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Abstract. Wildfires release large amounts of greenhouse gases into the atmosphere, exacerbating climate
change and causing severe impacts on air quality and human health. In this study, based on a bottom-up approach
and using satellite data, combined with emission factor and aboveground biomass data for different vegetation
cover types (forest, shrub, grassland, and cropland), the dynamic changes in CO, emissions from wildfires in
China from 2001 to 2022 were analyzed. The results showed that between 2001 and 2022, the total CO; emis-
sions from wildfires in China were 937.7 Tg (522.6-1516.0 Tg, 1 Tg = 10'? g), with an annual average of 42.6 Tg
(23.8-68.9 Tg). The CO, emissions from cropland and forest fires were relatively high, accounting for 45 % and
46 % of the total, respectively. The yearly variation in CO, emissions from forest and shrub fires showed a sig-
nificant downward trend, while emissions from grassland fires remained relatively stable. In contrast, the CO;
emissions from cropland fires showed an upward trend, primarily in Northeast China. Hot spot analysis and ge-
ographically and temporally weighted regression (GTWR) models revealed significant spatial heterogeneity in
emissions across vegetation types. Persistent hot spots of shrub and forest fires were located in Southwest and
South China, while Northeast China experienced sporadic but extreme fire events. The GTWR model for shrub
fire CO, emissions exhibited the highest predictive performance (R? = 0.87), and climatic factors (particularly
temperature and humidity) were the main influencing factors. Notably, the recent rise in cropland fire CO, emis-
sions in Northeast China is closely linked to region-specific straw-burning policies. The research results provide
valuable references for atmospheric transport models, regional fire management, and national carbon accounting
frameworks in the context of climate change.

felds et al., 2002; van der Werf et al., 2004; Wotawa and

To limit the global average surface temperature rise to 1.5 °C
higher than preindustrial levels, carbon dioxide (CO;) emis-
sions must reach net zero by mid-century through various
pathways (Rogelj et al., 2018). Globally, wildfires reduced
carbon storage in vegetation by approximately 10 % from
2001 to 2012 (Lasslop et al., 2020). This significantly im-
pacted the concentration of CO» in the atmosphere (Langen-

Trainer, 2000). According to Global Wildfire Information
System data compiled by Our World in Data (Our World in
Data, 2025), global wildfire CO, emissions have increased
since 2020, fluctuating between 5 and 7 Gt CO, per year
(1 Gt= 10" g), with record-high levels observed in 2021 and
2023. However, the role of wildfires as a critical factor in
carbon sinks and sources is often overlooked. To mitigate

Published by Copernicus Publications on behalf of the European Geosciences Union.

a|ollJe yoJessay



10380

climate change and fully understand the carbon exchange
mechanisms between terrestrial ecosystems and the atmo-
sphere, it is essential to consider the impacts of wildfire CO;
emissions on the Earth system (Chuvieco et al., 2019; Giglio
et al., 2018; Kasischke et al., 1995; McGuire et al., 2001;
Zhang et al., 2013).

The significant differences in global wildfire CO, emis-
sions among countries highlight the complexity of wildfire
CO, emissions. Extreme forest fires in several countries,
such as Australia, Canada, and the United States, often re-
lease CO; that exceeds the cumulative CO, emissions of
several years in the same region, significantly impacting the
global climate and the environment. Boreal fires, which usu-
ally contribute 10 % of global fire CO, emissions, accounted
for 23 % in 2021 (0.48 GtC), marking the highest fraction
since 2000 (Zhang et al., 2023b). The unprecedented wild-
fires in Canada in 2023 released significant amounts of air
pollutants and greenhouse gases into the atmosphere. Simu-
lation results (Wang et al., 2023) have indicated that these
wildfires emitted more than 1.3 Gt CO; and 0.14 Gt CO,
equivalent of other greenhouse gases, including CH4 and
N>O. The greenhouse gas emissions associated with wild-
fires exceeded twice the planned cumulative anthropogenic
emissions reductions in Canada over a decade. Shiraishi et
al. (2021) used a bottom-up approach to estimate CO, emis-
sions from catastrophic fires in Australia between 2019 and
2020. The results showed that from March 2019 to Febru-
ary 2020, Australia’s annual CO; emissions were estimated
to be 8064 69.7 Tg (1 Tg=10'?g) CO, yr~!, equivalent to
1.5 times its total greenhouse gas emissions (CO;, equiv-
alent) in 2017. Phillips et al. (2022) reported that by the
middle of this century, wildfires in northern North America
could lead to a cumulative net source of approximately 12 Gt
CO,, accounting for approximately 3 % of the remaining
global CO; emissions, which is closely related to the tem-
perature targets of the Paris Agreement. In the context of cli-
mate change, wildfires are becoming more frequent, and CO,
emissions from wildfires are often influenced by human in-
tervention. Phillips et al. (2022) found that increasing invest-
ment in fire management to avoid CO; emissions is equiv-
alent to or lower than other mitigation strategies. Therefore,
changes in fire management may impact global atmospheric
CO; concentrations, and proactive management strategies ef-
fectively reduce CO; emissions (Kelly et al., 2013; Phillips
et al.,, 2022; Van Wees et al., 2021). Despite the growing
importance of wildfire CO, emissions in climate change,
such emissions are often excluded from international climate
frameworks, including national inventories under the United
Nations Framework Convention on Climate Change (UN-
FCCC), due to their classification as “natural disturbances”
in the Intergovernmental Panel on Climate Change (IPCC)
guidelines for Land Use, Land-Use Change, and Forestry
(LULUCEF) (IPCC, 2019).

China has released numerous wildfire emission invento-
ries, but previous research on wildfire emissions in China has
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focused chiefly on small-scale regions and short-term peri-
ods (Cao et al., 2005; Huang et al., 2012; Qiu et al., 2016;
Tian et al., 2011; Wu et al., 2018). Wang and Zhang (2008)
established an atmospheric pollutant emission inventory of
cropland fires in China in 2006 using the emission factor
method and analyzed its spatiotemporal distribution charac-
teristics. Wu et al. (2018) estimated pollutant emission in-
ventories from wildfires in central and eastern China from
2003 to 2015 using remote sensing images but did not in-
clude the heavily polluted northeast region. In addition, most
studies have focused mainly on atmospheric pollutant emis-
sions, with limited research on CO; emissions (Jin et al.,
2022; Wang and Zhang, 2008; Xie et al., 2024; Yin et al.,
2019). Xie et al. (2024) used the GEOS-Chem model to in-
vestigate the impact of cropland fires on severe haze events
in Heilongjiang Province. They reported high uncertainty in
the existing Global Fire Emissions Database (GFED) ver-
sion 4.1 emission inventory. Van der Werf et al. (2017) also
noted substantial uncertainty in estimating wildfire emissions
in existing emission inventories. Consequently, there is a crit-
ical need to quantify the long-term dynamics of wildfire CO,
emissions across diverse vegetation types.

Traditionally, wildfire emission inventories using popu-
lation or cropland area weights to allocate total emissions
to grid cells have high uncertainties (Streets et al., 2003;
Zhang et al., 2013). With the advancement of remote sens-
ing technology, recent studies have shifted to satellite-based
estimation methods, using active fire detection or burned
area datasets to improve spatial accuracy. Inventories such
as GFED (Chen et al., 2023) and the NCAR Fire Inventory
(FINN) (Wiedinmyer et al., 2011) rely on satellite-derived
fire count data (e.g., active fire product MCD14 ML) or
burned area products (e.g., MCD64A1) to infer the timing
and location of fire emissions (Giglio et al., 2016, 2018). Al-
though satellite remote sensing has greatly improved the spa-
tial and temporal resolution of fire detection, several prac-
tical challenges remain. For example, cloud cover, satellite
overpass intervals, fire intensity thresholds, and pixel res-
olution can result in the under-detection of short-duration
or low-intensity fires. To mitigate these limitations, this
study integrated multi-source satellite products to enhance
the completeness of the fire signal. Additionally, many ex-
isting global inventories rely on globally aggregated vegeta-
tion data (such as global land cover and biomass), which fur-
ther introduces errors, especially in transition zones between
cropland and natural vegetation (e.g., forest-agricultural mo-
saics), where misclassification may lead to overestimation or
underestimation of fire emissions.

