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Abstract. Forest and vegetation fires are major sources of air pollution and have triggered air quality issues in
many regions of Asia. Measures to reduce fires may be a significant yet under-recognized option for efficiently
improving air quality and preventing related premature deaths. Here we isolate fire-specific fine particulate mat-
ter (PM3 5) from monitoring concentrations using an observation-driven approach in the region. Fire-specific
PM, 5 concentrations average 2—15 ug m~> during the fire season, with higher values in Southeast Asia (SEA),
Northeast Asia (NEA), and northern India. The total PM; 5 in the Asia Pacific region exhibits a rapid declining
trend from 2014 to 2021, while fire-specific PM» 5 decreases in early years but begins to reverse in SEA and
NEA. The proportions of fire-specific PM; 5 increase in NEA from 0.2 to 0.3 during the fire season and increase
in SEA from 0.2 in 2018 to 0.4 in 2021. Fire-specific PM> 5 exposure caused 58 000 (95 % confidence interval
(CI) of 32 600-82 600), 90 000 (95 % CI of 63 700-106 000), 157 000 (95 % CI of 110 000-186 000), and 29 300
(95 % CI of 18000-39700) premature deaths annually in SEA, East Asia (EA), Central Asia (CA), and NEA,
respectively, accounting for 40.9 % (95 % CI of 22.8 %-57.7 %), 14.9 % (95 % CI of 10.5 %—17.6 %), 19.4 %
(95 % CI of 13.5 %-24.5 %), and 24.1 % (95 % CI of 14.8 %—32.5 %) of the numbers caused by the total PM> 5.
Analysis of infant mortality rate data and PM; 5 exposure indicates that the total PM; 5 exposure had a greater
impact in richer areas, while fire-specific PMj 5 exposure affected more populations in poorer regions. Based on
the positive correlation between vapor pressure deficit and fire-specific PM5 s, this study suggests that, without
further regulation and policy intervention, the emerging growth trend of fire-specific PMj 5 in the Asia Pacific
region is likely to continue under the influence of future climate change.
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1 Introduction

Fine particulate matter (PMj 5) is a complex mixture of an-
thropogenic and natural sources and has been the world’s
leading environmental health risk factor (McDuffie et al.,
2021). Observations show that emissions from forest and
vegetation fires are major sources of PM and have triggered
air quality issues in many regions (Reddington et al., 2021;
Romanov et al., 2022; Xie et al., 2022). Influenced by cli-
mate change, fires are becoming increasingly frequent and
destructive, and fire-specific PM> 5 has begun to dominate
the average annual PMj 5 trends in some areas (Burke et al.,
2023; Wei et al., 2023). Compared with the direct exposure to
flames and the heat of fires, exposure to fire smoke can affect
much larger populations and pose significant public health
risks (Xu et al., 2023). The most severe public health impact
of fire smoke on air pollution comes from the generation of
toxic PM. Recent studies suggest that fire-specific PM> 5 may
be more influential than equal doses of ambient PM» 5 (Xue
etal., 2021; Aguilera et al., 2023; Wei et al., 2023). Exposure
to fire-specific PM, 5 can exacerbate a range of health prob-
lems, such as premature mortality and cardiovascular, respi-
ratory, and other health issues (Aguilera et al., 2021; Chen et
al., 2021).

Studies have analyzed changes in fire-specific PMj; 5 con-
centrations and their health impacts using chemical transport
models, which are valuable for assessing conditions across
different locations and times (Reddington et al., 2021; Xue
et al., 2021; Xu et al., 2023). Some studies focus on indi-
vidual fire events, defining fire influence by threshold val-
ues of biomass burning tracers (e.g., PM»> s or CO) to iden-
tify fire-influenced measurements (Bytnerowicz et al., 2016;
Landis et al., 2018). Others use backward-trajectory simu-
lations to confirm fire influences but often overlook smaller-
scale fire emissions, which are harder to attribute. Accurately
measuring fire-specific PM» s exposure is vital for assessing
health and economic impacts, yet empirical challenges per-
sist. Recently, some studies have combined PM; 5 observa-
tional data with fire smoke observations to determine fire ef-
fects on air quality, i.e., using the trajectory—fire interception
method (TFIM) (Schneider et al., 2021, 2024). The TFIM ex-
tracts unaffected time and spatial points, employing statisti-
cal or machine learning techniques to estimate pollutant con-
centrations. This data-driven approach does not depend on
the fire emission databases that carry significant uncertainties
related to fuel type and location (Wiedinmyer et al., 2006,
2011, 2023) and enhances reliability and timeliness, conserv-
ing computational resources while isolating fire-specific air
pollution (Aguilera et al., 2021, 2023).

Asia Pacific is one of the most densely populated re-
gions in the world and faces severe air pollution challenges
(CCAC, 2024). Among the health risks associated with air
pollution, Asia Pacific has accounted for over 70 % of global
deaths attributed to air pollution (Lelieveld et al., 2015, 2020;
Giannadaki et al., 2018). Fire actively in the Northeast Asia
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(NEA) region has recently become more extensive and is
expected to continue escalating in the future due to climate
change (Huang et al., 2024; Gui et al., 2024). Fires in equato-
rial Southeast Asia (SEA) are severely impacted by droughts
induced by the El Nifio—Southern Oscillation (Yin, 2020;
Zheng et al., 2023). South Asia is among the most vulnerable
areas globally due to the impacts of climate change, which
have increased the incidence of fire in Central Asia (CA). In
addition to climate and natural factors, the frequencies and
sizes of fires are also largely human-influenced through land
management practices in Asia Pacific. In East Asia (EA) and
SEA, fires are used as agricultural management tools, such as
to remove agricultural residues and weeds, as well as for for-
est clearance for agricultural purposes (Biswas et al., 2015;
Phairuang et al., 2017). Fire activity in Asia Pacific may re-
lease large amounts of smoke and harmful gases, leading to
elevated concentrations of air pollutants and negatively af-
fecting human health and the environment (Reddington et al.,
2021). The fire-specific air pollution in Asia Pacific not only
poses a threat to the health of local residents but can also
influence neighboring areas and even more distant locations
through atmospheric transport (Zhu et al., 2016; Qin et al.,
2024; Du et al., 2024).

