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Abstract. HONO plays a crucial role as a precursor to OH radicals in the tropospheric atmosphere. The in-
congruity between HONO concentration and NOx emissions during the COVID-19 pandemic remains puzzling.
Here, we show evidence from field observations of 10 sites in China where there was a noticeable increase in
NH3 concentrations during the COVID-19 pandemic. In addition to the meteorological conditions, the signifi-
cant decrease in sulfate and nitrate concentrations enhanced the conversion of NH+4 to NH3. Sensitivity analysis
indicated that the decrease in anion concentrations (especially sulfate and nitrate) and the increase in cation
concentrations during the COVID-19 pandemic led to an increase in particle pH. In other words, changes in the
excess ammonia drove changes in particle pH that may consequently have impacted the rate of HONO forma-
tion. The calculation of reaction rates indicates that during the epidemic, the increase in pH may promote the
generation of HONO by facilitating redox reactions, which highlights the importance of coordinating the control
of SO2, NOx , and NH3 emissions.

1 Introduction

Nitrous acid (HONO) is a critical precursor of the hydroxyl
radical (OH), contributing to more than 60 % of OH produc-
tion (Alicke, 2003; Platt et al., 1980; Kleffmann et al., 2005).
The OH can react with carbon monoxide, nitrogen oxides
(NOx), sulfur dioxide (SO2), and volatile organic compounds
to produce secondary pollutants such as ozone (O3) and
PM2.5 (particulate matter with an aerodynamic diameter less
than or equal to 2.5 µm), thereby affecting air quality, human
health, and global climate change (J. Li et al., 2021; Y. Wang
et al., 2023; Lu et al., 2018).

High concentrations of HONO are present in urban day-
time atmospheres, and exploring its sources has become a hot
and challenging topic in the field of atmospheric chemistry
(Jiang et al., 2022; Xu et al., 2019). Various sources of atmo-

spheric HONO have been identified, including combustion
processes (e.g., vehicle emissions) (Kramer et al., 2020; Liao
et al., 2021; S. Li et al., 2021), direct emissions from soil (Su
et al., 2011; Oswald et al., 2013; Meusel et al., 2018), homo-
geneous reactions between NO and OH radicals (Pagsberg et
al., 1997; Atkinson et al., 2004), heterogeneous reactions of
NO2 on aerosols and ground surfaces (W. Zhang et al., 2020;
McFall et al., 2018; Liu et al., 2014; J. Liu et al., 2020), and
photolysis of nitrate (Spataro and Ianniello, 2014; Scharko et
al., 2014; Romer et al., 2018; Ye et al., 2017; Shi et al., 2021).
During the pandemic control periods, there was a substan-
tial reduction in vehicle traffic flow and industrial emissions,
leading to a decrease of more than 60 % in NOx emissions in
eastern China (Huang et al., 2021a). It was initially expected
that the concentration of HONO would also decrease propor-
tionally. However, Y. Liu et al. (2020a) observed that the de-
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crease in HONO concentration during the pandemic period
was only 31 % (from 1.5 to 0.9 ppb), which was significantly
lower than the reductions in NO (62 %, from 26.3 to 4.2 ppb)
and NO2 (36 %, from 15.5 to 6.2 ppb). Furthermore, the ob-
served concentrations of HONO during the COVID-19 pan-
demic in 2020 were higher than those during the correspond-
ing period in 2021 in Beijing (Luo et al., 2023). These find-
ings suggest the existence of a considerable unknown source
of HONO during the COVID-19 pandemic period.

Ammonia (NH3) is a primary alkaline gas in the atmo-
sphere, capable of influencing the pH level of particulate
matter, and plays a crucial role in the atmospheric nitrogen
cycle (Gu et al., 2022; Xu et al., 2020; Gong et al., 2011).
Several studies have indicated that NH3 can promote the for-
mation of HONO by promoting the hydrolysis of NO2 (Xu
et al., 2019) or the redox reaction of NO2 with SO2 (Liu
et al., 2023). Moreover, previous studies have reported that
NH3 concentrations in the atmosphere, particularly in ru-
ral areas, significantly increased during the pandemic (Xu
et al., 2022). Consequently, the rise in NH3 may contribute
to the enhanced formation of HONO (Huang et al., 2021a).
Unfortunately, there is currently a lack of research on the
relationship between enhanced NH3 and HONO during the
COVID-19 pandemic period.

