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Supplementary Material 2 

 3 

Section S1. Sampling sensitivity test for in-situ measurements 4 

Even though high temporal and spatial variability in ozone is well recognized, the 5 

positive impact of abundant sample sizes on detectability of trends is often under-appreciated. In 6 

terms of detecting trends in the free troposphere several previous studies concluded that a 7 

sampling frequency of once per week generally fails to produce accurate monthly mean and 8 

trend values (Logan, 1999; Saunois et al., 2012; Chang et al., 2020).   9 

Since the in-situ sampling scheme is infrequent and sporadic at most locations in this 10 

study, we use the IAGOS dataset collected above Africa which has the highest measurement 11 

density (more than 30 profiles in some individual months) to explore the impact of sample size 12 

on trend detection in the tropics.  In order to provide a baseline reference at northern mid-13 

latitudes, we also analyze the IAGOS data collected above Frankfurt, Germany. Table S2 14 

provides monthly sample sizes from Africa and Frankfurt.  Even though Africa has the most 15 

abundant IAGOS data in the tropics, the overall sample sizes are still small compared to 16 

Frankfurt. The following analysis focuses on observations in the free troposphere (700-300 hPa).  17 

We compute mean absolute percentage error (MAPE) between the ozone trend inferred 18 

from the complete data record and from an ensemble of trend estimates for randomly subsampled 19 

data sets. As in Chang et al. (2020), trend estimates are defined as accurate once MAPE falls 20 

below 5% with increasing sampling frequency r. Table S3 provides the MAPE obtained from 21 

1000 random subsamples composed of a fixed number of r profiles per month. The sampling 22 

strategy can be summarized as follows: if a given month has n profiles and the requested 23 

monthly sampling frequency is r, then 1) if n ≤ r, we select all the profiles, this is fixed in each 24 

iteration; 2) if n > r, we select r profiles randomly in each iteration. From the table we see that 19 25 

profiles per month are required to produce an accurate trend estimate over Frankfurt, which is 26 

consistent with Chang et al. (2020). However, over Africa, the decrease of the trend MAPE is 27 

slow and MAPE remains high even when the considered sampling frequency is increased 28 

because there is a sufficient number of IAGOS profiles (n>r) for just a small fraction of 29 

individual months.  30 

The above finding is limited by the fact that we cannot meet the predetermined criterion 31 

for most cases in Africa (and the 5% criterion cannot be met). To determine the threshold for 32 

minimum sampling frequency for basic trend detection in the tropics, we further investigate the 33 

relationship between the magnitude of trends and the sampling frequency. In this case, basic 34 

trend detection refers to enough profiles to determine if there is a trend at a 2-sigma level, based 35 

on either the interquartile range (i.e. the 75% percentile) or tail (i.e. the worst-case scenario) of 36 

the sampling distribution, but it is not ideal for an accurate trend quantification. Figure S2 shows 37 

the distribution of median trends for a sampling frequency of 2, 4, 6, 8, 10 and 12 profiles a 38 

month, from 800 to 300 hPa with a 50 hPa vertical resolution. We can see the range of sampled 39 

trends becomes smaller when the sampling frequency is increased. Figures S2 and S3 show how 40 

the signal-to-noise ratios (i.e the ratio between the trend value and its uncertainty) of sampled 41 

trends vary with different sampling frequencies at 800 to 300 hPa. These figures reveal many 42 
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considerations regarding the relationship between sampling frequency and the magnitude of 43 

trends: 44 

1. If the magnitude of the trend is strong (e.g. > 3 nmol mol-1/decade at 800 hPa), the trend 45 

can be detected at a low sampling frequency: 2 and 6 profiles per month are required for 46 

basic trend detection in 75% samples and the worst-case scenario (i.e. even for the worst 47 

case, the trend can be detected), respectively. 48 

2. If the magnitude of the trend is moderate (e. g. between 1 and 2 nmol mol-1/decade at 600 49 

hPa): 50 

7 and 15 profiles per month are required for basic trend detection in 75% samples and the 51 

worst-case scenario, respectively. 52 

3. If the trend is weak (e.g. around 1 nmol mol-1/decade at 700 hPa), a high sampling 53 

frequency is required to detect the weak signal: 14 profiles per month are required for 54 

basic trend detection in 75% samples, and the worst-case scenario cannot be prevented in 55 

this analysis.  56 

4. For pressure surfaces with weak and highly uncertain trends (e.g. 350 and 500 hPa, 57 

Figure S1), the same conclusion can be generally drawn at either low or high sampling 58 

rates. 59 

 60 

Based on the above discussion, a typical sampling frequency of once per week is only sufficient 61 

for detection of very large trends (e.g. > |3| nmol mol-1/decade), which are not common in the 62 

free troposphere. We also conclude that a sampling frequency of 7 profiles per month is 63 

sufficient for basic trend detection of tropospheric ozone in the tropics, when the magnitude of a 64 

trend is above |1| nmol mol-1/decade, but additional data are required for accurate quantification. 65 