To overcome these shortcomings, this study integrated
China’s regionally validated vegetation cover datasets (Xu et
al., 2018), multi-source burned area satellite products, and
regionally derived biomass data (Hu et al., 2006; Su et al.,
2016; Yan et al., 2023) to develop a 500 m resolution wildfire
CO; emission inventory for China (2001-2022). Addition-
ally, we used spatially weighted regression models to explore
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the drivers of emission variability and analyzed the impacts
of national fire management policies on CO, emissions. The
findings provide insights into the role of governance in shap-
ing fire emissions and offer useful references for future wild-
fire management strategies. This multi-year emission inven-
tory can also be used in atmospheric transport models to sup-
port the development of effective global warming mitigation
strategies.

2 Data and methods

2.1 Study area

China is located in the eastern part of the Eurasian conti-
nent on the west coast of the Pacific Ocean. It spans ap-
proximately 50° of latitude (3—-53°N) from north to south
and 60° of longitude (73—135°E) from east to west, with a
land area of approximately 9.60 x 10%km?. There are dif-
ferences in the geographical distribution of cropland, grass-
land, shrubs, and forests in China. In this study, China was
divided into seven subregions based on geographic and eco-
logical characteristics: Northeast China (NE), North China
(NC), Central-West China (CW), South China (SC), South-
west China (SW), Northwest China (NW), and the Tibetan
Plateau (TP) (Fig. 1). Croplands are mainly located in the
eastern plains and coastal areas, especially in NE (provinces
such as Heilongjiang, Jilin, and Liaoning) and NC (provinces
such as Hebei, Henan, Shandong, and Jiangsu), where the
terrain is flat and suitable for agriculture. Grasslands are
mainly distributed across the Inner Mongolia region (span-
ning NE and CW), the Xinjiang region of NW, and parts
of SW. Forests and shrubs are primarily concentrated in NE
(especially Heilongjiang), SW (provinces such as Yunnan,
Guizhou, and Sichuan), and SC (provinces like Jiangxi and
Hunan).

2.2 CO» emission estimation

In this study, we employed a bottom-up approach to develop
an inventory of China’s wildfire CO, emissions. Wildfire
CO; emissions were calculated using the following formula:

E;i = ZX’iBAx,,- x AGB, ; x CE; x EF;, 1)

where the subscripts x and i represent the grid cell and veg-
etation cover type (forest, shrub, grassland, and cropland),
respectively. The vegetation cover data were sourced from
the China Land Use Land Cover Remote Sensing Monitor-
ing Dataset (CNLUCC) (Xu et al., 2018), and a 1 km har-
vesting area dataset for three staple crops (e.g., corn, wheat,
and rice) in China from 2000 to 2019 was obtained from
Luo et al. (2020a). E; represents the CO, emissions, BAy ;
is the burned area (ha), AGB, ; is the aboveground biomass
(tha~!), and EF; is the emission factor. CE; is the combus-
tion efficiency. All datasets were resampled to 500 m resolu-
tion to ensure spatial consistency.
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2.2.1 Burned areas

BA for each vegetation cover type was primarily estimated
using the MODIS-MCD64A1 product (Giglio et al., 2018),
which provides global monthly burned area estimates. How-
ever, it is well acknowledged that MODIS-MCD64A1 tended
to underestimate small and fragmented fires. To address this
issue, we applied scaling factors (;) to correct the MODIS-
derived BA estimates. The scaling factors were derived from
the comparison of MODIS-derived BA with two indepen-
dent global burned area datasets, i.e., the FireCCIS1 prod-
uct (Lizundia-Loiola et al., 2020) released by ESA (http:
/lcci.esa.int/data, last access: 3 September 2025) and a global
GFEDS500 product (Van Wees et al., 2022), with their spe-
cific values provided in Table S1 in the Supplement. The
corrected burned area for each vegetation cover type was ob-
tained by multiplying the MODIS-derived BA values by the
corresponding scaling factor. This correction accounts for the
known systematic underestimation of small and fragmented
fires by the MODIS MCD64A1 product.

BAc orrected,i = BAmobis,i X o; ()

Here, i denotes the vegetation type.

2.2.2 Emission factors

The emission factor refers to the gas released per unit mass
of dry combustible material during combustion, typically in
grams per kilogram (gkg™!). This is a crucial parameter for
calculating gas emissions during biomass burning, such as
CO3;, methane (CHy), and carbon monoxide (CO). Emission
factors are influenced by various factors, including the com-
bustibility of tree species, differences in vegetation cover
types, and the intensity of flame combustion (Andreae and
Merlet, 2001; Lii et al., 2006). To ensure the accuracy of
the wildfire emission inventory as much as possible, it is
essential to choose appropriate emission factors. This study
comprehensively analyzed many studies in the literature to
summarize the emission factors of CO, generated by wild-
fires under different vegetation cover types, as listed in Ta-
ble S2. Finally, the average values from the literature were
selected as the emission factors of the different vegetation
cover types.

2.2.3 Aboveground biomass

Previous studies have mainly used the aboveground biomass
data from Fang et al. (1996) for forests. Forest aboveground
biomass data in recent years need to be updated. In this study,
the aboveground biomass data of forests from 2001 to 2012
were obtained from Su et al. (2016). The data for 2013 to
2022 were obtained from Yan et al. (2023). For shrub, Chi-
nese local biomass density data were collected in Table S3
(Hu et al., 2006). Grassland aboveground biomass was cal-
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Figure 1. Regional divisions and vegetation distribution in China. The seven regions include North China (NC): 109°E to eastern border,
30-41°N; South China (SC): 109°E to eastern border, southern border to 30° N; Southwest China (SW): 100-109° E, southern border to
32°N; Central-West China (CW): 100—109°E, 32° N to northern border; Northeast China (NE): 109° E to eastern border, 41° N to northern
border; Northwest China (NW): western border to 100° E, 36° N to northern border; and the Tibetan Plateau (TP): western border to 100° E,

southern border to 36° N.

culated using the exponential model by Gao et al. (2012):
AGBgrass = 20.1921 x e3.2154><(NDVI)’ 3)

where AGBgpass is the aboveground biomass of grassland
(gm~2) based on the average normalized difference vege-
tation index (NDVI) value of the growing season. NDVI data
were sourced from China’s regional 250 m normalized dif-
ference vegetation index dataset (Gao et al., 2024b).

To determine the aboveground biomass of cropland, we
gathered the crop-specific yield per unit area of different
crops from the China Statistical Yearbook (NBSC, 2001-
2022). The aboveground biomass burned in a field of crop-
land from major crops is calculated from the crop-specific
yield per unit area, the straw production rates, and the dry
matter content of each crop residue as follows:

AGB,‘ = Pi X Ri X D,‘, (4)

where i represents the crop type (rice, corn, wheat, and other
crops), AGB; is the aboveground biomass of cropland burned
in the field (gm™2), P; is the crop-specific yield per unit area
(gm~2), R; is the straw yield ratio for each crop type, and
D; is the dry matter content of each crop residue. The other
crops were defined as the average of rice, corn, and wheat.
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For each crop type, data for R and D were collected from
published literature (Table S4).

