Supplement of Atmos. Chem. Phys., 25, 10479–10497, 2025 https://doi.org/10.5194/acp-25-10479-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Mid-Atlantic US observations of radiocarbon in CO_2 : fossil and biogenic source partitioning and model evaluation

Bianca C. Baier et al.

Correspondence to: Bianca C. Baier (bianca.baier@noaa.gov)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Pair-wise seasonal regression slopes during each ACT campaign between CO_{2tot} and CO_{2bio} , and between CO_{2bio} and OCS ABL-FT differences (OCS_{xs}). Regression slopes were derived using a Model II linear least squares geometric mean regression. Slope uncertainties and coefficient of determination (R^2) are reported for each ACT seasonal campaign, along with the fraction of total samples, F([]), with negative derived CO_{2bio} and CO_{2tot} .

	Winter	Spring	Summer	Fall
	(slope±1 σ , R ² (p<0.05))	(slope±1 σ , R ² (p<0.05))	(slope±1 σ , R ² (p<0.05))	(slope± 1σ , R^2 (p<0.05))
CO _{2tot} :CO _{2ff}	0.81±0.10, 0.20	0.45±0.06, 0.18	0.26±0.04, 0.18	0.38±0.05, 0.26
CO2tot: CO2bio	0.86±0.10, 0.31	0.88±0.05, 0.73	0.92±0.04, 0.93	0.81±0.05, 0.92
CO _{2bio} :OCS	-0.09±0.14,0.20	0.13±0.02,	0.12±0.02, 0.11	-0.25±0.05,
	Winter	Spring	Summer	Fall
	(Fraction)	(Fraction)	(Fraction)	(Fraction)
$F(CO_{2bio} < 0)$	0.09	0.57	0.82	0.08
$F(CO_{2tot} < 0)$	0.00	0.28	0.62	0.04

Figure S1. Correlations of CO_{2bio} and OCS ABL-FT differences (OCS_{xs}) during seasonal ACT campaigns shown in a) for winter (WT, circled), spring (SP) and summer (SU) seasons (red crosses). The correlation for data points in a) where CO_{2bio} indicates uptake only (CO_{2bio} <0) is shown in grey, providing a similar R value. Slopes for CO_{2bio} :OCS_{xs} for each season are shown separately in Table S1. b) Fall (FA) deployment correlations with OCS distinguished between when CO_{2bio} indicated biogenic respiration (CO_{2bio} <0) and uptake (CO_{2bio} <0).