the correlation coefficients (R) varied between
0.78 and 0.90, further validating the model’s predictive accu-

racy. For aerosol pH predictions, five evaluation metrics were
used: MAE, RMSE, NMSE, MB, and NMB. The values for
MAE ranged from 0.13 to 0.18, while RMSE values were be-
tween 0.26 and 0.29. For NMSE, the values ranged from 0.10
to 0.12, and the biases (MB and NMB) varied from −0.01
to −0.006 and 0.004 to 0.007, respectively. In comparison,
the corresponding evaluation metrics for ε(NO3

−) were as
follows: MAE ranged from 0.01 to 0.02, RMSE from 0.03
to 0.04, and NMSE from 0.10 to 0.21. The bias values for
ε(NO3

−) ranged from −0.00006 to 0.004 for MB and from
0.003 to 0.007 for NMB. These statistical results demonstrate
the reliability and robustness of the RF model in predicting
aerosol pH and nitrate partitioning.

Figure 8 illustrates the impact of dust storms and local
dust conditions on aerosol pH and ε(NO3

−). The 1SHAP
values represent the difference between the average SHAP
values of all variables during dust storm periods and the aver-
age SHAP values for all variables during the non-dust storm
period. During dust storm conditions, 1SHAP significantly
increased in Xuzhou, Zhenjiang, and Suzhou, with aerosol
pH values rising by11.2,11.5, and11.5 units, respectively
(Fig. 8a–c). This result is consistent with our previous con-
clusion that dust storms contribute to an increase in aerosol
pH, confirming the positive impact of dust storms on the
random forest model’s predictions of aerosol pH. Similarly,
Fig. 8d–f show the changes in ε(NO3

−) for the three cities
under different weather conditions. It is evident that the ef-
fect of dust storms on ε(NO3

−) is 10 to 20 times greater
than the impact of local non-dust storm conditions, likely
due to differences in aerosol composition and enhanced al-
kaline inputs such as Ca2+. This indicates that dust storm
conditions have a significantly stronger positive contribution
to the particle-phase fraction of nitrate. The presence of dust
particles facilitates the conversion of nitrate to the particulate
phase, highlighting the significant influence of dust storms on
nitrate partitioning in the atmosphere.
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Figure 8.1SHAP values for (a–c) aerosol pH and (d–f) ε(NO3
−). The orange solid line represents the impact of dust storms, the gray solid

line represents the non-dust scenario, and the black dashed line shows the difference between the two scenarios.

3.4 Effectiveness of emission reduction on particulate
nitrate under dust pollution

To explore the impact of emission reductions of TNHx ,
TNO3, and SO4

2− on ε(NO3
−) during different dust storm

conditions, we conducted a sensitivity analysis based on
the thermodynamic model ISORROPIA-II, using the aver-
age pollutant concentrations observed in Zhenjiang during
the spring of 2023. The results, shown in Fig. 9, demon-
strate a nonlinear response of both ε(NO3

−) and the total
ammonium-nitrate concentration (NH4

+
+NO3

−) to reduc-
tions in TNHx , TNO3, and SO4

2−, respectively. We sim-
ulated the effects of progressively reducing TNHx , TNO3,
and SO4

2− by 0 % to 50 % under different Ca2+ concentra-
tion conditions, which include different dust pollution sce-
narios. For the simulation, Ca2+ concentration was set to 0.1
to 0.7 µgm−3 for local dust conditions and ranged from 1.0
to 3.0 µgm−3 for dust storm conditions. When the Ca2+ con-
centration exceeded 3 µgm−3, further reductions in the other
variables had negligible effects on the output, with emission
reductions having little to no impact on ε(NO3

−).
As shown in Fig. 9a, it is evident that during local dust con-

ditions, ε(NO3
−) remained relatively constant until TNHx

emissions were reduced by 30 %. At this point, ε(NO3
−)

rapidly dropped from 99 %, signaling the onset of a signif-
icant shift in the gas–particle partitioning of nitrate. When
TNHx reductions reached 50 %, ε(NO3

−) fell sharply to ap-
proximately 30 %, indicating that nitrate transitioned pre-

dominantly into its gas-phase form. This simulation result is
consistent with the sensitivity analysis of NH3 concentrations
in Sect. 3.2, which also showed a significant response in ni-
trate partitioning as NH3 concentrations decreased. Thus, in
the Zhenjiang region, a 30 % reduction in TNHx emissions is
necessary to effectively reduce the mass of (NH4