2.2.4 Combustion efficiency

The combustion efficiency (CE) of biomass is a crucial fac-
tor determining the accuracy of wildfire CO, emissions es-
timates. It is influenced by multiple factors, including fire
intensity, wildfire type, moisture content and load of com-
bustibles, and meteorological conditions. Hély et al. (2003)
established an empirical relationship between combustion ef-
ficiency and vegetation cover fraction (FVC), which was ap-
plied in this study to calculate the CE for forests and grass-
lands. The FVC used in this study was sourced from China’s
regional 250 m fractional vegetation cover dataset (Gao et al.,
2024a). For regions with an FVC exceeding 60 %, the CE
values for forest and grassland were set at 0.3 and 0.9, re-
spectively. When the FVC was below 40 %, the CE values
for forest and grassland were 0 and 0.98, respectively. In ar-
eas where the vegetation cover ranged from 40 % to 60 %, the
CE for forest cover was defined as 0.3. The CE for grassland
was calculated using the following formula:

CE — 670.13><FVC. (5)

https://doi.org/10.5194/acp-25-10379-2025
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The CE of shrub was set at 0.7, based on a China-specific
study and global biomass burning studies (Junpen et al.,
2020; Mieville et al., 2010; Ping et al., 2021; van Leeuwen
et al., 2014; Zhou et al., 2017). The CE of corn, wheat, and
rice was obtained from He et al. (2015), with values of 0.92,
0.92, and 0.93, respectively. The CE of other crops was taken
as the average value for corn, wheat, and rice (i.e., 0.923).

It is important to note that although the CE values for dif-
ferent vegetation types were carefully selected based on com-
prehensive literature reviews, CE is inherently variable and
can differ significantly across various combustion phases.
Because this study aimed to estimate emissions over ex-
tended periods (ranging from months to years), the adopted
CE values represent average combustion conditions rather
than instantaneous ones. This averaging approach may in-
troduce uncertainties in the emission estimates, especially in
scenarios where rapid changes in combustion efficiency oc-
cur.

2.3 Spatiotemporal analysis of wildfire CO» emissions
2.3.1 Global spatial autocorrelation analysis

Global spatial autocorrelation is a fundamental concept in
spatial statistics, used to assess the overall spatial dependence
of a variable across a study region. The Anselin Moran’s
I index (Anselin, 1995; Moran, 1948) and the Getis—Ord
G; coefficient* (Getis and Ord, 1992) are commonly used
to measure the degree of spatial clustering and heterogene-
ity. Moran’s [ is a global spatial autocorrelation statistic that
quantifies the degree to which similar attribute values are
clustered or dispersed in space. The Moran’s / index is cal-
culated as follows:
1= Z?=1Z'}=1wij (xi — %) (xj _7)
So S0 —%)?

where [ is the global Moran’s [ index, n is the total number
of spatial elements, x; and x; are the observed values at spa-
tial units i and j, respectively, X is the mean of all observed
values, w;; is the weight matrix for the adjacency relation-
ships between geographical units, and Sp is the sum of all
spatial weights.

The Moran’s [ is between —1 and 1. A value of / >0
indicates positive spatial autocorrelation, i.e., similar values
(high or low) tend to occur near each other, while I < 0O in-
dicates that dissimilar values are adjacent. I ~ 0 suggests a
random spatial pattern.

Statistical significance is assessed by comparing the ob-
served Moran’s / to a null distribution generated via random
permutations. A z-score > 2.58 and p value < 0.01 indicate a
statistically significant spatial clustering pattern at the 99 %
confidence level. In the context of this study, significantly
positive Moran’s I values indicate that wildfire CO, emis-
sions are spatially clustered, meaning that regions with high
emissions tend to be adjacent to other high-emission areas,

) (6)

https://doi.org/10.5194/acp-25-10379-2025

10383

and low-emission regions are likewise grouped. This justi-
fies further localized analyses such as hot spot detection.

2.3.2 Hot spot analysis

While Moran’s I provides a global measure of spatial auto-
correlation, it does not explicitly identify localized clusters of
high or low values. To address this limitation, the Getis—Ord
Gl’.‘ statistic (Getis and Ord, 1992) is commonly used to iden-
tify statistically significant hot spots and cold spots within
spatial datasets. Unlike Moran’s I, which captures both pos-
itive and negative spatial autocorrelation, the G statistic fo-
cuses on detecting concentration patterns of high or low val-
ues within the study area. The Getis—-Ord G statistic is de-
fined as

Do jWijX; — XD Wi

s [."Z-f “]3—__(12’ w"-’)z}

where G is the Getis—Ord G statistic for location i, x; is
the observed value at location j (e.g., CO; emissions), X is
the global mean of the observed variable, w;; is the spatial
weight matrix, representing the spatial relationship between
locations i and j, n is the total number of spatial units, and S
is the standard deviation of the observed values.

The G7 statistic is essentially a ratio that compares the lo-
cal sum of a variable within a specified distance to the global
sum, adjusted for the number of spatial units and their spa-
tial relationships. High positive G} values indicate clusters
of high values (hot spots), while low negative G} values in-
dicate clusters of low values (cold spots). Locations with G}
values near 0 indicate random spatial patterns without signif-
icant clustering. Statistical significance is assessed using Z-
scores and corresponding p values. In this study, G analysis
was used to detect persistent high- and low-emission clusters
of wildfire CO, emissions across China from 2001 to 2022.
The results provided spatially explicit insights into emission
patterns.

Gi =

)

2.3.3 Geographically and temporally weighted
regression model

To capture the spatial and temporal variations of the drivers
of wildfire CO, emissions, the geographically and tempo-
rally weighted regression (GTWR) model was used (Huang
et al., 2010). Unlike traditional global regression models,
GTWR allows the coefficients of explanatory variables to
vary across both space and time, providing a more precise
estimation of the local influence of different driving factors.
The GTWR model is defined as

yi = Bo(u;vit;) + Zkﬁk(uivili)xik +€, (3

where x; is the response variable (wildfire CO; emissions),
(ujv;t;) are the spatial coordinates and timestamp for loca-
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tion i, fo is the intercept term, fy is the local coefficient for
the kth explanatory variable, x;; is the kth explanatory vari-
able, and ¢; is the error term. The accuracy of the GTWR
model depends significantly on the choice of bandwidth and
kernel function, which control the spatial and temporal influ-
ence of neighboring observations. In this study, an adaptive
bandwidth was used to ensure that each observation has a
sufficient number of neighbors, while a tricube kernel was
selected for its smooth distance decay function. The optimal
bandwidth was determined using the corrected Akaike infor-
mation criterion (AICc), a widely used criterion for model
selection that balances model complexity and goodness of
fit (Hurvich et al., 1998; Hurvich and Tsai, 1989). This ap-
proach enabled us to explore how the effects of climatic and
socioeconomic variables on wildfire emissions vary across
regions and over time.

3 Results and discussion

3.1 Interannual variation in CO2 emissions

The total CO; emissions from wildfires in China from 2001
to 2022 were 937.7 (522.6-1516.0 Tg) Tg, with an average
annual value of 42.6 (23.8-68.9) Tg. CO, emissions from
wildfires in China were relatively low, decreasing slowly by
0.6 Tg per year (Fig. 2a). CO, emissions from cropland and
forest fires were relatively high, accounting for 45 % and
46 % of the total wildfire emissions in China, respectively,
shrub fire emissions account for 8 % of the total wildfire
emissions in China, and grassland fire emissions were the
lowest, accounting for only 2 % of the total wildfire emis-
sions in China (Fig. 2b).