However, large disparities in geographic patterns exist
in fire-specific air pollution and population exposure stud-
ies, with related studies most centralized in high-income
economies like North America and Europe (Aguilera et al.,
2021; Tornevi et al., 2021; Korsiak et al., 2022; Wei et al.,
2023). In contrast, the world’s most widely burned regions,
including Asia Pacific, remain underrepresented in the lit-
erature due to resource inequality and inadequate funding
(Petersen, 2021; Lin et al., 2024). On the one hand, a ma-
jor challenge in conducting studies on fire-related PM» 5 pol-
lution and population exposure is how to isolate the fire-
specific PMj 5 from observed background levels. More than
70 % of studies on fire-related datasets are concentrated in
North America and Europe, using various approaches such as
chemical transport models, satellite-based fire smoke plume
analysis, and statistical approaches to quantify fire-specific
PM, s (Aguilera et al., 2021; Schneider et al., 2021; Kor-
siak et al., 2022; Wei et al., 2023; Lin et al., 2024). How-
ever, there is still a lack of fire-specific PM3 5 in many other
regions, including Asia Pacific, which accounts for 7.4 % of
the global burned area and 27 % of the global cropland fires
(Xu et al., 2023). On the other hand, associated with so-
cioeconomic factors, increasing evidence highlights the un-
equal distribution of exposure to and impacts of air pollution,
attributed to the disparities in the implementation of mea-
sures, effectiveness of regulations, adoption of clean energy
technologies, and differences in infrastructure and health-
care conditions (Tessum et al., 2019; Jbaily et al., 2022; Ko-
dros et al., 2022; Southerland et al., 2022; Rentschler and
Leonova, 2023). However, few studies have focused on how
fire-specific PM; 5 exposure manifests along lines of inequal-
ity, thereby exacerbating health disparities. Notably, there is
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a lack of research focusing on contributions of fire activities
to PMj 5 in Asia Pacific as well as the health and socioeco-
nomic impacts of fire-specific PM3 s.

This study utilized a TFIM and spatiotemporal interpola-
tions through a machine learning algorithm to isolate fire-
specific PM; 5 from monitoring observations in Asia Pacific.
With the fire-specific PM; s, variations in the contributions
of fire activities to PMj 5 in Asia Pacific are analyzed. The
health impacts caused by fire-specific PMj 5 and the relation-
ship between poverty levels and fire-specific PM» 5 exposure
in Asia Pacific were also examined. Based on the climate fac-
tors related to fire activities, this study aims to demonstrate
whether the changing trends of fire-specific PM» s will con-
tinue due to climate change.

2 Data and methods

2.1 Data
2.1.1 Air quality data

The continuous air quality observation data were obtained
from the OpenAQ website (http://openaq.org/, last access:
15 January 2025), while data for the China region primar-
ily came from the Chinese National Environmental Moni-
toring Center (http://www.cnemc.cn/en/, last access: 15 Jan-
uary 2025). The total PM; 5 between 2014 and 2020 was
measured using observation data from 1810 monitoring sta-
tions (Fig. 1) located throughout Asia Pacific (5-55°N,
65—-133°E). Additionally, the CO measurements from these
monitoring stations were utilized to validate the definition of
fire influence using TFIM.

2.1.2 Fire point data

The locations of fires were obtained from the Fire Informa-
tion for Resource Management System (FIRMS). Archived
fire pixels from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on the Aqua and Terra satellites for
Asia Pacific from 2010 to 2021 were downloaded. The stan-
dard fire products with a resolution of 1 km x 1 km for each
fire pixel were utilized. More information about the MODIS
measurements can be found in Giglio et al. (2003) and Jus-
tice et al. (2011).

2.1.3 Additional variables

To estimate fire-specific PM» s concentrations, the study
firstly used a spatiotemporal interpolation approach to calcu-
late counterfactual PM5 5 in the absence of fire smoke. The
spatiotemporal interpolation approach was realized based on
machine learning methods with multiple potential explana-
tory variables, including aerosol optical depth (AOD) data,
meteorological data, land use data, and other auxiliary infor-
mation.
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For AOD data, the reliability of the MODIS products on
board the US Terra and Aqua satellites has been validated ex-
tensively (Lyapustin et al., 2018; Mhawish et al., 2019; Choi
et al., 2019; Huang et al., 2020; Jin et al., 2023). The high-
resolution AOD product, with a resolution of 1km, is de-
rived using the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm, which enhances the accu-
racy and spatial resolution of the AOD product (Lyapustin
et al., 2018). The MAIAC AOD data were recently widely
applied to retrieve ground-level PM; 5 concentrations (He et
al., 2020; Li et al., 2020; Wei et al., 2023).

Satellite remote sensing offers uniform coverage, but satel-
lite data are only feasible under clear-sky conditions. The
MAIAC AOD contains large data gaps due to the ubiquitous
presence of clouds. To fill spatiotemporal gaps of the MA-
IAC AOD, this study also supplemented MERRA-2 AOD
products. MERRA-2 is the first global reanalysis dataset
of the satellite era, provided by NASA’s Modeling and As-
similation Data and Information Services Center. It assim-
ilates ground-based aerosol observations, with a horizontal
resolution of 0.625° x 0.5° and a temporal resolution of 1h
(Gelaro et al., 2017). Studies have used MERRA-2 aerosol
products to conduct in-depth studies on atmospheric envi-
ronmental issues in Asia (Jia et al., 2019; Feng et al., 2020).
Additionally, MERRA-2 provides 50 aerosol products, in-
cluding AOD, surface black carbon mass concentration, sur-
face organic carbon mass concentration, and surface dust
mass concentration. This study utilizes MERRA-2 reanaly-
sis aerosol products as input data to construct the AOD PM5 5
model.