To address this, online observational data on the chemi-
cal composition of PM2.5, gaseous pollutants, and meteoro-
logical conditions at 10 sites in China before and during the
COVID-19 pandemic period were analyzed to investigate the
variation in NH3 concentrations and particle pH and explore
the promoting effect of increased pH values on HONO for-
mation.

2 Materials and methods

2.1 Observation sites

Online measurements were conducted at four urban and six
rural sites in Henan Province, China, from 1 January to
29 February 2020, including Sanmenxia (U-SMX), Zhoukou
(U-ZK), Zhumadian (U-ZMD), and Xinyang (U-XY), as
well as rural locations including Anyang (R-AY), Xinxi-
ang (R-XX), Jiaozuo (R-JZ), Shangqiu (R-SQ), Nanyang (R-
NY), and Puyang (R-PY). Descriptions and the spatial distri-
bution of these 10 sites can be found in Table S1 and Fig. S1
in the Supplement.

2.2 Measurements

An aerosol and gas monitor (MARGA, Metrohm, Switzer-
land) was used to analyze the hourly water-soluble ions
(Na+, NH+4 , K+, Mg2+, Ca2+, Cl−, NO−3 , and SO2−

4 ) in
PM2.5, as well as gaseous species (NH3, HNO3, HCl, and
HONO), at 10 sampling sites. The MARGA instrument is
widely used (Chen et al., 2017; Stieger et al., 2019; Twigg
et al., 2022). A detailed description of the instrument and

QA/QC can be found in Sect. S1 in the Supplement. In brief,
the atmospheric sample passes through a PM2.5 cut-off head,
and both particles and gases enter a wet rotating dissolution
device for diffusion. Subsequently, the particles in the sample
undergo hygroscopic growth and condensation in an aerosol
supersaturated vapor generator, followed by collection and
ion chromatographic analysis. The gases in the sample are
oxidized by H2O2 in the dissolution device and absorbed into
a liquid solvent. They then entered the gas sample collection
chamber for ion chromatographic quantification. The range
of minimum detection limits for water-soluble ions was be-
tween 0.002 µgm−3 (Cl−) and 0.081 µgm−3 (NH+4 ). Uncer-
tainties of 20 % are assumed for the detection of NH3 and
NH+4 , while uncertainties of 10 % are assumed for other com-
ponents (Wang et al., 2020; Wang et al., 2022). In addition,
a detailed description of HONO measurement using this sys-
tem can be found in Sect. S2. Overall, the limit of detection
for HONO was 4 pptv, and the uncertainty was estimated to
be ± 20 %.

The data for NO2 and SO2 were obtained from a series
of instruments provided by Thermo Fisher Scientific (USA).
The hourly concentrations of organic carbon (OC) in PM2.5
were analyzed using a carbon analyzer (Model 4, Sunset
Laboratory, USA). Detailed descriptions of the NO2, SO2,
and carbon analyzers can be found in Sect. S3. The smart
weather stations (LUFFTWS500, Sutron, Germany) were
utilized for synchronized observation of meteorological pa-
rameters including pressure, temperature (T ), and relative
humidity (RH).

2.3 Data analysis

2.3.1 pH prediction

The thermodynamic model ISORROPIA-II was used to es-
timate the pH value of the particles (Fountoukis and Nenes,
2007) by inputting RH, T , K+, Ca2+, Mg2+, total ammonia

(TNHx = 17×( [NH+4 ]
18 +

[NH3]
17 )), total sulfuric acid (TH2SO4,

SO2−
4 ), total sodium (TNa, Na+), total chlorine (TCl, Cl−),

and total nitrate (TNO3=NO−3 +HNO3). The model has
two calculation modes, the forward mode and reverse mode,
and the aerosol dissolution systems can be set to simulate
a metastable state (aqueous phase) or stable state (aqueous
and solid phase). Studies have shown that the forward mode
is less affected by instrument measurement errors than the
reverse mode (Ding et al., 2019; Song et al., 2018). Ad-
ditionally, the minimum average RH of about 55 % was
recorded during the sampling period at the 10 sites. Thus,
ISORROPIA-II was run in the forward model for the aerosol
system in the metastable condition and only used data with
RH≥ 30 % for simulation accuracy (Ding et al., 2019; Song
et al., 2018). The ISORROPIA model calculated the parti-
cle hydrate ion concentration per volume of air (H+air) and
aerosol water associated with inorganic matter (AWCinorg).
The pH value was calculated using the following equation
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Table 1. Changes in concentrations (mean ±standard deviation) of NH3, NH+4 , and TNHx at 10 sites during the entire period (Average) and
before (PC) and during (DC) the COVID-19 outbreak.