The annual CO;, emissions from different types of fires
showed varying temporal trends. The downward trend for
forest and shrub emissions was significant, with a decrease
of 1.1 and 0.2 Tg per year, respectively (Fig. 2c¢ and d). Such
a decline may reflect effective forestry management strate-
gies for forest and shrub fires (Fig. 12). In contrast, crop-
land emissions showed an upward trend, with an annual in-
crease of 0.6 Tg (Fig. 2f). This may be attributed to the in-
creased agricultural intensity and straw production in major
grain-producing regions, particularly in northeastern China.
Additionally, shifts in local open-field burning management
strategies, such as the introduction of temporally concen-
trated burning windows, may have enhanced the detectability
of agricultural fires via remote sensing. The emission trend
for grassland was relatively stable (Fig. 2e), which might be
influenced by a combination of ecological and anthropogenic
factors.

3.2 Monthly variation in CO2 emissions

The CO; emissions from different vegetation cover types
showed significant seasonal fluctuations, with certain months
showing higher emissions than others (Fig. 3a). Wildfires
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had lower CO; emissions in July and August, which may
correspond to the respective wet seasons (Fig. 3a). Forest,
shrub, and grassland fire CO; emissions had higher emis-
sions in February, March, and April, possibly related to
the dry weather and accumulation of combustible materials
in spring, increasing the risk of fires (Fig. 3b—d). The ex-
treme fire CO, emissions observed in both 2003 and 2008
were associated with prolonged drought conditions during
the spring season. Cropland fire CO; emissions showed sig-
nificant emission peaks in April, May, and June (Fig. 3e).
This pattern may be related to specific agricultural activities
(such as plowing, sowing, and harvesting) cycles, as crop-
land fires often occur after harvest when crop residues are
burned to prepare for the next planting season. The spatial
distribution of forest, shrub, and grassland fire emissions was
relatively similar among the different months (Figs. S1-S3).
In contrast, the spatial distribution of CO, emissions from
cropland fires varied significantly across different months
and was likely influenced by policy management (Fig. 4).
High emissions in March and April were concentrated in the
NE region, while emissions in May and June were primar-
ily associated with the NC region. The regional difference in
peak emission months can be attributed to distinct cropping
systems and climatic conditions. In the NE region (e.g., Hei-
longjiang and Jilin), cold winters and delayed spring thaw of-
ten push straw-burning activities into March—April, follow-
ing the autumn harvest. In contrast, the NC region (e.g., An-
hui, Henan, and Jiangsu) practices a double-cropping system
of winter wheat and summer maize, where wheat is harvested
in May-June, and burning of straw residues is typically ob-
served during this transition period.

3.3 Spatiotemporal variations in CO» emissions

Due to differences in geographical location, climate condi-
tions, and population density, the spatiotemporal distribu-
tion of CO, emissions in each region exhibits heterogene-
ity (Fig. 5). Emissions in the NW, CW, and TP regions were
relatively low, accounting for only 3 % of China’s annual av-
erage emissions from 2001 to 2022. In contrast, high emis-
sions were mainly concentrated in the NE, NC, SC, and SW
regions (Fig. 5a).

To assess whether wildfire CO, emissions exhibit statis-
tically significant spatial clustering patterns at the national
scale, we first applied Moran’s I. This step was crucial be-
cause it determined the necessity of subsequent local cluster
analyses (such as hot spot analysis). The results (Table 1)
showed significantly positive Moran’s / values for fire emis-
sions across all vegetation types (I >0, p <0.01; Z > 2.58),
indicating non-random spatial distributions and strong global
spatial autocorrelation. These findings supported the use of
the Getis-Ord G statistic to identify statistically significant
hot spots and cold spots of wildfire emissions. Additionally,
the presence of spatial autocorrelation implies the need for
spatially explicit regression models (e.g., geographically and
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Figure 2. (a) Annual CO, emissions within specific vegetation cover types from 2001 to 2022 in China; (b) contribution of different
vegetation cover types to the total CO, emissions from 2001 to 2022 in China. (c—f) Time series of CO, emissions for forest, shrub,
grassland, and cropland, respectively. The red dashed line is the linear trend, and the gray shaded envelope represents the 5th-95th percentile
confidence interval from Monte Carlo uncertainty analysis. The p values are derived from the Mann—Kendall trend test, a non-parametric
statistical method used to assess the presence of a monotonic (increasing or decreasing) trend in a time series without assuming any specific
data distribution. A p value < 0.05 indicates a statistically significant trend at the 95 % confidence level.
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land, and (e) cropland. The original emission data at 500 m resolution were resampled to a 0.25° grid to enhance visual clarity.
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temporally weighted regression), as global models such as
ordinary least squares (OLS) may not adequately capture the
spatial heterogeneity in emission-driver relationships.

Based on the Getis—Ord G analysis (Fig. 6), we identi-
fied clear spatial clusters of persistent high (hot spots) and
low (cold spots) wildfire CO, emissions (Fig. 6). Among the
different vegetation types, CO, emissions from forest fires
are mainly distributed in the NE, SW, and SC regions, with
the NE region accounting for 56 % of China’s annual aver-
age emissions from 2001 to 2022 (Fig. 5b). The NE region
(e.g., the Greater and Lesser Khingan Mountains) is a typ-
ical coniferous forest belt with abundant fuel accumulation
and dry and windy spring conditions, which make it highly
prone to intense but infrequent wildfires (Lian et al., 2024a).
However, despite the high forest fire emissions in NE, no sig-
nificant hot spots were detected by the Getis—Ord G} analy-
sis (Fig. 6b), indicating that its high emissions mainly stem
from sporadic extreme events rather than persistent cluster-
ing (Fig. 7a). For example, in 2003 and 2008, extreme wild-
fires in NE contributed 73 % and 56 % of the national forest
fire CO, emissions in 2003 and 2008, respectively (Fig. 7a).
In contrast to NE, SW and SC exhibited significant spatial
clustering in forest fire CO, emissions. Forest fires in these
regions are prone to occurring in late winter and early spring
each year, with relatively small fire scales but high frequency
(Qin et al., 2014; Zhang et al., 2023a).

Shrub fire CO, emissions were concentrated in the SW
and SC regions, accounting for 47 % and 27 % of China’s
annual average emissions from 2001 to 2022, respectively
(Fig. 5c¢). Secondary vegetation such as shrubs and bam-
boo forests are common in these areas, resulting from land-
use changes (e.g., farmland abandonment and forest degra-
dation), which facilitates the accumulation of combustibles
(Han et al., 2018). Meanwhile, complex terrain and high
biomass also amplify the risk of fire spread (He et al.,
2024). Additionally, seasonal drought (low humidity) com-
bined with human activities such as fuelwood collection and
traditional burning practices (Ying et al., 2021) exacerbate
fire occurrences, forming persistent spatial clustering that has
been clearly identified as hot spot areas (Fig. 6c¢).

Grassland fire emissions were mainly concentrated in the
NE region, accounting for 70 % of China’s annual mean dur-
ing 2001-2022 (Fig. 5d), with hot spot areas focusing on the
grasslands of Inner Mongolia (e.g., Hulunbuir and Xilingol)
(Fig. 6d). In this region, dry herbaceous vegetation, strong
winds, and low humidity in spring make grassland fires ex-
tremely prone to ignition (Chang et al., 2023). Additionally,
there is a close relationship between land use and grassland
fire occurrence (Li et al., 2017). Li et al. (2017) explored the
relationship between land use and the spatial distribution of
grassland fires, and the results showed that land use has a
significant impact on grassland fires.

High CO; emissions from cropland fires were concen-
trated in the NC and NE regions, accounting for 51 % and
42 % of China’s annual mean emissions, respectively, dur-
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ing 2001-2022 (Fig. 5e). Spatiotemporally, from 2003 to
2012, the main emission sources were agricultural provinces
in NC (e.g., Hebei, Shandong, Henan, and Anhui), while
after 2012, agricultural regions in NE (e.g., Heilongjiang,
Jilin, and Liaoning) became the primary sources of emissions
(Figs. 6e and 7d). These areas have high crop straw yields
and long-standing traditional burning practices, making them
typical hot spots of agricultural fires (Li et al., 2024a; Wu et
al., 2018).