It should be noted that natural variability also plays a role in trend detection and attribution, but 66 

its impact is expected to be more pronounced when we conduct sensitivity analyses on varying 67 

lengths of the data record, which is beyond the scope of the current analysis. Even though the 68 

influence between natural variability and sampling frequency is typically inseparable, by 69 

focusing on the same data set and same data length, the impact of natural variability should be 70 

weak on this sensitivity analysis. In monitoring long-term changes, the first problem is to detect 71 

a trend (as we investigated in this analysis). Once the presence of a trend is established, any 72 

additional information will help us to improve the accuracy and precision of trend detection. 73 

 74 

Section S2. Analysis steps for data fusion methodology 75 

The features of our data fusion are, (i) to consider systematic ozone variability across vertical 76 

profile time series, instead of treating observations at different pressure surfaces as a set of 77 

independent time series. By taking account of the vertical correlation, the method produces more 78 

consistent trend estimates vertically, and the uncertainty can be effectively reduced; and (ii) to 79 

use the inverse of the (monthly) squared standard error as the weight when combining different 80 

sources of data records, so a record with a higher sampling frequency and/or lower variability 81 

has a higher influence. Analysis steps for data fusion can be described as follows (also described 82 

in Chang et al.(2022)): 83 
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For each data set and pressure surface (at 10 hPa vertical resolution), the time series is 84 

deseasonalized into data anomaly series, by using four harmonic functions. Explicitly, the 85 

anomalies are calculate by 86 

𝑦 − 𝑎0 − 𝑎1𝑠𝑖𝑛(𝑀𝑜𝑛𝑡ℎ × 𝜋/6) − 𝑎2𝑐𝑜𝑠(𝑀𝑜𝑛𝑡ℎ × 𝜋/6) − 𝑎3𝑠𝑖𝑛(𝑀𝑜𝑛𝑡ℎ × 𝜋/3)87 

− 𝑎4𝑐𝑜𝑠(𝑀𝑜𝑛𝑡ℎ × 𝜋/3) 88 

1. where y is the ozone value, and (𝑎0, . . . , 𝑎4) are coefficients to determine the seasonal 89 

cycle (see Chang et al. (2023) for implementation code). 90 

2. For each data set and pressure surface, the anomaly series is standardized by dividing by 91 

its standard deviation, so the magnitude of data variability is similar between different 92 

pressure surfaces. The rationale of the regression problem is to find the best fit such that 93 

the sum of residuals is minimized. In terms of ozone profiles, ozone values in the upper 94 

troposphere are typically greater than the lower troposphere. Under this condition (since 95 

we consider vertical variability altogether), the statistical model prioritizes the reduction 96 

of fitted errors in the upper troposphere over the lower troposphere. Standardization 97 

removes this prioritization, and makes each vertical layer equally important across the 98 

troposphere. This consideration enables small scale variability to be better resolved by 99 

the statistical model. 100 

3. Different sources of data records are combined by their normalized deviations (ND) , and 101 

implemented under the framework of generalized additive models (GAM) using R 102 

package mgcv (Wood, 2017). Based on the data preparation from the previous steps, the 103 

main syntax for GAM data integration in R can be demonstrated as follows: 104 

 105 
where ‘index’ is the monthly index spanned over the study period, and ‘Pressure’ is the 106 

observed pressure surface. This formulation indicates that, (i) temporal and vertical 107 

variabilities are modeled jointly (instead of two independent terms, based on the 108 

generalized thin plate splines); and (ii) the model fit is weighted by data uncertainty. The 109 

results can then be extracted by using predict(model, type='terms'). 110 

It should be noted that in terms of data fusion, it is also interesting to study the remaining 111 

variability from each individual dataset, e.g., after separating regional variations from the 112 

data set, the local influence can thus be better understood. Nevertheless, in this study the 113 
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number of datasets to be integrated is too few (only two or three) to identify the 114 

remainder in each dataset (Gomes, 2022). If sufficient datasets are available (e.g., five 115 

data sources), one can replace the term factor(site) with a more sophisticated 116 

representation:  117 

 ti(index, Pressure, site, bs=c("ds","fs"),d=c(2,1),k=c(300,5)) 118 

(see Wood (2017) for further details), so the remaining variability in each data source can 119 

be properly characterized.  120 

4. The model produces fitted/fused monthly time series at each pressure layer. Trends can 121 

be estimated after the fitted values are transformed back to the units of ppbv (reversing 122 

the standardization). Further implementation details for trend analysis are described by 123 

Chang et al. (2023). 124 

 125 

  126 

 127 

Figure 1 of Chang et al. (2023). A demonstration of the difference between a range of trend 128 

methods (upper panel) and percentile trends derived from quantile regression (QR, lower panel), 129 

based on surface ozone anomalies measured at Mace Head, Ireland (see Chang et  al. (2023) for 130 

further details). 131 

 132 
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Section S3. Confidence scale for in situ trends 133 