Meteorological variables affect air pollution, and therefore
meteorological data provided by ERAS data serve as input
factors for estimating the PM3 5 in the absence of fire smoke.
ERAS data come from ECMWF and assimilate observational
data as comprehensively as possible (including ground ob-
servations, soundings, aircraft data, and satellite observa-
tions). They are widely used in weather and climate-related
research, with a horizontal resolution of 0.25° x 0.25°, and
are divided into 37 vertical layers, with resolutions of 25 hPa
from 750 to 1000 hPa and 50 hPa from 750 to 250 hPa, to-
gether with a temporal resolution of 1h. The data used in
the study included surface air pressure, 10m U and V wind
fields, 2 m temperature and dew point temperature, and spe-
cific humidity and temperature at 500 and 850 hPa.

Land use variables are proxies for emissions and back-
ground PM> 5. In this study, the land use coverage types col-
lected from the MCD12Q1 Version 6 products and the 16d
composite Normalized Difference Vegetation Index (NDVI)
derived from MODIS were utilized as input factors for PM3 5
estimation. In addition, the population counts obtained from
LandScan were included to represent the impact of human
activities on air pollution. The gross domestic product (GDP)
data are obtained from Wang and Sun (2023), measured in
PPP 2005 international dollars.
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Figure 1. (a) Distribution of air quality monitoring stations in Asia Pacific, with the shading color in the background indicating the green
vegetation fraction. (b) The specific areas of the subregions include Southeast Asia (SEA), East Asia (EA), Northeast Asia (NEA), and

Central Asia (CA).

Table 1. The original input features used in the construction of the machine learning method estimating fire-specific PM3 5.

Variation Content Spatial Temporal ~ Source
resolution resolution

PMj; 5 PM; 5 absent of fires In situ Hourly OpenAQ and CNEMC
AOD MAIAC AOD 1km x 1km Daily MCDI19A2
Aerosol 50 aerosol products 0.62° x 0.5° Hourly MERRA-2
Meteorology  Surface air pressure 0.25° x 0.25° Hourly ERA5

10m U and V wind fields

2 m temperature

2 m dew point temperature

Specific humidity at 500 and 850 hPa

Temperature at 500 and 850 hPa
Land use Land coverage types 500m x 500m  Yearly MCD12Q1
NDVI Normalized Difference Vegetation Index 1km x 1km Monthly MODI13A3
POP Population counts 1km x 1km Yearly LandScan
GDP Gross domestic product 1km x 1 km Yearly Wang and Sun (2023)

Table 1 summarizes the original input features used in
the construction of machine learning methods estimating
fire-specific PM> 5. Although the resolutions of the different
datasets in the machine learning method are quite distinct,
the target data are spatially and temporally dispersed points.
Therefore, the construction of the machine learning method
is essentially point to point. The input and output datasets are
matched based on their relative positions, meaning that the
input data are temporally and spatially closest to the output
data.

Atmos. Chem. Phys., 25, 10141-10158, 2025

2.1.4 Health data

To estimate the health impacts at a specific ambient PM3 5
exposure, population data from LandScan and mortality
rate data from the online Global Burden of Disease (GBD)
database (http://ghdx.healthdata.org/gbd-results-tool, last
access: 8 February 2025) covering Asia Pacific from 2014
to 2020 were collected and used. The GBD database pro-
vides baseline mortality data for male and female popula-
tions across S-year age groups. This study considers health
endpoints for four diseases: stroke (STROKE), chronic ob-
structive pulmonary disease (COPD), ischemic heart disease
(IHD), and lung cancer (LC).

https://doi.org/10.5194/acp-25-10141-2025
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2.1.5 Infant mortality rates

The infant mortality rate (IMR) dataset from the NASA So-
cioeconomic Data and Applications Center was used as a
proxy for population poverty levels in this study. The IMR
is defined as the number of children who die before their
first birthday for every 1000 live births in a given year (Bar-
bier and Hochard, 2019; Reddington et al., 2021). The IMR
dataset has been widely used as a poverty indicator, with spe-
cific thresholds to assess and categorize poverty levels (Bar-
low et al., 2016; Barbier and Hochard, 2019). This study de-
fines populations with IMR < 40 as being relatively not poor,
41 <IMZ <60 as being moderately poor, and IMR > 61 as
being relatively poor, which is similar to the definition in
Barbier and Hochard (2019).

2.1.6  The Coupled Model Intercomparison Project
Phase 6 data

Referring to previous studies, a positive relationship may ex-
ist between the vapor pressure deficit (VPD) and the fire-
specific PM; 5 (Abatzoglou and Williams, 2016; Burke et al.,
2023). To validate this relationship and quantify the future
trend of the fire-specific PM3 s in Asia Pacific, VPD was cal-
culated using the projected temperature and relative humidity
data from global climate model (GCM) ensembles in vari-
ous emission scenarios. The study examined VPD changes
in three commonly used climate scenarios (SSP1-2.6, SSP2-
4.5, and SSP3-7.0), based on monthly data provided by 34
GCMs. To minimize uncertainty and to account for internal
variability, the average VPD values for different regions in
Asia Pacific were computed for each GCM and emission sce-
nario.

2.2 Methods
2.2.1 Fire influence definition

To understand how fire impacts air quality, whether or not
an ambient PM; 5 measurement has been influenced by fire
should be determined. Following the TFIM proposed as by
Schneider et al. (2021), this study calculated the backward
trajectories for monitoring stations over a 72h period. The
FLEXPART model (version 10.4), a Lagrangian particle dis-
persion model developed by the Norwegian Institute for Air
Research, was used for back-trajectory calculation. FLEX-
PART v10.4 was driven using ERAS5 data at a temporal in-
terval of 1h. These trajectories were then spatially and tem-
porally matched with fire hotspot data reported by FIRMS. If
the distance between the two was within 0.5°, an interception
was considered to occur. If a trajectory was more than the in-
terception threshold, the PM» 5 measurement at that time was
deemed to be influenced by fire. A schematic of the TFIM is
shown in Fig. 2.
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Figure 2. The schematic of the trajectory—fire interception method
(TFIM), where the blue lines represent the backward trajectories
and the red points indicate the fire hotspots.