Sites Substances Average (µgm−3) PC (µgm−3) DC (µgm−3)

U-SMX NH3 13.8± 10.8 12.6± 10.1 14.5± 11.1
NH+4 10.9± 7.2 14.2± 7.2 8.8± 6.5
TNHx 22.9± 14.1 24.9± 14.5 21.7± 13.8

U-ZK NH3 15.6± 8.3 12.7± 6.5 17.4± 8.8
NH+4 13.6± 9.3 19.1± 8.4 10.3± 8.1
TNHx 28.6± 13.7 30.9± 12.8 27.1± 14.0

U-ZMD NH3 13.1± 8.4 11.6± 8.2 14.0± 8.4
NH+4 13.9± 9.8 19.6± 10.3 10.3± 7.5
TNHx 25.7± 14.6 30.3± 15.1 22.8± 13.5

U-XY NH3 7.0± 4.3 5.7± 4.0 7.9± 4.3
NH+4 11.0± 7.7 15.4± 7.6 8.3± 6.5
TNHx 17.6± 9.8 20.6± 10.1 15.7± 9.2

R-AY NH3 19.0± 8.4 17.9± 8.3 19.7± 8.4
NH+4 19.3± 12.9 26.4± 13.7 15.0± 10.3
TNHx 36.6± 18.2 41.7± 20.4 33.4± 16.0

R-XX NH3 21.7± 10.2 18.1± 9.3 23.8± 10.1
NH+4 15.9± 10.4 20.6± 11.0 13.0± 8.8
TNHx 34.9± 17.0 35.1± 18.8 34.8± 15.8

R-PY NH3 19.8± 9.4 16.8± 8.1 21.7± 9.6
NH+4 17.4± 11.8 25.3± 12.6 12.4± 8.0
TNHx 35.2± 17.8 39.4± 19.8 32.6± 15.7

R-JZ NH3 25.3± 11.5 24.1± 11.5 25.9± 11.4
NH+4 17.3± 11.3 22.7± 11.6 14.2± 9.9
TNHx 40.8± 20.1 42.9± 22.8 33.5± 18.2

R-SQ NH3 15.0± 7.9 10.3± 5.2 17.7± 7.9
NH+4 13.4± 8.5 18.9± 8.6 10.3± 6.7
TNHx 26.3± 13.2 25.5± 14.0 26.8± 12.7

R-NY NH3 5.5± 3.1 4.3± 2.7 6.2± 3.2
NH+4 10.2± 6.9 13.3± 7.2 8.4± 6.1
TNHx 14.8± 8.5 16.0± 9.5 14.1± 7.8

(Bougiatioti et al., 2016):

pH=−log10H+aq =−log10
1000H+air

AWCinorg+AWCorg
, (1)

where the modeled concentrations for AWCinorg and H+air are
calculated in units of µgm−3, and AWCorg is the particle wa-
ter associated with the organic matters predicted using the
following method:

AWCorg =
ms

ρs

korg(
1

RH − 1
) , (2)

where ms is the mass concentration of organic matter
(OM=OC× f ); f is the conversion factor of OC, which

is dependent on the extent of OM oxidation and secondary
organic aerosol formation (Chow et al., 2015). Studies on
the ratio of OM/OC in 14 cities in China suggested that the
mean value of f was 1.59± 0.18 during the winter season in
northern China (Xing et al., 2013), and thus we adopted 1.6
as the f value in this study. korg is the organic hygroscop-
icity parameter and depends on organic functionality, water
solubility, molecular weight, and oxidation level. Han et al.
(2022) reported that korg generally increased with O : C ra-
tios, with a range of 0–0.3 for 23 organics, including car-
boxylic acids, amino acids, sugars, and alcohols. Gunthe
et al. (2011) estimated korg= 0.06± 0.01 for the effective
average hygroscopicity of the non-refractory organic partic-
ulate matter in the aerosols in Beijing. Our previous study
estimated that the uncertainties of the korg value (0.06) for
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pH in the range of 0–0.3 only lead to −1 % to 3 % errors,
which can be neglected (S. Wang et al., 2023). Therefore, the
value of 0.06 was selected in this paper. ρs is the organic den-
sity, which was chosen to be 1.35 gcm−3 following previous
studies (Table S2).