This section provides a detailed description of the factors taken into consideration when 134 

assigning a confidence level to the in situ ozone trends reported in Table 1. 135 

● Western Africa (1994-2019): Data coverage is moderate (high sampling rate and 136 
moderate data gaps), combined with a low p-value associated with a strong trend, 137 

therefore high confidence is assigned to this region. 138 
● India (1994-2019): Data coverage is moderate (moderate data gaps and moderate 139 

sampling rates), combined with a low p-value associated with a strong trend.  According 140 
to Table A1, high confidence should be assigned. However, since both the number of 141 

data gaps and sampling rates are on the fuzzy area around our criteria between low and 142 
moderate data availability, moderate confidence is assigned to this region.  143 

● Samoa (1994-2019): Data coverage is low (limited data gaps and low sampling rates), 144 
combined with a high p-value, so very low confidence is assigned to this region.   145 

● Natal + Ascension Island (1994-2019): Data coverage is low (limited data gaps but low 146 
sampling rates), combined with a low p-value, so moderate confidence is assigned to 147 

this region. 148 
● Americas (1994-2019): Data coverage is moderate (limited data gaps and moderate 149 

sampling rates), combined with a high p-value, so low confidence is assigned to this 150 
region. 151 

● Southeast Asia (1994-2019): Data coverage is moderate (moderate data gaps and 152 
moderate sampling rate), combined with a low p-value, so high confidence is assigned to 153 

this region. 154 
● Malaysia/Indonesia (1994-2019): Data coverage is low (moderate data gaps but low 155 

sampling rate), combined with a low p-value, so moderate confidence is assigned to this 156 
region. 157 

● Western Africa, India and Samoa (2004-2019): Data coverage is low (short time 158 
period), combined with a high p-value, so very low confidence is assigned in these 159 

regions. 160 
● Natal + Ascension Island, Americas, Southeast Asia and Malaysia/Indonesia (2004-161 

2019): Data coverage is low (short time period), combined with a low p-value, so 162 
moderate confidence is assigned to these regions. 163 

 164 

 165 

Section S4.  The OMI/MLS measurements and drift corrections 166 

 167 

The Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) are two of four 168 

instruments on board the Aura spacecraft which is flown in a sun-synchronous polar orbit at 705  169 

km altitude with a 98.2° inclination. The Aura spacecraft was launched 15 July, 2004 and has an 170 

equatorial local crossing time of about 1:45 pm (ascending node). Both OMI and MLS 171 

instruments are still providing ozone measurements as of late 2023 which has yielded a nearly 172 

20-year record of tropospheric ozone for evaluating global trends and other applications. In this 173 

study we focus on the 2004-2019 time period. 174 
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OMI/MLS tropospheric column ozone (TCO) is derived using the residual technique of Fishman 175 

et al. (1990). Fishman et al. (1990) originally subtracted Stratospheric Aerosols and Gas 176 

Experiment (SAGE) stratospheric column ozone (SCO) from Total Ozone Mapping 177 

Spectrometer (TOMS) total ozone measurements. We apply the same approach where Aura MLS 178 

SCO is subtracted from coincident Aura OMI total column ozone to derive TCO. The OMI/MLS 179 

algorithm is discussed in detail by Ziemke et al. (2006) and here we briefly summarize this 180 

method. First, along-track measurements of daily MLS profile ozone are vertically integrated in 181 

pressure from the top of the atmosphere down to the tropopause pressure to measure SCO. 182 

National Centers for Environmental Prediction (NCEP) re-analyses are incorporated for 183 

tropopause pressure using the standard World Meteorological Organization (WMO) 2K km-1 184 

lapse-rate definition. Next, a spatial 2D (Gaussian + longitudinal) interpolation is used to fill in 185 

between the MLS SCO orbital-track measurements. Daily TCO is then determined by 186 

subtracting these SCO fields from OMI total column ozone fields. Finally, OMI/MLS TCO daily 187 

maps are averaged monthly to produce the final TCO product. The OMI/MLS product has a high 188 

sampling frequency, as shown in Figure S4 and Figure S5.  Prior to 2009 each 5° x 5° grid cell 189 

had 300-500 measurements per month in the tropics; this number decreased to 200-400 190 

measurements per month after the row anomaly took effect (described below). The measurement 191 

uncertainty (one standard deviation) of the OMI/MLS product is approximately 7 DU for a daily 192 

retrieval at 1° x 1.25° resolution, or approximately 2 DU at 5° x 5° resolution. It is reasonable to 193 

ask if this measurement uncertainty impacts the calculation of long-term trends from the 194 

OMI/MLS product. This question is addressed by the statistical field of error analysis (Grubbs, 195 