2.2.2 Fire-specific PMy 5 estimation

To estimate the fire-specific PM, s covering Asia Pacific
from 2014 to 2020, the counterfactual PM; 5 unaffected by
fire was interpolated through the machine learning method
and then compared with the ambient PM» 5 measurement to
get the fire-specific PMj 5. The specific steps in Fig. 3 were
followed. Since there are no direct fire smoke observation
data over Asia Pacific, the TFIM as described in Sect. 2.2.1
was used as a substitute. First, using the TFIM, the fire in-
fluence periods for a given monitoring station time were de-
termined. If a station experienced over 6 h of fire influence
in a day, it was considered to be exposed to fire smoke on
that day. Based on the exposure definition, the station days
exposed to fire were temporarily removed. Next, the random
forest method was employed to interpolate non-fire-affected
PM, 5 for all station days categorized as fire-affected. Ran-
dom forests are a combination of tree predictors, such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in
the forest (Breiman, 2001). Since it is relatively robust to
noise, random forests are not prone to overfitting, so that this
is carried over into various fields of data mining (Lu et al.,
2021). In this study, we utilize random forest to estimate
PM; 5, which lacks fire with multiple input features. The
algorithm provides insights into feature importance, allow-
ing us to understand which variables contribute most signifi-
cantly to predictions. In our study, the feature importance of
the 60 original input datasets (Table 1) was calculated based
on random forest, and then PM, 5 absent of fire was esti-
mated with the algorithm. This step provided a background
PM; 5 estimation unrelated to fire contributions. The PMj 5
from non-fire-affected station days was used as the training,
testing, and validation datasets to build the model, and inter-
polation estimation was performed for the background PM3 5
for fire-affected station days. Finally, by subtracting the non-
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SMOKE ) )
STEP 1: Identify Exposed Station Days

Based on TFIM method,|f intersected fire points > 50 = Exposed station hour.

If exposed station hour = 6 in a day = exposed station day (exposure =1).
if not = unexposed station day (exposure =0).
mf STEP 2: Select Non-Smoke PM, 5
Non-smoke PM, 5 = Station days where exposure =0
Smoke +non-smoke PM, 5 = Station days when exposure =1
NONP';MOKE —— STEP 3: Impute Non-Smoke PM, 5 for Exposed Station Days
2.5

Imputation of missing values by Random Forests used to non-smoke PM, 5
l on station days previously identified as exposed(Step 2).

FIRE-S;:E?IFIC STEP 3: Estimate Fire-specific PM, 5 for Exposed Station days

Fire-specific PM, 5 = Total PM, 5 - non-smoke PM, 5

Figure 3. Flowchart of the steps followed to estimate the fire-
specific PMj 5.

fire-affected part from the ambient PM> 5 measurement, the
fire-specific PM3 5 was estimated.

2.2.3 PMpa 5 health impact assessment

The disease burden attributable to PM; 5 exposure was as-
sessed using the health impact function (HIF). The expres-
sion for this function is as follows:

AMort = B; x POP x (1 — 1/RR;), 1

where AMort denotes the premature death due to PM» 5 ex-
posure for health endpoint 7, B; represents the mortality rate
for endpoint i, POP is the exposed population, and RR; is
the relative risk associated with PMj; 5 exposure for health
endpoint i.

With the advancement of epidemiological research, an in-
tegrated exposure—response (IER) equation integrates avail-
able RR (relative risk) information from multiple exposure—
response functions, including air pollution, active smoking,
passive secondhand smoke exposure, and indoor cooking
fuel combustion scenarios. The IER equation combines find-
ings from studies on both low- and high-exposure concen-
trations to consider four major health endpoints (STROKE,
COPD, IHD, and LC). The expression for the IER has the
following form:

RR = 1+<x(1 —exp(—y(C—Co)’S)), )

where C represents the PM> 5 concentration; Cy is the con-
centration threshold below which health risks are negligible;
and the parameters «, y, and 6 represent the fitted parame-
ters for health endpoint i to describe the relative risk curve.
The values for the parameters can be found in studies by Bur-
nett et al. (2014) and Song et al. (2017). The values of these
key parameters and their 95 % ClIs used in this study are also
provided in Table S1 in the Supplement.
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3 Results

3.1 Estimating fire-specific PM2 5

Fire hotspot numbers derived from the FIRMS products in
Asia Pacific peaked during February to April (with daily
counts exceeding 1000). Therefore, we defined this period as
the fire season in this study (Fig. 4). In terms of spatial distri-
bution, the fire hotspot number in SEA is more than double
that of the other three regions during the fire season. Fires in
SEA mainly occur during the pre-monsoon period (roughly
February to April) due to widespread forest fires and agricul-
tural residue burning in preparation for planting before the
arrival of the Asian summer monsoon (Huang et al., 2017,
Phairuang et al., 2017). The increase in fire activity coincides
with the establishment of stable temperature inversions over
large areas of Thailand, Vietnam, Laos, and southern China,
while northern Thailand experiences hot, dry, and calm con-
ditions that facilitate the formation of haze (Reddington et
al., 2021). Fire activities significantly decrease after the onset
of summer monsoon rainfall (in late April) and remain low
until the beginning of the dry season (in November). The fire
occurrences in this region exhibit a certain degree of inter-
annual variability (Fig. 4c and d) that is related to changes
in atmospheric circulation patterns, such as the India—Burma
trough (Huang et al., 2017). In addition to climatic influ-
ences, local fire management policies also play a role; for
example, the implementation of stricter agricultural burning
policies in the SEA mainland between 2016 and 2017 was
associated with a significant reduction in fire point counts.
However, after 2018, the number of fire points once again
showed an upward trend.

The fire hotspot number in CA is slightly higher than that
in EA during the fire season (Fig. 4b and d). The dry and hot
conditions before the monsoon in CA create favorable con-
ditions for forest fires in the dense vegetation of the Indian
subcontinent. Additionally, the dry winter climate in CA can
also contribute to fire occurrences (Barik and Baidya, 2023).
As a result, the peak fire point counts in CA primarily occur
in March—April and October—November. The climate condi-
tions in EA are complex. During spring and fall, northern
China and southwestern China experience clear weather, low
precipitation, and dry vegetation, making them prone to for-
est fires, especially under windy conditions. In the western
Xinjiang region, the peak period for forest fires is concen-
trated in the summer, particularly for fires caused by light-
ning, with a significant number occurring in July—August.
The NEA region is located relatively further north, with the
start of the growing season lagging behind the other three
regions, while the end of the growing season occurs earlier
than in the other regions. As a result, the peak fire point pe-
riod in NEA is delayed in spring (March—-May) compared to
the other three regions but is slightly advanced in fall. The
average daily number of fire points in CA, EA, and NEA
shows a slow increasing trend from 2014 to 2021.
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Figure 4. The variations from 2014 to 2021 of (a) day-to-day fire hotspots in Asia Pacific, (b) day-to-day fire hotspots in the four subregions,
(c) annual averaged fire hotspots, and (d) averaged fire hotspots during the fire season in the different regions.