3.4 The impact of factors on wildfires in China

Wildfires in China exhibit distinct spatial clustering pat-
terns. To investigate the climatic and socioeconomic drivers
of wildfire CO, emissions and to characterize their spa-
tiotemporal heterogeneity, we applied three regression mod-
els — OLS, geographically weighted regression (GWR), and
GTWR - to four types of fires (forest, shrub, grassland, and
cropland). We compared model performance using R? and
the AICc. Explanatory variables were selected based on the-
oretical relevance and data availability for the period 2001-
2019. As shown in Table 2, these variables include five cli-
matic factors — punctual temperature (TMP, °C), accumu-
lated precipitation (PRE, mm), relative humidity (RH, %),
wind speed at 2m (WIN, ms~1), and daily cumulative sun-
shine hours (SSD, h) — and two socioeconomic indicators —
gross domestic product (GDP, millions km~2) and popula-
tion density (POP_DEN, people grid™!). These factors are
widely recognized as influencing wildfire emissions (Lan et
al., 2021; Ma et al., 2020; Zeng et al., 2024). TMP and SSD
affect fuel flammability and combustion efficiency, PRE and
RH regulate fuel moisture, and WIN promotes fire spread.
Socioeconomic factors reflected anthropogenic influences on
fire ignition, suppression, and land use. To ensure model
parsimony and statistical robustness, variables that were not
statistically significant (p > 0.05) in the global OLS model
were excluded from subsequent GWR and GTWR analyses.
All retained variables were normalized or Box—Cox trans-
formed prior to modeling to ensure comparability.

Across all fire types, both GWR and GTWR models out-
performed the global OLS model. For forest fires, GTWR
achieved the best performance (R% =0.58; AICc = 128 909),
while OLS explained only 6 % of the variance, indicat-
ing strong spatiotemporal heterogeneity. For cropland fires,
GTWR also performed well (R2 =0.52; AICc =141 335),
highlighting the influence of cropping cycles and regional
factors. In shrub fires, the performances of the GWR and
GTWR models were nearly identical (both with R?=0.87),
and GTWR showed a slightly higher AICc (worse model fit),
indicating that incorporating temporal weights did not lead to
a substantial improvement. This finding suggests that shrub
fire emissions are primarily driven by spatial heterogeneity,
with limited temporal variability. For grassland fires, GTWR
improved R? from 0.27 to 0.31 compared to GWR, but the
overall model fit remained low, indicating that other drivers

Atmos. Chem. Phys., 25, 10379-10401, 2025
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Table 1. Global spatial autocorrelation statistics of CO, emissions.

X. Gong et al.: Spatiotemporal patterns and drivers of wildfire CO» emissions

Vegetation cover type  Moran’s [ Z P Clustering pattern
Forest 0.68 64.90 0.000 Cluster
Shrub 0.99 91.50 0.000 Cluster
Grassland 0.60 58.95 0.000 Cluster
Cropland 0.89 106.50 0.000 Cluster
All 0.60 83.15 0.000 Cluster
(a) Total (b) Forest (c) Shrub

Gi* Significance Level

Hot Spot 99% Confidence
Hot Spot 95% Confidence
Hot Spot 90% Confidence
Not Significant

Cold Spot 90% Confidence
Cold Spot 95% Confidence
Cold Spot 99% Confidence

Figure 6. Spatial clustering of CO; emissions at 0.25° resolution in China (G;.k hot spot analysis): (a) all fire types, (b) forest, (¢) shrub,
(d) grassland, and (e) cropland. Red areas represent statistically significant clusters of high emission values (hot spots), while blue areas
indicate significant low-value clusters (cold spots), with confidence levels of 90 %, 95 %, and 99 %.

— such as land-use change, grazing, or local policies — play a
critical role in grassland ecosystems.

To explore the temporal dynamics of individual variables,
Fig. 8 presents the annual average GTWR regression coef-
ficients for 2001-2019, revealing significant differences in
how climatic and socioeconomic drivers influenced wild-
fire CO;, emissions across vegetation cover types. Except for
SSD, all other factors exhibited negative effects on forest fire
CO, emissions (Fig. 8a). Temporally, regression coefficients
for key variables such as POP_DEN, TMP, and GDP showed
weakened negative effects after 2012, suggesting reduced
sensitivity of forest fire emissions to these drivers in recent
years. This change likely reflects strengthened forest fire pre-
vention policies and management measures implemented in
China after 2012 (Fig. 12), which significantly reduced fire
occurrences. Spatially, regression coefficients showed signif-
icant north-south disparities (Fig. 9). TMP and RH had a dual
effect on forest fire emissions. In the NE and NC regions,
TMP and RH positively correlated with forest fire emissions,
indicating that warming and drying conditions may promote

Atmos. Chem. Phys., 25, 10379-10401, 2025

fire activity in temperate forests (Fang et al., 2021; Lian et
al., 2024b) (Fig. 9a and b). In contrast, in the SW and SC re-
gions, TMP and RH exhibited negative coefficients (Fig. 9a
and b). This may occur because, while high temperatures
can increase plant evapotranspiration and reduce fuel mois-
ture content (Chuvieco et al., 2004), China’s monsoon cli-
mate typically links high temperatures with high relative hu-
midity, creating a threshold effect on forest fires (Ma et al.,
2020). Additionally, during high-temperature periods, forest
fire prevention authorities implement strict fire control mea-
sures, limiting fire occurrences (Abatzoglou et al., 2018; Hu
and Zhou, 2014). GDP (Fig. 9e) showed positive effects in
the NE region but negative effects in the SC and SW regions.
POP_DEN (Fig. 9f) generally displayed negative effects, es-
pecially in the SW and SC regions, highlighting the role of
human presence in fire suppression.

Shrub fire CO, emissions were well captured by GWR
and GTWR, dominated by spatial heterogeneity with mini-
mal temporal variation (Table 3). GTWR showed that TMP
and RH were consistent positive drivers throughout the study

https://doi.org/10.5194/acp-25-10379-2025
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Figure 7. Time series of CO, emissions in regions under different vegetation cover types from 2001 to 2022 in China: (a) forest, (b) shrub,

(c) grassland, and (d) cropland.

Table 2. Driving factors and sources.

Driving factors Abbreviation ~ Source

Punctual temperature TMP

Relative humidity RH Daily meteorological dataset of essential
Accumulated precipitation PRE meteorological elements of China National
Wind speed (2 m) WIN Surface Weather Station (V3.0) (CMA, 2025)
Daily cumulative sunshine hours ~ SSD

Gross domestic product GDP Chen et al. (2022)

Population density POP_DEN LandScan Global (Lebakula et al., 2025)

period, while GDP and WIN had negative effects, with other
variables exerting minor influences (Fig. 8b). Spatially, TMP
showed a positive effect across most regions (Fig. 10a). RH
showed significant positive local effects in the NC region, re-
flecting that humid climates promoted shrub growth and fuel
accumulation (Fig. 10c) (Lian et al., 2024b; Liu et al., 2024).
Once ignited by human activity or spring droughts, abundant
fuel intensified fire severity and CO, emissions. In contrast,
WIN and GDP exerted strong negative effects in parts of NC,
likely due to effective fire control practices (Fig. 10d and
f). Notably, a considerable number of grid cells along the
northeastern border failed significance tests for at least one

https://doi.org/10.5194/acp-25-10379-2025

explanatory variable (marked as black dots in Fig. 10a—g).
This may be due to limited shrub coverage or mixed land
types, leading to low fire frequency and weak emission sig-
nals (Lin et al., 2025; Yang and Jiang, 2022). Additionally,
many of these non-significant grids are located near interna-
tional borders, particularly adjacent to Russia. Because the
GTWR model is limited to Chinese territory, it lacks infor-
mation on cross-border fire activity, land use, and policy con-
text (Li et al., 2024b; Lin et al., 2025; Quan et al., 2022). In
northeastern China, transboundary fire spread is a known ig-
nition source and may contribute to CO, emissions that are
not well explained within national data coverage.