1973; Taylor and Thompson, 1982; Moffat, 1988; Rabinovich, 2006; Buonaccorsi, 2010; Hughes 196 

and Hase, 2010).  According to error analysis theory, if measurement uncertainty occurs 197 

randomly then the errors across a large sample size will cancel out and have little impact on the 198 

mean; in our case we are considering monthly mean values based on 200-400 OMI/MLS 199 

retrievals across a 5° x 5° grid cell. Given the very large sample size of the 5° x 5° OMI/MLS 200 

product the errors associated with measurement uncertainty cancel out and have little impact on 201 

the mean, and therefore little impact on the trend. Figure S6 below illustrates this concept using 202 

the ozonesondes above Debilt, The Netherlands (one profile per week), Uccle, Belgium (three 203 

profiles per week), and the IAGOS aircraft profiles above Europe (multiple profiles per day). All 204 

three data sets report clear positive trends for the period 1994-2019 based on monthly means 205 

produced from all available profiles (Figure S6a). In the next step random errors of 10% 206 

(representing measurement uncertainty) are imposed on all profiles. Figure S6b shows that the 207 

uncertainty of the monthly means increases slightly at Debilt and Uccle, but the uncertainty is 208 

almost unchanged for the IAGOS ensemble (due to the far greater sampling rates); the trend 209 

values at all three locations are almost unchanged, with only very slight increases in the 95% 210 

confidence intervals and p-values. In the final step random errors of 20% are imposed on all 211 

profiles (Figure S6c). These errors produce greater uncertainty of the monthly means for all three 212 

records, but the impact is greatest at Debilt which has the lowest sampling rate. Even though the 213 

imposed errors are relatively high, the overall trend values remain almost unchanged. The 214 

uncertainty of the trend values increases at all three sites, but the p-values remain below 0.05, 215 

and the impact is least for the IAGOS ensemble. 216 
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The OMI/MLS TCO measurements over time have encountered instrument drift and other long 217 

term quality issues including an OMI row-anomaly which became a large problem in late 218 

January 2009 and which still continues (Torres et al., 2018, and references therein). The row 219 

anomaly was caused by a physical obstruction in the optical path of the OMI instrument, 220 

resulting in about 1/3 of pixel measurements being flagged for non-use beginning in January 221 

2009.  Ziemke et al. (2019) discusses previous ozonesonde evaluation of offset and drift/row 222 

anomaly corrections for the OMI/MLS TCO product. For that study corrections were made to 223 

include a mean +2 DU offset adjustment and a global -1.0 DU decade-1 drift adjustment. 224 

We have recently made a further adjustment to the OMI/MLS TCO long record guided by 225 

comparisons with ozonesondes, ground-based Brewer/Dobson total ozone, and OMI convective 226 

cloud differential (CCD) tropical TCO measurements. This new drift adjustment for OMI/MLS 227 

TCO begins by comparing OMI/MLS and ozonesonde daily TCO for October 2004-December 228 

2019.  The ozonesondes used for this analysis are from the Southern Hemisphere Additional 229 

OZonesondes (SHADOZ) network (Thompson et al. 2017; Witte et al. 2017, 2018; Sterling et 230 

al., 2017) and measurements from the World Ozone and Ultraviolet Radiation Data Center 231 

(WOUDC) and Network for the Detection of Atmospheric Composition Change (NDACC) 232 

(deMazière et al., 2018).  233 

Figures S7, S8, and S9 show time series of OMI/MLS and sonde daily TCO for the NH, tropics, 234 

and SH, respectively.  Printed in each panel (in red) is a calculated linear fit of OMI/MLS minus 235 

sonde TCO where only coincident daily measurements were included.  We chose sonde sites that 236 

had the most coverage over the long record.  Because we collocate daily OMI/MLS and sondes 237 

for the line-fit analysis, we use all available sonde measurements even if there is as little as only 238 

one sonde measurement per month on average.  In the NH (Figure S7) the mean drift difference 239 

of OMI/MLS minus sonde TCO is calculated to be +0.54 ± 0.64 DU decade-1.  For the tropics 240 

(Figure S8) the mean drift difference is +0.57 ± 0.40 DU decade-1.  In the SH (Figure S9) the 241 

mean drift difference is +1.33 ± 0.98.  From these results, we subjectively applied a new overall 242 

correction to OMI/MLS TCO of -0.6 DU decade-1 everywhere at all latitudes and longitudes.  243 

After combining this -0.6 DU decade-1 correction with the previous -1 DU decade-1 correction, 244 

the total drift correction is now equivalent to about -3 DU total change over the long record. This 245 

overall -3 DU drift correction coincides closely with calculated drift error for OMI total ozone of 246 

about +3 DU (+1%) from ground-based Brewer and Dobson total ozone comparisons (e.g., 247 

Figure S10 from G. Labow, personal communication, 2023).  As an additional cross-check for 248 

the new adjustment, we also included comparisons with OMI CCD tropical TCO (Ziemke et al., 249 

1998) as shown in Figure S11; this suggested an additional drift correction of about -0.5 ± 0.30 250 

DU decade1 which is comparable to the ozonesonde comparisons. Thus, all three of these 251 

analysis methods (sondes, ground total ozone, CCD) for evaluating positive drift in OMI/MLS 252 