To isolate the fire-specific PMj 5 based on TFIM, we
should firstly justify the usability of TFIM in Asia Pacific
and then set a suitable threshold of fire hotspot interception
for the region. In this study, we select PMj 5 as the fire emis-
sion tracer, as it is well known that PM; s can be emitted
by fires. CO can also serve as a tracer for fire influence.
CO can be produced from incomplete combustion and has
a long atmospheric lifetime. However, the range of CO is not
as large as it is for PM» 5. The variations in PMj 5 during
high-influence fires can be over 100 ugm~3, which is more
than double that of the clean period, while CO varies much
less. In addition, the much more widespread PM» 5 measure-
ments compared to CO in Asia Pacific are another reason
why PM 5 is chosen as the tracer for fire emissions. We then
compared the number of interception fire hotspots with the
measured PM> 5 in Fig. 5. In Fig. Sa, the correlation between
the interception number and PM; 5 is not strong, indicating
that identifying fire influence based on trajectory intercep-
tion of a single fire hotspot is not effective. When we set the
interception threshold to 50, the correlation improves signif-
icantly. This improvement may be due to larger and more
fires generating more PM; 5. Figure 5c illustrates how the
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correlations vary as the interception threshold changes. The
correlation reaches its maximum at a threshold of 50. There-
fore we set the interception threshold to 50 when measuring
the fire influence on PM3 5 in Asia Pacific. Compared to the
threshold of 20 in North America proposed by Schneider et
al. (2021), the interception threshold in Asia Pacific is higher,
because the study area is much larger and the scale of the fires
is relatively smaller. This method eliminates fire hotspots that
contribute minimally to PMj 5 variations while including as
many measurements as possible.

Using TFIM, we isolate the station days influenced by
fires. To estimate the fire-specific PM» s, we employed a ran-
dom forest model for interpolation to estimate the counter-
factual PM, 5 that lacks fire influence and then compare the
PM; 5 observation with the counterfactual PM; 5 to get the
fire-specific PM, s.

With multisource data of station days that lack fires, we
generate the datasets for machine learning model construc-
tion. There are in total 60 initial input variations, includ-
ing 50 aerosol variables from MERRA-2, MAIAC AOD,
meteorological factors, land use, and the NDVI and GDP
data. We ranked the importance of these variables using ran-
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Figure 5. (a, b) Scatter distributions of PMj 5 concentrations
against the number of fire hotspots when the interception threshold
is set to 1 and 50, respectively. (¢) Correlation coefficient between
PMj; 5 and the number of fire hotspots as a function of the intercep-
tion threshold.

dom forest, with the 15 most influential variables in Fig. 6a.
The most influential variables for PM; 5 that lack fire are
the surface black carbon mass (BCSMASS from MERRA-
2) followed by the surface mass concentrations of various
PM, 5 components like organic carbon and dust. Meteorolog-
ical factors contribute to explaining variations in background
PM; 5. Temperature, pressure, and humidity near the ground
can affect the formation of particles by influencing chem-
ical actions between precursors, while large-scale weather
circulations also impact pollutant transport and accumulation
through high-level meteorological factors. In addition, other
variations such as GDP and NDVI play a role in calculating
the background PM> 5. GDP is expected to reflect the eco-
nomic conditions and background anthropogenic emissions
in the various regions, while NDVI represents the vegetation
cover status, which not only reflects the vegetation emissions
but also indicates the interception and deposition of PMj 5
by vegetation. It is indeed important to acknowledge the sig-
nificant role of anthropogenic emissions in ambient PMj 5
concentrations across Asian countries. To comprehensively
account for anthropogenic aerosols in this study, we consid-
ered not only indirect reflection features such as GDP and
population during the construction of the machine learning
model but also various aerosol data that directly reflect an-
thropogenic sources. This includes black carbon, organic car-
bon, and SO, surface mass concentrations. These data are de-
rived from the MERRA-2 reanalysis, which assimilates mul-
tiple aerosol remote sensing, emission, and meteorological
datasets using the Goddard Earth Observing System Model.
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With these advances, MERRA-2 aerosol products can pro-
vide reliable anthropogenic and natural aerosols (like dust).
We then established an estimation model using random forest
with the 15 most influential input data to calculate the PM3 5
that lacks fire. The background PM; 5 estimates derived from
the model were compared with observations, with an esti-
mated R? of 0.8958 and a RMSE of 0.3370 ug m—3 (Fig. 6b).
A low underestimation of the background PM» 5 shows that
the estimation has been highly correlated with observations
compared with similar studies (Aguilera et al., 2021, 2023;
Wei et al., 2023).