Atmos. Chem. Phys., 25, 10379-10401, 2025
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From a temporal perspective, the GTWR results for crop-
land fire CO, emissions showed that RH had a negative
effect, and this negative influence gradually strengthened
(Fig. 8d). GDP primarily exhibited a positive effect, but its
positive influence gradually weakened. The impact of TMP
shifted from negative to positive, with its effect gradually in-
creasing. WIN mainly exerted a positive effect, while other
factors had weak influences. Spatially, TMP showed strong
positive coefficients in eastern and central China (Fig. 11a).
Straw-burning activities in these regions peaked in spring and
autumn, a pattern closely linked to rising temperatures. In
contrast, negative temperature coefficients in southern and
southwestern China suggest that higher temperatures in these
regions, often accompanied by high humidity or stricter fire
regulations, may suppress fire activity. RH exhibited a sig-
nificant negative effect across most parts of China, likely due

Atmos. Chem. Phys., 25, 10379—-10401, 2025

to increased moisture content in agricultural residues, which
hinders ignition and combustion (Fig. 11b). WIN showed a
positive influence in the CW, NC, and SC regions, where
expansive cropland areas may enable wind to accelerate
fire spread during burning events (Fig. 11c). GDP mainly
showed positive effects, but after 2010, this gradually weak-
ened (Figs. 11e and 8d). This trend may be attributed to in-
creased straw production driven by agricultural expansion in
economically developed regions, where straw utilization in-
frastructure had not yet caught up, resulting in elevated emis-
sions. Early GDP growth likely brought more crop yields and
straw generation, thereby enhancing CO; emissions (Ren et
al., 2019). However, after 2012, this trend reversed as na-
tionwide straw-burning bans were introduced. Regions with
higher economic development began to demonstrate stronger

https://doi.org/10.5194/acp-25-10379-2025
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Figure 9. Spatial distribution of GTWR regression coefficients for forest fire CO, emissions and their driving factors across China. The
maps illustrate GTWR coefficients of six environmental and socioeconomic variables: (a) temperature, (b) relative humidity, (¢) wind speed,
(d) daily cumulative sunshine hours, (e) gross domestic product (GDP), and (f) population density. Gray regions represent areas where the
intercept was zero (i.e., no valid model fit), and black x symbols mark locations where the regression coefficients did not pass the significance
test (p > 0.05). Figures (g) and (h) show the model residuals and predicted forest CO; emissions.

Table 3. Comparison of regression results for different fire types using the OLS, GWR, and GTWR models.

Fire type Model  Intercept PRE TMP RH WIN SSD GDP POP_DEN  R? AlCc
Forest OLS 2698 49 727  —=259* —864* —100* —2321* —110* 0.06 135428
GWR 3260 - —436 —145 —200 91 —1983 —186 0.49 130508
GTWR 3204 —524 =205 —161 126 —469 —3888 0.58 128909
Shrub OLS 385 —303* 583*  246* —162*% —384* 11* 20* 0.27 104143
GWR 733 -31 111 100 5 —61 -10 -1 0.87 90837
GTWR 733 =31 110 101 3 —57 —11 0 0.87 91034
Grassland  OLS 144 10 —69*  23* —3* —20* —4* 1* 0.10 81654
GWR 130 - —40 18 —6 -5 —6 —4 0.27 79908
GTWR 131 - —40 19 -5 —4 -20 —4 0.31 79702
Cropland  OLS 239 25 —12%  —44* 14* 80* 2% 0* 0.10 149703
GWR 230 - 11 —31 16 2 50 3 042 143770
GTWR 228 - 16 -29 16 2 36 4 0.52 141335

* An asterisk next to a number indicates a statistically significant p value (p < 0.01).
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Figure 10. Spatial distribution of GTWR regression coefficients for shrub fire CO; emissions and their driving factors across China. The
maps illustrate GTWR coefficients of seven environmental and socioeconomic variables: (a) temperature, (b) precipitation, (c) relative
humidity, (d) wind speed, (e) daily cumulative sunshine hours, (f) gross domestic product (GDP), and (g) population density. Gray regions
represent areas where the intercept was zero (i.e., no valid model fit), and black x symbols mark locations where the regression coefficients
did not pass the significance test (p > 0.05). Figures (h) and (i) show the model residuals and predicted shrub CO, emissions.

emission control capacity, leading to a gradual weakening of
GDP’s positive effect on emissions (Zeng et al., 2024).
Although the GTWR model indicated that climatic and so-
cioeconomic variables such as TMP, RH, and GDP explained
the spatial variation in wildfire CO; emissions, the overall
model performance remains moderate for forest and shrub
fires, with particularly low explanatory ability for grass-
land fires (R? =0.31). This gap suggests that, beyond nat-
ural and socioeconomic factors, other key drivers may have
been omitted. Multiple studies (Gao et al., 2023; Kelly et
al., 2013; Phillips et al., 2022; Xie et al., 2020) highlight
the substantial impact of fire management policies on CO»
emissions. For instance, Phillips et al. (2022) showed that
the marginal abatement cost of avoiding fire-related CO»
emissions through fire management is comparable to or even
lower than that of many other climate mitigation strategies.
In China, the role of policy is particularly significant. Wu
et al. (2018) reviewed 51 crop straw management regula-
tions issued between 1965 and 2015, with 34 implemented
after 2008. The timing of these intensive regulatory efforts

Atmos. Chem. Phys., 25, 10379-10401, 2025

closely aligns with key turning points in emission trends
(Fig. 12). For cropland fires, annual CO, emissions increased
from 8.2 Tgyr~! during 2001-2005 to 26.2 Tgyr~! during
2010-2016 but began to decline following the revision of the
Air Pollution Prevention and Control Law in 2015 and the
launch of the Air Pollution Action Plan in 2013. Similarly,
after the implementation of the National Forest Fire Preven-
tion Plans in 2009 and 2016, CO; emissions from forest,
shrub, and grassland fires dropped from 38.1 Tgyr~! (2006—
2009) to 13.3 Tgyr~! (2017-2022). Jin et al. (2022) further
estimated that over 80 % of wildfire-related CO, emissions
could be avoided under effective fire management. These
findings strongly indicate that policy management plays a
critical role in wildfire CO, emissions.