TCO agree. 253 

 254 

 255 

Section S5. Tables and Figures 256 
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Table S1. Description of IAGOS fleet with the airlines, airports and number of profiles for the 257 

three focus time periods in this study (1995-2019 for long-term trends calculation, 2004-2019 for 258 

satellite evaluation, and 2014-2019 for present-day ozone distribution). All data above all 259 

airports listed in the table are used to quantify the distribution and trends of tropical tropospheric 260 

ozone as well as the evaluation of the satellite data. 261 

Region Airline Airport N profiles 

[1995-2019] 

N profiles 

[2004-2019] 

N profiles 

[2014-

2019] 

Americas 

Austrian  Punta Cana 11 0 0 

Lufthansa Bogota 560 356 347 

Air France 

Lufthansa 
Saint Martin 

89 75 32 

Air France 

Lufthansa Panama City 14 14 14 

Iberia 
Guayaquil 

4 2 2 

Lufthansa 

Lufthansa 
Lima 

24 0 0 

Air France 

Lufthansa Maracay 1 0 0 

Lufthansa San Juan 45 0 0 

Lufthansa Antigua 31 0 0 

Iberia 
San Jose 

32 32 32 

Lufthansa 

Lufthansa 
Caracas 

1214 633 85 

Air France 

Lufthansa 
Mexico City 

52 3 3 

Air France 

Air France Cayenne 216 0 0 

Lufthansa 
Quito 

72 1 1 

Air France 

Lufthansa Cali 2 0 0 

Air France Recife 25 0 0 

Lufthansa Santo 

Domingo 

2 0 0 

Lufthansa Porlamar 2 0 0 

Austrian Puerto Plata 12 0 0 

      

 Lufthansa 
Malabo 

182 182 182 

Air France 

Air France Yaounde 47 16 6 

Lufthansa 
Libreville 

31 5 2 

Air France 

Lufthansa 
Abuja 

376 355 351 

Air France 
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Air France Ndjamena 25 25 23 

Air France 

Abidjan 

233 38 35 

Lufthansa 

Sabena 

Air France Bamako 48 48 40 

Sabena 

Lagos 

761 441 396 

Lufthansa 

Air France 

Air France Ouagadougo

u 

122 113 74 

Lufthansa Tahoua 2 2 2 

Air France Djibouti 11  9 

Lufthansa 
Port Harcourt 

190 188 185 

Air France 

Air France 

Dakar 

101 12 0 

Lufthansa 

Sabena 

Lufthansa Bamenda 1 1 1 

Sabena Entebbe 75  0 

Air France Nouakchott 91 62 58 

Lufthansa Khartoum 272  14 

Air France 

Accra 

139 66 43 

Air 

Namibia 

Lufthansa 

Air France Niamey 123 113 56 

Lufthansa 
Freetown 

22 22 18 

Air France 

Lufthansa Jeddah 95  95 

Sabena 
Douala 

215 87 53 

Air France 

Sabena 
Lome 

103 72 58 

Air France 

Sabena 
Cotonou 

104 76 68 

Air France 

Air France 

Conakry 

74 49 45 

Lufthansa 

Sabena 

Air France Pointe-noire 28 28 28 

Sabena Kigali 64  0 

Air 

Namibia Brazzaville 

40 31 29 

Air France 

Air France 
Kinshasa 

102 19 17 

Sabena 
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Lufthansa 

Luanda 

254 210 89 

Air 

Namibia 

Air France 

      

India 

Cathay 

Pacific 
Chennai 

680 437 209 

Lufthansa 

Sabena 

Air France Bangalore 32 32 32 

Austrian 

Male 

80 4 4 

LTU 

Lufthansa 

Austrian 

Colombo 

58 19 19 

Lufthansa 

LTU 

Austrian 

Mumbai 

177 56 28 

Cathay 

Pacific 

Lufthansa 

Air France 

Cathay 

Pacific Hyderabad 

552 552 12 

Lufthansa 

      

Southeast Asia 

Cathay 

Pacific 

Cebu 18 18 18 

Lufthansa 

Bangkok 

1535 895 598 

Air France 

Austrian 

Cathay 

Pacific 

China 

Airlines 

China 

Airlines 

Manila 

191 191 146 

Austrian 

Cathay 

Pacific 

Lufthansa 

China 

Airlines 
Ho Chi Minh 

City 

367 231 182 

Cathay 

Pacific 

Lufthansa 
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Air France 

China 

Airlines 

Guam 8 8 8 

Cathay 

Pacific 
Hong Kong 

80 80 80 

China 

Airlines 

      

Malaysia/Indonesi

a 

Lufthansa Paya Lebar 1 0 0 

Austrian Darwin 3 0 0 

China 

Airlines 

Jakarta 

113 86 61 

Cathay 

Pacific 

Lufthansa 

Air France 

Cathay 

Pacific 
Surabaya 

18 18 18 

China 

Airlines 

China 

Airlines Kuala 

Lumpur 

208 192 139 

Cathay 

Pacific 

China 

Airlines 
Denpasar 

32 32 32 

Cathay 

Pacific 

China 

Airlines 

Singapore 

265 143 92 

Cathay 

Pacific 

Lufthansa 

Air France 

 262 

 263 

 264 

 265 

 266 

 267 

  268 
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Table S2. Number of IAGOS profiles by year and month above Africa (left panel) and 269 