3.2 The spatial and temporal distributions of PM» 5 and
the fire-specific PM2 5

The fire-specific PM» 5 was then estimated by subtracting the
background PM, s that lacks fire from the monitoring PM5 5.
Figure 7a and b show spatial distributions of the 8-year mean
total PMj 5 and fire-specific PMj 5 in Asia Pacific. PM3 5 in
Asia Pacific has mostly exceeded the health concentration
standards for PM» 5 set by the World Health Organization
(WHO) (annual average not exceeding 10 ug m~3). The high-
est mean concentrations for the total PM; 5 are observed in
northern India and Pakistan, followed by northeastern China,
the Indochina Peninsula, Mongolia, and central India. To im-
prove air quality, various measurements and particulate mat-
ter environmental standards have been implemented in coun-
tries of Asia Pacific, such as China’s Air Pollution Preven-
tion and Control Action Plan since 2013, South Korea’s en-
acting of the special act on the reduction and management
of fine dust in 2018, India’s launch of the National Clean
Air Programme in 2019, and Thailand’s amendment of the
Enhancement and Conservation of National Environmental
Quality Act in 2018. From 2014 to 2021, observed PM; 5
concentrations saw a substantial decrease in various regions
of Asia Pacific (Fig. 9). The highest PM; 5 was monitored
in EA during the early period, but from 2018 PM, 5 in CA
began to exceed that of EA. In contrast, NEA and SEA have
experienced lower annual average PM» 5 concentrations.
The spatial distribution of fire-specific PM» 5 is quite dif-
ferent with the total PM> 5, with the highest concentrations
appearing in SEA and Mongolia. As shown in Fig. 4, the fire
hotspot number in SEA is more than twice that in the other
regions, which may partly explain the higher fire-specific
PM; 5 in this region. Mongolia has a large area of semi-
arid forests with grass understories. Forests located in mid-
to high-latitude areas and dominated by a few coniferous tree
species are prone to a series of fire behaviors during droughts.
Due to limited funding, firefighting efforts for forest fires
in Mongolia are somewhat limited, leading to large-scale,
long-duration forest and grassland fires during the dry sea-
son. Climate change, especially droughts, has intensified fire
activities in southern Siberia (including Mongolia), leading
to a notable increase in fire numbers and shorter fire intervals
(Hessl et al., 2016; Huang et al., 2024; Gui et al., 2024). As
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a result, higher fire-specific PM» s can be found in the Asia
Pacific region. In addition, northern India is susceptible to
fires before the monsoon and during the dry winter season,
and northeastern China and southwestern China are prone to
forest fires in spring and fall.

The annual average concentration of fire-specific PMj 5
ranges from 2 to 8ugm™>, surging to between 2 and
15ugm~3 during the fire season. Areas where the concen-
tration of fire-specific PM, 5 surpasses 10ugm™ encom-
pass northern India, northeastern and southwestern China,
and several countries across SEA during the fire seasons, as
depicted in Figs. 7 and 8. The values for each region in Fig. 8
are derived from the average values for sites within the re-
gion. In areas with few stations (like Mongolia and the Ti-
betan Plateau in Fig. 1), while the calculation results may
not accurately reflect the fine spatial distribution within the
region, using these averages to represent the regional mean is
still relatively reasonable. In contrast to the distribution of the
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total PM> s, fire-specific PM> 5 is notably higher in NEA and
SEA in terms of both annual average and fire season. In addi-
tion, fire-specific PM» 5 saw increasing trends in NEA since
2016 and in SEA since 2018, with this trend being more pro-
nounced during the fire season. In contrast, the fire-specific
PM, s in EA and CA shows a slow decline. The total PM; 5
has seen a significant decline thanks to efforts in controlling
anthropogenic emissions from industry and transportation.
However, fire-specific PM» 5 decreases more slowly or even
rebounds, leading to a gradual increase in the proportion of
fire-specific PMj 5 within the total concentrations. In NEA,
the proportion during the fire season grew from 0.2 to 0.3,
while in SEA it rose from 0.2 in 2018 to 0.4 in 2021. Pro-
portions of the fire-specific PMj; 5 in Malaysia, Cambodia,
and Brunei even exceeded 0.5 during the fire season (Fig. 8).
The proportions in EA and CA also display gradual upward
trends.

Atmos. Chem. Phys., 25, 10141-10158, 2025
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sites within the region.

3.3 The fire-specific PM» 5 exposure and health impact

To illustrate the population exposure, we then calculated
the population-weighted PM> 5 and fire-specific PM3 5 from
2014 to 2021 (Fig. S1). Population-weighted PM» 5 in dif-
ferent regions saw a significant decline during the 8 years,
with reductions of 30.5 % in SEA, 41.1 % in EA, 31.4 % in
NEA, and 7.9 % in CA, amounting to an overall decrease of
39.9 % for the entire region. PM» 5 concentrations are high
in densely populated areas of CA, such as northern India,
Bangladesh, and Pakistan (Fig. S2), resulting in a higher
population-weighted PM; 5. This indicates that the popula-
tion in CA is more likely to be exposed to PMj 5. In EA,
population-weighted PMj 5 concentrations are higher in the
east and lower in the west, which is consistent with the dis-
tribution of population density in the region. The distribu-
tions of the population-weighted PM» 5 in SEA and NEA are
similar to their averaged PM» 5. During the fire seasons, dis-
tributions of population exposure to PM, 5 differ from those
of the total PM> 5. Population-weighted fire-specific PM; 5
in SEA is higher than the mean PMj s, indicating that pop-

Atmos. Chem. Phys., 25, 10141-10158, 2025

ulations in SEA are more vulnerable to fire-specific PMj 5
exposure. However, the population-weighted PM; 5 in CA is
slightly lower than the mean PM5 s.

We then estimated the prevented premature deaths due
to changes in exposure to PMj; 5 by eliminating fire emis-
sions. Eliminating fire-specific PMj 5 can prevent approxi-
mately 58 000 (95 % confidence interval — CI — of 32 600-
82 600) premature deaths annually in SEA, 90 000 (95 % CI
of 63700-106000) in EA, 157000 (95 % CI of 110000-
186 000) in CA, and 29300 (95 % CI of 18 000-39 700) in
NEA. These account for about 40.9 % (95 % CI of 22.8 %-—
57.7 %), 14.9 % (95 % CI of 10.5 %—17.6 %), 19.4 % (95 %
CI of 13.5%-24.5%), and 24.1% (95% CI of 14.8 %—
32.5%) of the total annual premature deaths attributed to
PM; 5. During the fire season, these proportions can rise
to 57.7% (95 % CI of 27.3 %—-81.6 %), 19.5 % (95 % CI of
12.3 %-24.6 %), 21.6 % (95 % CI of 14.8 %-27.4 %), and
31.6 % (95 % CI of 17.2 %—44.4 %). Distributions of prema-
ture deaths due to PM» 5 in CA and NEA (Fig. 10) are closely
aligned with the population distribution (Fig. S2), because
in these regions areas with higher population densities tend

https://doi.org/10.5194/acp-25-10141-2025
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to the total PM» 5.