2.3.2 The sources of HONO

The sources of HONO include direct emission (Pemi), the ho-
mogeneous reaction of NO and qOH (POH+NO), the hetero-
geneous reaction of NO2 on the ground (Pground) and aerosol
(Paerosol), the photo-enhanced heterogeneous reaction of
NO2 on the ground (Pground+hv) and aerosol (Paerosol+hv),
and nitrate photolysis (Pnitrate). The detailed calculation
method is described in the Supplement (Sect. S4, Table S3,
and Figs. S2 and S3).

Soil emission has been demonstrated to be a major source
of HONO, which is affected by temperature to some ex-
tent (Y. Liu et al., 2020a, b). However, during the sam-
pling periods, there was no significant positive correlation
between HONO concentration and temperature (Fig. S4). In
addition, temperatures did not exceed 10 °C, under which
the soil HONO emission rate is generally considered to
be zero (Zhang et al., 2023). Furthermore, the equilibrium
gas-phase concentration over an aqueous solution of nitrous
acid, [HONO]∗, a key parameter controlling the exchange of
HONO between the gas and aqueous phase in soil, is cal-
culated according to Su et al. (2011). The results indicate
that the temperature difference between the PC (before the
COVID-19 outbreak) and DC (during the COVID-19 out-
break) periods only led to an approximately 0.01 % concen-
tration change. On the other hand, studies on the sources
of HONO in the North China Plain of China during winter
consistently showed that soil HONO emissions contribute
around 1 % (Y. Liu et al., 2020a, b; Zhang et al., 2023).
Therefore, this study does not consider soil HONO emis-
sions.

2.3.3 Redox reaction of NO2 with SO2

The redox reaction of NO2 with SO2 (Reaction R1) is con-
sidered a crucial potential source of high concentrations of
HONO in northern China (Cheng et al., 2019; Wang et
al., 2016):

S(IV)+ 2NO2+H2O→ S(VI)+ 2H++ 2NO−2 . (R1)

The rate expression for Reaction (R1) was estimated to be

d[S(VI)]/dt = k1[NO2][S(VI)]. (3)

The rate constant k1 value is pH-dependent; e.g., for pH 5,
k1= (1.4× 105

+ 1.24× 107)/2 M−1 s−1. For k1 values un-
der other pH conditions and other related information, please
refer to Sect. S5 and Tables S4 and S5.

3 Results and discussion

3.1 Variations of NH3, NH+
4

, and TNHx

The temporal variations of NH3, NH+4 , and TNHx at 10 sam-
pling sites in the pre-COVID-19 pandemic period (PC; 1 to
23 January 2020) and during the COVID-19 pandemic pe-
riod (DC; 24 January to 29 February 2020) are presented in
Fig. 1, with their average concentration listed in Table 1. In
general, rural sites exhibited higher concentrations of NH3,
NH+4 , and TNHx compared to urban sites, except for the R-
NY site. This finding is consistent with previous studies con-
ducted in Zhengzhou (Wang et al., 2020), Shanghai (Chang
et al., 2019), and Quzhou (S. Feng et al., 2022), owing to
the intense agricultural ammonia emissions. The highest con-
centrations of NH3 and TNHx were recorded at site R-JZ,
with average values of 25.3± 11.5 and 40.8± 20.1 µgm−3,
respectively. Site R-AY had the highest NH+4 concentration,
measuring 19.3± 12.9 µgm−3. Note that the current study
area exhibited higher NH3 levels compared to other regions
(Table S6), which probably was attributed to the highest
NH3 emissions of Henan Province in China, primarily from
nitrogen fertilizer application and livestock farming (Wang
et al., 2018; Ma, 2020).