Frankfurt, Germany (right panel).  270 

 271 

 272 

  273 
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Table S3. The mean absolute percentage error (MAPE) values between the trend value derived 274 

from the full dataset and sampled trends are reported, based on quantile regression and free 275 

tropospheric observations (700-300 hPa) above Frankfurt and Africa. Sampled trends are 276 

generated by one thousand random samples for each of a predetermined number of profiles per 277 

month.  278 

 279 

 280 

Table S4. Summary of the TTCO trends in nmol mol-1 decade-1 from IAGOS 281 

The sampling column reports three numbers for the in situ data: i) the number on the top refers to 282 

the average number of profiles per months taking into account all the months with profiles, ii) 283 

the number in the middle refers to the percentage of months with data for the studied time-period 284 

(1994-2019 or 2004-2019), iii) the number in the bottom refers to the total number of profiles for 285 

the studied time period (1994-2019 or 2004-2019). We provide these numbers for a reference, 286 

but, for these three IAGOS regions, our final conclusions are based on the confidence scale for 287 

the fused (IAGOS + SHADOZ) results (See Table 1 in the main manuscript). 288 

 289 

  1994-2019 2004-2019 

  Trends±2σ 

(nmol mol-1 

decade-1) 

p-

value 

Sampli

ng 

Trends±2σ 

(nmol mol-1 

decade-1) 

p-

value 

Sampli

ng 

IAGOS Americas  2.07±0.51 <0.01 10.8 

71.5% 

2403 

0.64±1.21 0.29 9.8 

66.1% 

1248 

Southeast Asia  4.66±0.46 <0.01 15.3 

62.7% 

2194 

4.07±1.60 <0.01 16.2 

61.1% 

1423 

Malaysia/Indon

esia  

6.44±1.13 <0.01 8.0 

44.4% 

636 

8.62±2.29 <0.01 9.3 

47.2% 

475 

 290 

#profiles per month 1 2 3 4 5 6 7 8 9 10 

Frankfurt 69.1 39.3 28.1 18.0 16.7 15.3 14.3 12.4 11.7 9.1 

Africa 93.9 85.0 79.6 71.9 64.3 55.2 54.9 53.1 50.1 48.9 

#profiles per month 11 12 13 14 15 16 17 18 19 20 

Frankfurt 9.0 8.7 8.3 7.6 7.2 5.9 5.6 5.2 4.8 3.9 

Africa 47.8 46.4 42.3 40.5 38.9 34.0 31.6 26.4 26.0 23.2 
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 291 

Figure S1. Time series of the monthly mean of the tropopause pressure level used to define the 292 

tropical tropospheric column ozone (TTCO) with satellite data. 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 
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     302 

 303 

Figure S2. Sampling distributions of trends for a sampling frequency of 2 to 12 profile-per-304 

month above Africa. The estimation is based on quantile regression. Blue diamonds are the 305 

median trend estimates derived from all available data, the horizontal blue bars indicate the 95% 306 

confidence interval of the trend with full sampling, each gray cross represents the estimate 307 

produced by a random sampling from 1000 iterations. 308 

 309 

Sampling distribution of median trends (IAGOS Africa) 
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 310 

Figure S3. Sampled signal-to-noise ratios of the ozone trends. The ratios vary with different 311 

sampling frequencies at 800 to 300 hPa above Africa. Red lines (at signal-to-noise ratios of 2 and 312 

-2) represent the conventional trend detection threshold (i.e. 95% confidence level), and blue 313 

lines represent the SNR derived from all available data. 314 

 315 

 316 

 317 
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Figure S4.  Number of 1° x 1.25° resolution OMI/MLS tropospheric column ozone 318 

measurements per month in a 5°x5° grid cell (left panel) or a 1° x 1.25° grid cell (right panel), by 319 

latitude.  The data have been cloud-filtered using a low reflectivity threshold of R < 0.30, and the 320 

results are averaged across October 2004 to December 2022.   321 

 322 

 323 

 324 

 325 

 326 

Figure S5.  Hovmoller plot of average number of daily 1°x1.25° tropospheric column ozone 327 

(TCO) measurements per month within each 5°x5° grid cell, following R<0.30 cloud filtering.  328 

Starting January 2009 there are fewer measurements due to the row anomaly problem. 329 

  330 
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 331 

     Figure S6a.  Mid-tropospheric (700-300 hPa) ozone trends (1994-2019) at three European 332 

locations:  Debilt, The Netherlands (top), Uccle, Belgium (center) and an ensemble of all IAGOS 333 

profiles above Europe (bottom).  Each black point represents a mid-tropospheric observation 334 

(averaged over 700-300 hPa) from a single profile, while the red points represent monthly means 335 