Notably, northeastern China is the only region where crop-
land burning has increased in recent years, highlighting the
need for adaptive rather than restrictive policies. As one
of China’s major grain-producing regions, Northeast China
generates large volumes of straw. Harsh winters and short
windows for straw return or removal, combined with long-

https://doi.org/10.5194/acp-25-10379-2025
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Figure 11. Spatial distribution of GTWR regression coefficients for cropland fire CO, emissions and their driving factors across China. The
maps illustrate GTWR coefficients of six environmental and socioeconomic variables: (a) temperature, (b) relative humidity, (¢) wind speed,
(d) daily cumulative sunshine hours, (e) gross domestic product (GDP), and (f) population density. Gray regions represent areas where the
intercept was zero (i.e., no valid model fit), and black x symbols mark locations where the regression coefficients did not pass the significance
test (p > 0.05). Figures (g) and (h) show the model residuals and predicted cropland CO; emissions.

established farming practices, have made complete bans on
straw burning particularly challenging. Prior to strict open-
burning prohibitions, farmers often burned straw in a dis-
persed, low-intensity manner, making detection by satellite-
based fire products difficult, potentially resulting in system-
atic underestimation of early emissions. After the implemen-
tation of strict bans, facing growing pressure from unpro-
cessed straw accumulation, some local governments adopted
more adaptive fire management policies, such as designat-
ing burning windows under favorable meteorological condi-
tions. These “limited and concentrated burning periods” led
to spatiotemporally clustered fire events that were more eas-
ily captured by remote sensing. In recent years, the Chinese
government has also promoted the scientific incorporation of
straw into soils, off-field collection, and the industrial utiliza-
tion of crop residues in Northeast China. These efforts high-
light the significant role of policy in shaping emission trends
from agricultural burning, particularly in regions where envi-
ronmental constraints and traditional farming practices pose
unique challenges.
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3.5 Uncertainty analysis

A Monte Carlo simulation (100000 iterations) was con-
ducted to assess the uncertainty in the estimated wildfire
CO; emissions. Monte Carlo simulation is a probabilistic
method that generates a large number of possible outcomes
based on random sampling from the input parameter distri-
butions, thereby providing a comprehensive assessment of
model uncertainty. The uncertainties in emission estimates
in this study mainly originated from satellite-derived BA
products, AGB, CE, and EF. All parameters, except CE,
were assumed to follow normal distributions, as suggested by
Zhao et al. (2011). CE values were assigned triangular dis-
tributions based on vegetation type, with parameter ranges
derived from empirical data and literature sources (Junpen
et al., 2020; Mieville et al., 2010; Ping et al., 2021; van
Leeuwen et al., 2014; Zhou et al., 2017). For forest and
grassland fires, CE was parameterized using the FVC-based
empirical relationship proposed by Hély et al. (2003), while
fixed CE values were applied to shrub and cropland fires. The
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Annual CO, emissions
from cropland fires
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Figure 12. Temporal trends in annual CO, emissions from cropland burning and forest, shrub, and grassland fires in China (2001-2022),
and key national policy milestones related to fire and air pollution control.

coefficients of variation (CVs) of EF were estimated based
on the mean and variability summarized from multiple pub-
lished sources. Monte Carlo simulations showed that CE and
EF contributed less to total emission variability compared to
BA and AGB.

Among all parameters, BA emerged as the dominant
source of uncertainty. However, the uncertainty in data re-
trieved from satellite products is difficult to quantify (Hoelze-
mann et al., 2004; Wu et al., 2018). The MCD64A1 product
performs reliably in detecting large fires (Giglio et al., 2018),
and its CV was adopted from Giglio et al. (2010). Mean-
while, we also recognize that the MODIS MCD64A 1 product
tends to underestimate small, fragmented, or low-intensity
fires. To evaluate and adjust for this underestimation, we con-
ducted a comprehensive comparison using FireCCI51 (250 m
resolution), GFED (500 m resolution), the novel 30 m reso-
lution Global Annual Burned Area Map (GABAM, 30 m res-
olution) (Long et al., 2019), and FINN datasets for the year
2015 (Table S5). The comparison showed that MODIS sys-
tematically underestimated burned areas. Despite its higher
spatial resolution, GABAM reported smaller cropland fire ar-
eas, likely due to its limited temporal resolution. The FINN

Atmos. Chem. Phys., 25, 10379-10401, 2025

dataset differed significantly from all other products, with
its burned areas generally higher than other data products.
Based on these comparisons, we derived a scaling factor (¢;)
using the FireCCIS51 and GFED datasets and applied them to
MODIS burned area estimates. On average, this adjustment
increased MODIS-based BA estimates by approximately 1.5
times. To further evaluate the representativeness of our cor-
rection method, we compared the standard FINN dataset with
arevised version, FINN_VIIR, which incorporates VIIRS ac-
tive fire detection data (375 m resolution). VIIRS is known
to better capture small and short-duration fires often missed
by MODIS. Our analysis showed that the burned area in
FINN_VIIR was approximately 40 % higher than in the stan-
dard FINN dataset, which closely aligns with the scaling fac-
tor applied in our MODIS-based correction. This consistency
provides further support for the effectiveness of our BA ad-
justment strategy.

AGB is another major contributor to emissions uncer-
tainty. To reflect interannual changes in biomass, we em-
ployed the AGB dataset from Su et al. (2016) for the period
2001-2012 and that from Yan et al. (2023) for 2013-2022
to calculate forest fire CO, emissions. The mean difference
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between the two datasets was approximately 7 % (100 tha™!
vs. 107 tha™1), well within the 450 % uncertainty range re-
ported by Yan et al. (2023), confirming their compatibil-
ity for long-term analysis. For shrub fire CO, emissions,
we employed localized biomass density values from Hu et
al. (2006), enhancing the regional representativeness of AGB
inputs. For grassland fire CO; emissions, we used the index
model based on the NDVI developed by Gao et al. (2012).
We acknowledge that NDVI-based models may underesti-
mate AGB in dense vegetation due to saturation. To address
this, we compared the exponential model by Gao et al. (2012)
with the saturation-corrected model by Hu et al. (2024) for
alpine meadows in China. The mean AGB estimates were
210gm~2 (Gao et al., 2012) and 214 g m~2 (Hu et al., 2024),
with a small difference of 1.9 %, well within the reported
uncertainty bounds of both models (£62.5 gm~2 for Gao et
al., 2012; £85¢ m~2 for Hu et al., 2024). Given the broader
applicability of Gao’s model across diverse grassland types
(e.g., arid steppe, wetlands, and meadow grasslands), we
adopted it for national-scale grassland AGB estimation. For
forest, shrub, and grassland fire CO, emissions, the uncer-
tainty in AGB was derived from values reported in the lit-
erature. For cropland fire CO; emissions, AGB was derived
from national statistical records, with CV set at 20 % (Zhou
et al., 2017).

Table 4 presents the total wildfire CO, emissions and
their associated uncertainty ranges across different vegeta-
tion cover types. On average, the estimated uncertainties
in CO; emissions were (—39 %, +76 %) for forest fires,
(=37 %, +20 %) for shrub fires, (—26 %, +58 %) for grass-
land fires, and (—50 %, +51 %) for cropland fires. The large
uncertainties in forest, shrub, and grassland fire CO; emis-
sions were mainly due to uncertainties in the AGB and BA
estimates. The uncertainty in cropland fire CO; emissions
uncertainty primarily reflected possible under-detection of
BA. Despite these uncertainties, this study incorporated mul-
tiple BA datasets, multi-temporal vegetation cover datasets,
regionally validated AGB estimates, and a comprehensive set
of EF, resulting in a spatially representative characterization
of wildfire CO, emissions and their temporal evolution in
China.

3.6 Comparison with other studies

We compared the wildfire CO, emissions estimates in
this study with several global biomass burning invento-
ries, including the fire inventory from NCAR (FINNZ2.5,
FINN_VIIRS2.5) (Wiedinmyer et al., 2023); GFEDS (van
der Werf et al., 2017), the Global Fire Assimilation Sys-
tem (GFAS version 1.2) (Kaiser et al., 2012), and the Quick
Fire Emissions Dataset (QFED version 2.5) (Koster et al.,
2015), as shown in Fig. 13. While all inventories exhibited
consistent interannual variability, the total emission mag-
nitudes varied substantially. Our estimates were systemati-
cally lower than those from most global datasets and were
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closest to GFASv1.2. FINN2.5 reported the highest values
among all inventories, likely due to its use of larger burned
area inputs. By incorporating VIIRS active fire detections,
FINN_VIIRS2.5 showed approximately 25 % higher emis-
sions than FINN2.5. We applied GFEDS5 burned area data
to adjust the MCD64A1 burned area estimates; however,
our emissions remain lower than those from GFED, which
may be attributed to differences in biomass assumptions.
Biomass input remains a dominant source of uncertainty in
fire emissions estimates. QFED2.5 adopted a top-down ap-
proach based on fire radiative energy (FRE) and typically
yields higher emission estimates (Wiedinmyer et al., 2023;
Yin et al., 2019).