Compared to the PC, NH3 concentrations increased in the
DC at all sites. Notably, rural sites experienced more signifi-
cant increases in NH3 concentrations than urban sites, which
was similar to the trend in Shanghai (Xu et al., 2022). The
largest increases in NH3 concentrations were observed at
R-SQ (71 %, 7.3 µgm−3) and U-ZK (37 %, 4.8 µgm−3) for
rural and urban sites, respectively. In contrast, the concen-
trations of NH+4 and TNHx decreased in the DC, with the
largest reduction at the rural site, R-PY (51 %, 12.9 µgm−3),
and the urban site, U-ZMD (48 %, 9.3 µgm−3). Regarding
TNHx , rural sites exhibited larger reductions, with site R-SQ
experiencing the largest decrease of 37 % (4.7 µgm−3).

Figure 2 illustrates the spatial distribution and the diurnal
variation of NH3 concentrations at the 10 sites before and
during the pandemic. NH3 concentrations in most sites ex-
hibited a unimodal trend in the PC that NH3 concentrations
gradually increased after sunrise, reaching a peak around
noon (11:00–12:00 GMT+8), and then decreased to a trough
around 16:00–17:00 (GMT+8). This diurnal pattern is sim-
ilar to NH3 variations observed in urban areas of Houston,
USA, as a result of the natural emissions from vegetation
and soil during photosynthesis (Gong et al., 2011). How-
ever, other studies have recorded a significant NH3 peak dur-
ing the early morning between 08:00–10:00 (GMT+8) (Ellis
et al., 2011; Meng et al., 2018; Gu et al., 2022), suggest-
ing the influence of vehicle emissions (Gong et al., 2011;
Gu et al., 2022), residual NH3 mixing, soil or plant emis-
sions (Ellis et al., 2011), and dew volatilization (Wentworth
et al., 2016; Huang et al., 2021b). Therefore, the NH3 in ur-
ban and rural areas of this study was probably less affected
by NH3 emissions from vehicles, different from the recent
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Figure 1. Temporal variations of (a) NH3, (b) NH+4 , and (c) TNHx at the urban and rural sites before (PC) and during (DC) the COVID-19
outbreak, respectively. The shaded areas of the curve represent the maximum and minimum values.

studies in megacities of China (e.g., Beijing and Shanghai)
(Gu et al., 2022; Wu et al., 2023; Y. Zhang et al., 2020).
In addition to the transport from agricultural emissions, ur-
ban NH3 in this region might also originate from other non-
agricultural sources, such as wastewater treatment, coal com-
bustion, household waste, urban green spaces, and human ex-
crement (Chang et al., 2019).

During the COVID-19 pandemic, the diurnal variation of
NH3 in both urban and rural sites still maintained a unimodal
distribution. The peak values in urban sites remained consis-
tent with PC levels, further demonstrating that the influence
of vehicles on NH3 in urban areas was limited. Notably, the
peak time of NH3 in rural sites shifted 1–2 h earlier com-
pared to the trend in the PC. Ammonia in rural areas pri-
marily originates from nitrogen fertilizer application, live-
stock, and poultry breeding (T. Feng et al., 2022; Meng et
al., 2018), which are significantly influenced by T and RH
(Liu et al., 2023). Table S7 and Fig. S5 reveal that there
was an increased T and a decreased RH at rural sites in the
DC than the PC, which could accelerate the evaporation of
NH3 and thus potentially lead to earlier peak NH3 concen-
trations.

3.2 Gas-to-particle conversion of NH3

The increased NH3 accompanying decreased NH+4 in the
DC suggests that the gas–particle partitioning of NH3/NH+4
may determine the elevated NH3 concentrations. Meteoro-
logical parameters, including RH and T , play a crucial role

in the gas–particle partitioning of NH3 (Liu et al., 2023; Xu
et al., 2020). Therefore, the higher T and lower RH in the
DC (Table S7 and Fig. S5) favored the conversion of NH+4
to NH3, resulting in a decrease in ε(NH+4 )([NH+4 ]/([NH3]+

[NH+4 ]) compared to those in the PC (Table S7).
NH3 primarily enters particles to neutralize acidic ions