to be exposed to higher PM» 5. The highest number of pre-
mature deaths attributed to fire-specific PM» s occurred in
Myanmar, Vietnam, northern India, and Pakistan, with no-
table increases during the fire season in Thailand and south-
western China. Distributions of premature deaths attributed
to PM; 5 relative to regional population proportions closely
resemble the PMj 5 distribution, with areas exceeding 50 per
100 000 mainly located in regions where the annual mean
PM; 5 exceeds 40 ugm~>. Similarly, the distribution of pre-
mature deaths caused by fire-specific PM; 5 aligns closely
with the PM» 5 distribution (Fig. 10d), with areas exceeding
20 per 100 000 predominantly found in the fire-prone South-
east Asian Peninsula, Mongolia, and northeastern China. The
number of annual premature deaths due to fire-specific PM> 5
in the whole study region is around 1.7 million, accounting
for 47.2 per 100000 of the total population.

We further examined the poverty levels of Asia Pacific’s
population exposed to PMj 5. Figure 11 illustrates the to-
tal PMj 5 and fire-specific PMj 5 plotted against poverty
proxy (IMR) data in Asia Pacific. For the total PMj 5, re-
gions with IMR < 60 show a gradual decrease in PM; 5 ex-
posure levels as IMR values increase. In low-IMR areas
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(IMR < 10), the average PM» 5 (44.2 ug m’3) is significantly
higher than that in regions with relatively higher IMR values
(41 <IMR <60), where the PM, 5 average is 28.3 ug m3.
In high-IMR areas (IMR > 61), the PM3 5 exposure level in-
creases again to 37.0ugm™3, while for fire-specific PM, s
the trend is reversed, with higher-IMR regions (IMR > 40)
exposed to higher PMj 5 and lower-IMR regions (IMR < 40)
experiencing relatively lower PM; 5. During the fire season,
populations in regions with IMR > 41 and < 60 are exposed
to the highest fire-specific PM; 5.

We found that populations in “not poor” areas (IMR < 40)
are exposed to a higher mean PM» 5 from all sources but a
lower fire-specific PM» 5. This indicates that PMj3 5 pollu-
tion during the study period is primarily driven by economic
and urban development. Conversely, “moderately poor” pop-
ulations (41 <IMR < 60) experience lower total PM> 5 expo-
sure but higher fire-specific PM; 5 exposure. In “very poor”
areas (IMR > 61), both the total PMj 5 and the fire-specific
PMj; 5 are high, making populations in these areas more sus-
ceptible to the health impact of PM 5.

Atmos. Chem. Phys., 25, 10141-10158, 2025
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3.4 Future trends of fire-specific PM 5 under climate
change

Previous analysis indicates that fire-specific PM3 s in differ-
ent regions has rebounded to some extent, with a more signif-
icant increase in SEA and NEA. Whether this trend will con-
tinue or be altered by occasional climate conditions is uncer-
tain. Many studies have attempted to understand the climate
drivers of increased fire activities and how these factors may
change in the future (Abatzoglou and Williams, 2016; Xie et
al., 2022; Barik and Baidya, 2023; Burke et al., 2023; Gui et
al., 2024). These studies provide strong evidence that interan-
nual variations in climate factors are drivers of fire activities
and changes in fire-specific PM; 5. Based on future changes
in these climate drivers predicted by GCMs, assuming no in-
tervention, fire activities may increase with global warming.
With numerical model simulation, studies reveal that fire-
specific PMj 5 will see a rise in the future. To corroborate the
future changes in the fire-specific PM» 5 of Asia Pacific, we
calculated the mean VPD during the fire season for different
regions and related these values to the fire-specific PMy s. It
is obvious that VPD is positively related to the log of the
fire-specific PM; 5 (Fig. 12a). Climate drivers can explain
35 % of fire-specific PMj 5 variations in Asia Pacific, with
variations in CA being most sensitive to VPD (65 %). The
multimodel ensemble mean of 34 GCM projections indicates
a future increasing trend in VPD with a pronounced rise in
SEA, followed by EA and CA, while the increase is weaker
in NEA. These results suggest that the emerging growth trend
of fire-specific PM3 5 in Asia Pacific is likely to continue un-
der the influence of future climate change. For more dynamic
and spatially detailed characteristics, more data will have to
be integrated into modeling calculations to better understand
the evolution of fire occurrences and pollutant release under
future climate impacts.

4 Conclusion and discussion

In this study, we explored the contribution of forest and veg-
etation fires to air quality and public health across Asia Pa-
cific. We isolate fire-specific PMj 5 from the monitoring data
for Asia Pacific using TFIM and spatiotemporal interpola-
tion in this study. One advantage of this dataset is that it is
driven by monitoring concentrations rather than relying on
emission databases, which may ignore contributions of pol-
lutants from smaller-scale fire emissions and carry consider-
able uncertainty, especially with the evident underestimation
of agricultural fire emissions. Moreover, this method offers
reliability and timeliness, effectively saving computational
resources and storage space for isolating fire-related air pol-
lution.

Our analysis reveals geographical disparities in popula-
tion exposure to PM> 5 and fire-related air pollution in Asia
Pacific. Thanks to the establishment of PM 5 air quality
standards and pollution control measurement by countries,
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PM; 5 population exposure saw an obvious declining trend
from 2014 to 2021 in Asia Pacific, with population-weighted
PM5 5 in 2021 reduced by 39.9 % compared to 2014. High
PM; 5 concentrations are observed in EA and CA, concen-
trated in densely populated areas, leading to substantially
higher population-weighted concentrations than the mean
PMj; 5. In contrast, fire-specific PM» 5 decreased in the early
years but began to reverse recently in Asia Pacific. SEA and
NEA experienced the most obvious increase in fire-specific
PM; s in recent years, while EA and CA saw a slight in-
crease. As a result, a gradual increase in the proportion of
fire-specific PM» 5 within the total concentrations can be ob-
served.