(under the assumption of no measurement uncertainty).  Also shown are the linear trends for 336 

1994-2019, with 95% confidence intervals and p-values. 337 

 338 
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 339 

Figure S6b.  As in Figure S6a, but with random noise of 10% imposed on each individual ozone 340 

value (the noise value is randomly selected from a normal distribution with 0 mean and SD as 341 

y*0.10 (e.g. for a desired uncertainty of ±10%)).  For each month, monthly means are produced 342 

from the corresponding noise-added observations.  This procedure is repeated 10,000 times, and 343 

the 2.5th and 97.5th percentiles from the 10,000 noise-added monthly means indicate the 95% 344 

confidence interval of the means (shown with the orange bars on each monthly mean).  Finally, 345 

10,000 trend values are produced, and the mean and standard deviation become the final trend 346 

and sigma uncertainty reported in each panel of the figure. 347 

 348 

 349 
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 350 

Figure S6c.  As in Figure S6b but with 20% random noise imposed on each individual ozone 351 

value. 352 

 353 

 354 
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 355 

Figure S7.  Daily time series of TCO (in DU) for OMI/MLS (black) and ozonesondes (red) for 356 

2004-2019 from WOUDC and NDACC.  Stations were selected (indicated) that exhibited the 357 

best coverage over the long record.  Calculated drift difference of OMI/MLS TCO minus sonde 358 

TCO in DU decade-1 are also shown for each site (including 2σ uncertainty). Mean drift 359 

difference for the combined sites is +0.54 ± 0.64 DU decade-1. 360 

 361 

 362 

 363 
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 364 

Figure S8.  Similar to Figure S4.1, but for the tropics using SHADOZ data.  Mean drift 365 

difference for the combined sites is +0.57 ± 0.40 DU decade-1. 366 

 367 

 368 

 369 

Figure S9.  Similar to Figure S7, but for the SH.  SH sonde measurement sites are sparse 370 

compared to the NH and tropics.  Mean drift difference for these combined SH sites is +1.33 ± 371 

0.98 DU decade-1. 372 

 373 
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 374 

Figure S10.  OMI/MLS TCO minus OMI CCD TCO coincident monthly differences (in DU) 375 

zonally averaged over the Pacific (120oW-120oE).  The curve represents line-fits (including ± 2σ 376 

uncertainties) of monthly OMI/MLS minus CCD differences for 2005-2019. 377 

 378 

 379 

 380 

Figure S11. Public domain OMI v8.5 total ozone minus ground-based Dobson/Brewer total 381 

ozone differences in percent (Gordon Labow, personal communication, 2024).  The black curve 382 

shows differences for v8.5 OMI total ozone using current collection-3 L1B data processing while 383 

the blue curve shows differences using OMI total ozone processed using a preliminary 384 

collection-4 L1b dataset. The collection-4 processing tends to reduce drift and other anomalies in 385 
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OMI total ozone and is work in progress.  The black curve corresponds to the data that is 386 

currently used for the OMI/MLS TCO and shows obvious long-term drift changes going from 387 

about -1.5% to -0.5% over the almost 20-year record.  We conclude from Figure S11 that the 388 

OMI total ozone has a positive drift of about +1% (or +3 DU) over the long record.  This is the 389 

drift error in OMI total ozone inferred from the ground measurements, prior to any adjustments 390 

made for the OMI/MLS TCO. 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 
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 400 
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 401 
Figure S12. Ozone mean distributions above Americas based on normalized deviation (ND). 402 

Panels show the results of the fused data set from IAGOS and SHADOZ (a), and for the 403 
SHADOZ individual sites (Paramaribo and San Cristobal, panels b and c) and IAGOS region 404 

(Americas, panel d). 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 
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 415 

 416 
Figure S13. Same as Figure S12 but above Southeast Asia. The SHADOZ individual site used 417 
for the fused data is Hanoi.  418 

 419 

 420 

 421 
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 430 
Figure S14. Same as Figure S12 but above Malaysia/Indonesia. The SHADOZ individual site 431 
used for the fused data is Kuala Lumpur and Watukosek (Java). 432 

 433 

 434 

 
 435 

Figure S15. Same as Figure S12 but above western Africa. There are no SHADOZ data 436 

available in this region. We use only IAGOS data. 437 



28 
 

 438 

 439 

Figure S16. Same as Figure S12 but above India. There are no SHADOZ data available in this 440 

region. We use only IAGOS data. 441 

 442 
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 443 

Figure S17. Vertical profiles of ozone trends (nmol mol-1/decade) from a linear regression that 444 

considers climate variability such as ENSO (El Niño-Southern Oscillation) and QBO (quasi-445 

biennial oscillation). The trends are reported over the five IAGOS regions: Africa, Americas, 446 