+
+NO3

−)
during spring (Fig. 9d). In contrast, during dust storm con-
ditions (Fig. 9a), the reduction in TNHx had a much more
subdued effect on ε(NO3

−), especially at higher Ca2+ con-
centrations (above 2.5 µgm−3), where the reduction had al-
most no impact on ε(NO3

−).
For TNO3 reductions, as shown in Fig. 9b, the changes

in ε(NO3
−) were minimal, regardless of the Ca2+ concen-

tration. However, during local dust conditions (Fig. 9e), the
reduction of TNO3 led to a significant decrease in (NH4

+
+

NO3
−) concentrations, indicating that TNO3 reduction was

particularly effective under local dust conditions. Lastly, re-
ductions in SO4

2− emissions (Fig. 9c and f) had a smaller im-
pact on both ε(NO3

−) and (NH4
+
+NO3

−) concentrations.
Interestingly, at very low dust concentrations, SO4

2− reduc-
tions could even lead to a slight increase (by up to 0.5 %)
in ε(NO3

−), indicating that sulfate reduction alone is not an
effective strategy for controlling nitrate partitioning.

4 Conclusions and impact

This study explores the impact of dust pollution on aerosol
pH and nitrate gas–particle partitioning in three cities across
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Figure 9. Sensitivity analysis based on the thermodynamic model ISORROPIA-II simulated the impact of reducing TNHx (TNHx = NH3+
NH4

+), TNO3 (TNO3 = HNO3+NO3
−), and SO4

2− by 0 %–50 % during dust events of varying intensities on ε(NO3
−) and NH4

+
+

NO3
−.

the YRD region of eastern China. By combining field ob-
servations, thermodynamic modeling, and machine learning
techniques, we provide a comprehensive analysis of how dif-
ferent dust scenarios affect urban aerosol pH and gas–particle
partitioning chemistry of nitrate. Our analysis of a dust storm
event that originated in Mongolia and was transported over
long distances to the YRD region in the spring of 2023 re-
vealed a significant increase in PM10 concentrations; the av-
erage PM10 concentration in three cities along the route ex-
ceeds 400 µgm−3, approximately 4 times higher than dur-
ing local dust events. Thermodynamic simulations using the
ISORROPIA model showed that both ammonia and calcium
ion concentrations strongly influenced aerosol pH, with av-
erage contributions of 47 % and 7 % respectively. Random
forest model simulations further indicated that the presence
of high NVCs during dust storms significantly contributed to
changes in aerosol pH (1.2–1.5 units). Sensitivity analysis of
pH responses to sulfate and NH3 concentrations under differ-
ent dust conditions (non-dust, local dust, and extremely dust
storm) revealed that a 5–10-fold increase in NH3 led to a 1-
unit change in aerosol pH. Machine learning analysis showed
that extreme dust storm events contributed approximately 1.4
units to the increase in aerosol pH, with a corresponding in-

crease in nitrate partitioning (16 %). This suggests that un-
der high aerosol pH conditions during dust pollution periods,
nitrate is predominantly in the particulate phase, indicating
that dust significantly inhibits the partitioning of nitrate into
the gaseous phase. In addition, our sensitivity analyses also
showed that ammonia reduction had the most significant ef-
fect on reducing nitrate aerosols under dust-free conditions.
However, the effectiveness of ammonia reductions in lower-
ing nitrate aerosol concentrations was significantly reduced
due to the influence of NVCs on nitrate partitioning under
dust pollution scenarios. These findings suggest that dust pol-
lution can substantially weaken the impact of ammonia re-
ductions on nitrate aerosol formation, highlighting the need
for targeted control strategies during dust storm events. Dust
emission remains a significant air pollution concern world-
wide, while urban nitrate aerosol pollution is a pressing issue
in many cities, particularly in East Asia, where the frequency
of natural dust events has increased in recent years. These
dust storms, along with anthropogenic dust, can substantially
alter aerosol chemistry by modifying aerosol pH and nitrate
partitioning. Therefore, effective dust control strategies are
critical for mitigating the adverse effects of aerosol acidity on
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nitrate aerosol formation and improving air quality in dust-
prone regions.
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