We found that fire-related PM; 5 could pose a significant
public health threat in Asia Pacific, contributing to approx-
imately 334300 (95% CI of 224000-414 000) premature
deaths each year. The annual disease burden due to PMj 5
exposure can be reduced by 40.9% (95 % CI of 22.8 %-—
57.7 %), 14.9 % (95 % CI of 10.5 %-17.6 %), 19.4 % (95 %
CI of 13.5%-24.5%), and 24.1% (95% CI of 14.8 %—
32.5%) in SEA, EA, CA, and NEA, respectively, prevent-
ing 58000 (95% CI of 32600-82600), 90000 (95 % CI
of 63 700-106 000), 157 000 (95 % CI of 110000-186 000),
and 29300 (95 % CI of 18000-39 700) premature deaths.
It is important to note that our calculations do not account
for the potentially higher toxicity of fire-specific PM» s com-
pared to other sources, which could lead to an even greater
number of premature deaths and related illnesses. Using in-
fant mortality rates as a poverty proxy, we found that pop-
ulations in Asia Pacific are disproportionately exposed to
PM, 5. Populations in “not poor” areas (IMR <40) are ex-
posed to higher total PM 5, while poor populations are more
vulnerable to the health impacts of fire-specific PMj 5. Our
study indicates that the fire-related air pollution is also a se-
rious issue in many poverty areas, yet it receives less atten-
tion. This situation warrants further investigation to explore
the underlying causes and characteristics, ultimately provid-
ing more scientific evidence for effective management strate-
gies. Based on the positive correlation between VPD and fire-
specific PM» s, the study suggests that, without further regu-
latory and policy intervention, the emerging growth trend in
fire-specific PMj 5 in Asia Pacific is likely to continue under
the influence of future climate change.

Interestingly, the increasing trend in fire-specific PMj 5
appears to be inconsistent with the declining trend in the
number of fire points in Asia Pacific. In earlier years, vege-
tation fires in the region were dominated by agricultural fires
characterized by smaller-scale burning areas but more fire
point numbers. Countries have implemented various policies
to reduce agricultural fires, such as China’s measures to min-
imize straw burning and Thailand’s alternative energy devel-
opment plans, like a zero-burning policy. The enforcement of
these policies has, to some extent, reduced fire point numbers
and emissions from agricultural fires in Asia Pacific (Kumar
et al., 2020; Panda and Yamano, 2023). However, fire emis-
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Figure 12. (a) Interannual variations of vapor pressure deficit (VPD) versus the log of the averaged fire-specific PM; 5 during the fire season.
(b) Future VPD derived from a multimodel ensemble mean of 34 GCM projections.

sions in the region are also influenced by wildfire emissions
related to climate change. Wildfires usually occur in natural
vegetation and are characterized by larger-scale burning ar-
eas that are more challenging to extinguish (Gui et al., 2024;
Huang et al., 2024). As a result, the emissions per unit of
biomass burned in wildfires far exceed those from agricul-
tural fires (Reddington et al., 2021; Jones et al., 2024). In
this study, we analyzed historical data and found a positive
relationship between VPD and fire-specific PM; 5 across dif-
ferent regions of Asia Pacific. Based on this, we can roughly
infer future trends in fire-specific PM> 5 by examining the
VPD’s future trends, assuming that the relationship between
the future VPD and fire-specific PM» 5 will continue to exist.
Of course, studying the future trends of fire-specific PM; 5
will require integration of more data and methods for a more
precise analysis, which is a direction for our future research.
To explain the inconsistent changes in fire point numbers and
emissions, we propose that increasing emissions from natu-
ral wildfires driven by climate change have contributed to the
rise in fire-specific PM; 5 in Asia Pacific, although fewer fire
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points have been found. This hypothesis may be verified fur-
ther in future studies.

This study indicates that the contributions of fire-specific
PMj; 5 to air quality and health impacts are becoming increas-
ingly significant and deserve more attention when develop-
ing air pollution standards and control measurements in Asia
Pacific. These variations suggest that the decreases in pol-
lutant concentrations from traffic and industrial sources and
the associated health benefits may be offset by increases in
pollutant concentrations from fires. Measures to reduce fires
may be a significant yet under-recognized option for effi-
ciently improving air quality and preventing related prema-
ture deaths.

Data availability. The air quality observation data can be
acquired from http://openaq.org/ (Hasenkopf et al., 2015) and
https://www.cnemc.cn/en/ (CNEMC 2025). The ERAS data
can be downloaded from https://doi.org/10.24381/cds.bd0915c6
(Hersbach et al., 2023). The fire point data are available at
https://doi.org/10.5067/MODIS/MYD14A1.061  (Giglio  and
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Justice, 2021) from https://earthdata.nasa.gov/firm (last ac-
cess: 15 January 2025). The health data can be accessed
from  http://ghdx.healthdata.org/gbd-results-tool,  last  ac-
cess: 8 February 2025 (IHME, 2025). The infant mortal-
ity rate data can be found at https://search.earthdata.nasa.
gov/search/granules?p=C3540908956-ESDIS&pg[0][v]=f&
pgl0][qt]=2014-01-01T00:00:00.000Z,2021-12-31T23:59:
59.999Z&pg[0][gsk]=-start_date&tl=435795200!3!! (NASA,
2025). The Coupled Model Intercomparison Project Phase6
data can be obtained from https://aims2.1lnl.gov/search/cmip6/
(Eyring et al.,, 2016) The MAIAC aerosol optical depth data
are available at https://www.earthdata.nasa.gov/data/catalog/
lancemodis-mcd19a2n-6.1nrt, (Lyapustin et al., 2018), while
the MERRA-2 reanalysis aerosol products can be acquried
from https://disc.gsfc.nasa.gov/datasets?project=MERRA-2,
(Gelaro et al., 2017). The land use data can be accessed from
https://doi.org/10.5067/MODIS/MCD12Q1.006  (Friedl  and
Sulla-Menashe, 2019). The population data can be found at
https://doi.org/0.48690/1524209 (Bright et al., 2015) from
https://landscan.ornl.gov/ (last access: 8 February 2025). The GDP
data can be acquired from https://doi.org/10.5281/zenodo.7898409
(Wang and Sun, 2023).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-10141-2025-supplement.
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