India, Malaysia/Indonesia and Southeast Asia. 447 

 448 

 449 
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      450 

Figure S18. Absolute annual mean biases of tropical tropospheric column ozone (TTCO in DU) 451 

of the six satellite products: OMI (2014-2019), OMPS/MERRA2 (2014-2019), TROPOMI 452 
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(2019), CrIS (2018-2019), OMI/MLS (2014-2019) and IASI/GOME2 (2017-2019) against the 453 

three in situ TTCO up to 270 hPa: IAGOS (2014-2019), SHADOZ (2014-2019) and ATom 454 

(2016-2018).  455 

 456 

 457 

     458 

 459 
 460 

     Figure S19. Similar to Figure 5 but the in situ TTCO is derived from integrating the column 461 

up to 270 hPa instead of 100 hPa. 462 

 463 
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 464 

Figure S20. Same as Figure S13 but against SHADOZ only (TTCO up to 150 hPa). 465 
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 466 

 467 
 468 
Figure S21. Vertical profiles of ozone trends (nmol mol-1 decade-1) between 1994 and 2019, at 469 

50 hPa vertical resolution. Fused (circles) and IAGOS only (squares) trends are calculated for the 470 
3 out of the 5 IAGOS regions: Americas (a), Southeast Asia (b) and Malaysia/Indonesia (c) for 471 

which both IAGOS and SHADOZ data are available. Filled circles and squares indicate trends 472 
with p-values less than 0.05. Open circles indicate trends with p-values between 0.05 and 0.1. 473 

The zero-trend value is indicated with a vertical black line. The vertical range below 700 hPa is 474 
shaded grey to indicate that the fused trends are based on several sites and airports influenced by 475 

different local air masses. The 2-sigma values associated with the ozone trends are shown in 476 
shaded colors. 477 

 478 
 479 

 480 

 481 

 482 

 483 

 484 

      485 
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 486 

Figure S22. Time series of the monthly tropical tropospheric column ozone (TTCO) from 487 

IAGOS ozone profiles (TTCO: surface-270 hPa, black line with triangle markers), from 488 

SHADOZ ozone profiles (TTCO: surface-150hPa, colored lines with circle markers), and 489 

satellite data (colored line with square markers) extracted above the IAGOS regions. These 490 

monthly columns are not used to assess the trends reported in Table 1. 491 

 492 

 493 
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 494 

 495 

Figure S23. Time series of monthly emissions of CO in Tg due to biomass burning over two 496 

GFED source regions: Equatorial Asia (EQAS) and Southeast Asia (SEAS). Source: ECCAD 497 

(https://eccad.aeris-data.fr/, Darras et al., 2018) 498 

 499 

 500 

 501 

https://eccad.aeris-data.fr/
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 502 
Figures S24. Vertical profiles of ozone trends (nmol mol-1 decade-1) (panel a.) and the associated 503 

uncertainties (2-sigma, panel b.) between 2004 and 2019 with 50 hPa resolution. Trends are 504 
calculated for the 5 IAGOS regions in the tropics:  505 

Americas, Western Africa, India, Southeast Asia and Malaysia/Indonesia. SHADOZ data are 506 
available for 3 out of the 5 IAGOS regions and fused trends (IAGOS + SHADOZ) were 507 

assessed. 508 

Squares (IAGOS trends) or circles (fused trends) indicate trends with p values less than 0.05. 509 

Open squares or circles indicate trends with p values between 0.05 and 0.1. The zero-trend value 510 

is indicated with a vertical black bar. The vertical range below 700 hPa is colored in grey to 511 

indicate that the fused trends are based on several sites and airports influenced by different local 512 

air masses. 513 

 514 

 515 

 516 
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 517 

Figure S25. As in Figure 7 but the satellite sample sizes have been greatly reduced so that they 518 

only coincide with the specific months and grid-cells sampled by the IAGOS aircraft. Trends of 519 

tropical tropospheric column ozone (TTCO) in nmol mol-1 decade-1 between 2004 and 2019 from 520 

IAGOS (crosses), SHADOZ (squares), IAGOS fused with SHADOZ (circles), OMI (triangles 521 

up) and OMI/MLS (triangles down) above the five continental IAGOS regions (Americas, 522 

Africa, India, Southeast Asia and Malaysia/Indonesia) and two oceanic SHADOZ regions 523 

(Samoa and Natal + Ascension Island). The left panel shows the trends of ozone as a function of 524 

latitude. The right panel shows the trends of ozone on the map with the black rectangles 525 

demarcating the five IAGOS regions. On the map, the longitude of the crosses, circles, triangles 526 

and squares are arbitrary and the latitude is the mean latitude of the black rectangles or relative to 527 

the SHADOZ sites. The direction of the arrows shows the magnitude of the trends and the colors 528 

indicate the p-value. The TTCO trends from in situ data are calculated from the monthly TTCO 529 

between the surface and 100 hPa, except over India where IAGOS profiles are available between 530 

the surface and around 200 hPa. The TTCO trends from OMI and OMI/MLS are calculated from 531 

the monthly TTCO defined between the surface and around 102-105 hPa (Figure S1).  532 

 533 

 534 
  535 

  536 
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