We further compared our estimates with other studies in
China (Table 5). For forest, shrub, and grassland fires, our
CO; estimates were comparable to those reported by Zhou et
al. (2017) and Li et al. (2024a), slightly higher than those of
Jin et al. (2022), and lower than Yin et al. (2019). The lower
values in Jin et al. (2022) may result from exclusive reliance
on MODIS burned area data, whereas the higher values in
Yin et al. (2019) stem from the use of the FRE-based method.
Regarding cropland fires, remote sensing often fails to detect
small-scale agricultural burning. Consequently, many stud-
ies have used statistical data to estimate emissions, based
on assumed field residue burning percentages ranging from
10% to 80 % (Gao et al., 2002; Huang et al., 2012; Li et
al., 2024b; Wang and Zhang, 2008; Yan et al., 2006; Yang
et al., 2008; Zhou et al., 2017). The cropland fire CO, emis-
sions estimated by the method based on burning proportion
are generally higher than those calculated by the satellite re-
mote sensing monitoring method adopted in this study.

4 Conclusion

This study developed a comprehensive inventory of wildfire
CO; emissions across China from 2001 to 2022, capturing
significant spatiotemporal variations among different vegeta-
tion types. Results showed that cropland and forest fires were
the primary contributors to national wildfire emissions. For-
est and shrub fire CO; emissions exhibited a declining trend,
grassland fire CO; emissions remained relatively stable, and
cropland fire CO, emissions showed an increasing trend.
GTWR analysis revealed that shrub fire CO; emissions ex-
hibited the highest predictive performance (R =0.87), with
climatic factors (particularly temperature and humidity) be-
ing the main influencing factors, and limited temporal vari-
ation. In contrast, forest and cropland fire CO; emissions
were significantly influenced by the spatiotemporal hetero-
geneity of both climatic and socioeconomic factors. Grass-
land fire CO, emissions exhibited the lowest model explana-
tory power (R? =0.31), suggesting that their emissions may
largely depend on drivers not included in the current model.

Our findings underscore the critical role of policy inter-
ventions in shaping wildfire emissions in China. The ob-
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Table 4. The uncertainty estimation of wildfire CO, emissions from 2001 to 2022.

X. Gong et al.: Spatiotemporal patterns and drivers of wildfire CO» emissions

Year Forest Shrub Grassland Cropland All types
2001 (—38%,72%) (—35%,18%) (—28%,62%) (—49%,39%) (—39 %, 62 %)
2002 (=35%,68%) (—34%,16%) (—24%,47%) (—49%,34%) (—39 %, 54 %)
2003 (=39%,74 %) (—34%,15%) (—35%,65%) (—51%,47%) (—39 %, 66 %)
2004 (=36 %,69%) (—37%,22%) (—15%,58%) (—50%,40%) (—39 %, 57 %)
2005 (=31%,58%) (—33%,14%) (—18%,57%) (—54%,45%) (—41%,47 %)
2006 (=30%,56 %) (—32%,12%) (—18%,62%) (—56%,47%) (—46%,48 %)
2007 (—29%,54%) (—32%,13%) (—13%,48%) (—53%,34%) (—40%,41 %)
2008  (—50%, 106 %) (—42%,29%) (—39%,67%) (—52%,43%) (—50%,93 %)
2009 (—38%,74%) (—39%,26%) (—20%,56%) (—51%,35%) (—42%,54%)
2010 (=37%,73%) (—45%,34%) (—15%,82%) (—59%,50%) (—48 %, 56 %)
2011 (=36%,68%) (—36%,19%) (—23%,53%) (—51%,42%) (—44%,52%)
2012 (=35%,66%) (—36%,18%) (—27%,57%) (—58%,44%) (—52%,47 %)
2013 (=35%,69%) (—33%,14%) (—19%,44%) (—48%,34%) (—43 %, 42 %)
2014 (—40%,79%) (=36%,19%) (—26%,68%) (—43%,39%) (—41%,50%)
2015 (—40%,76 %) (—39%,25%) (—35%,53%) (—44%,43%) (—42%,53 %)
2016 (—44%,91 %) (—42%,29%) (—24%,54%) (—46%,56%) (—44 %, 70 %)
2017 (—40%,76 %) (—37%,21%) (—=37%,57%) (—45%,59%) (—43 %, 62 %)
2018  (—53%,114%) (—41%,27%) (—30%,59%) (—45%,62%) (—49 %, 90 %)
2019 (—43%,83%) (—34%,16%) (—36%,50%) (—49%,72%) (—45%, 74 %)
2020 (—48%,95%) (—40%,24%) (—39%,62%) (—53%,86%) (—50%, 85 %)
2021 (—45%,89%) (—38%,21%) (—28%,53%) (—57%,98%) (—53%,92%)
2022 (=35%,66%) (—34%,16%) (—24%,56%) (—45%,66%) (—42%, 63 %)
300
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Figure 13. Comparison of wildfire CO; emissions in China from multiple global inventories (2001-2022).

served declines in most regions aligned with the implemen-
tation of national fire control and air pollution reduction pro-
grams. However, northeastern China remained an exception,
with cropland fire CO, emissions continuing to increase in
recent years. This trend highlighted the limitations of blan-
ket burning bans and the necessity of adaptive fire manage-
ment. Although forest fire CO; emissions had been reduced
through strengthened fire prevention measures, northeastern
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China remained vulnerable to extreme fire events triggered
by drought or lightning. Shrub fire CO, emissions, primar-
ily driven by climatic factors, underscore the importance of
strengthening early-warning systems.

Although wildfire emissions are classified as “natural dis-
turbances” under IPCC guidelines for LULUCF and are
often excluded from national emission inventories, the re-
sults demonstrated that these emissions were substantial and
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Table 5. Comparison of wildfire CO, emissions estimates in China from previous studies (Tg).

Reference Year Region Forest Shrubland Grassland Cropland  All types
Wang and Zhang (2008) 2006 China - - - 154.5 -
Huang et al. (2012) 2006 China - - - 68 -
This study 2006 China - - - 26.3 -
Zhou et al. (2017) 2012 China 10.1 0.7 207.3 -
This study 2012 China 8.0 2.4 359 -
Yin et al. (2019) 2003-2017 (mean)  China 40.8 1.2 14.1 353 91.4
This study 2003-2017 (mean)  China 23.1 4.0 0.9 21.7 49.7
Jin et al. (2022) 2001-2019 (mean)  China 15.2 - -
This study 2001-2019 (mean)  China 222 - -
Li et al. (2024a) 2001-2020 (mean)  Heilongjiang 3.9 - 0.1 13.2 -
This study 2001-2020 (mean)  Heilongjiang 4.7 0.3 0.3 5.0 -

closely tied to policy and land management practices. The
pronounced interannual variability and spatial heterogeneity
suggested that future climate extremes, land-use changes, or
fire policy adjustments could significantly alter regional car-
bon dynamics.

Compared with global emission inventories (GFED,
FINN, QFED, and GFAS), the estimates in this study were
generally lower. Although remote sensing data might under-
estimate some cropland fires, this study characterized wild-
fire CO, emissions patterns in China by integrating multi-
source burned area products, localized biomass data, and
high-resolution land cover classifications. Future research
should further refine burned area identification, optimize pa-
rameters such as emission factors and combustion efficiency,
bridge observational gaps, and incorporate transboundary
fire dynamics to ensure more comprehensive and accurate
regional emission accounting.
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