(Wang et al., 2020; Xu et al., 2020; Liu et al., 2017; Ye et
al., 2011; Wells et al., 1998). Accordingly, the concentra-
tions of required ammonia (Required-NHx) and excess am-
monia (Excess-NHx) were calculated based on the acidic
substances as follows (Wang et al., 2020):

Required-NHx = 17×
(
[SO2−

4 ]

48
+
[NO−3 ]

63

+
[Cl−]
35.5

+
[HNO3]

64
+
[HCl]
36.5

)
− 17×

(
[Na+]

23
+
[K+]

39
+
[Ca2+

]

20

+
[Mg2+

]

12

)
, (4)

Excess-NHx = TNHx−Required-NHx, (5)

where [W] represents the concentration of the substance
(µgm−3). The significant linear fitting (R2 is greater than
0.96, and the slope is close to 1) in Fig. S6 demonstrates
that the anions and cations at each site were close to the
equilibrium state. Therefore, the organic acids in PM2.5 may
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Figure 2. Daily variation of NH3 concentrations at 10 sites before (PC) and during (DC) the COVID-19 outbreak. The green dots represent
the location of 10 sites, and their size represents the concentration of NH3. In each box, the top, middle, and bottom lines represent the 75,
50, and 25 percentiles of statistical data, respectively, and the upper and lower whiskers represent the 90 and 10 percentiles of statistical data,
respectively.

have less effect on NH3 and NH+4 and were not considered
in Eq. (4).

As shown in Fig. 3 and Table S8, compared to those in
the PC, the concentration of Required-NHx in the DC signif-
icantly decreased (ranging from 37 % at site R-JZ to 58 %
at site R-PY), while the concentration of Excess-NHx in-
creased (ranging from 9 % at site R-AY to 78 % at site R-
SQ). The reduction in the concentrations of sulfate and ni-
trate (Fig. S7) was responsible for the decrease in the con-
centration of Required-NHx . To sum up, in addition to me-
teorological conditions, the substantial reduction in anthro-
pogenic emissions of SO2, NOx , and other pollutants in the
DC led to a decrease in acidic substances (e.g., sulfate and
nitrate) in particles, in turn resulting in more gas-phase NH3
concentration remaining in the atmosphere.

3.3 Particle pH before and during COVID-19

Diurnal patterns of particle pH in the PC and DC at 10 sites
are summarized in Fig. 4, with their average values listed
in Table S9. PM2.5 shows consistent moderate acidity, with
mean values in the range of 4.2–5.1, which were close to the
values in previous studies (Table S9). Compared to the PC,
the particle pH at 10 sites increased significantly in the DC,
with the highest increase of 0.5 (U-ZK) and 0.3 (R-PY) at

Figure 3. Box diagram of changes in Required-NHx at 10 sites
before (PC) and during (DC) the COVID-19 outbreak. In each
box, the top, middle, and bottom lines represent the 75, 50, and
25 percentiles of statistical data, respectively; the upper and lower
whiskers represent the 90 and 10 percentiles of statistical data, re-
spectively.

urban and rural sites, respectively; this is the subject of an
in-depth discussion in the following text.

To explore the dominant factors that determine the lo-
cal particle pH level and result in the high pH during the
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Figure 4. Diurnal patterns of pH at 10 sites before (PC) and during (DC) the COVID-19 outbreak. In each box, the top, middle, and bottom
lines represent the 75, 50, and 25 percentiles of statistical data, respectively; the upper and lower whiskers represent the 90 and 10 percentiles
of statistical data, respectively.

DC, sensitivity tests of pH to chemical species (i.e., TNHx ,
TH2SO4, TNO3, TCl, TNa, K+, Ca2+, and Mg2+) and me-
teorological parameters (i.e., T and RH) were performed. A
given range for a variable (i.e., TNHx) with corresponding
average values of other parameters (i.e., TH2SO4, TNO3,
TCl, TNa, K+, Ca2+, Mg2+, T , and RH) was input into
the model and simulated to compare its effects on pH. As
shown in Fig. S8, pH increases with an increase in the cation
concentrations (i.e., TNHx , Na+, K+, Ca2+, and Mg2+) as
well as a decrease in the anion concentrations (i.e., TH2SO4,
TNO3, and Cl−), T , and RH. According to the average val-
ues of input data during the PC (blue line in Fig. S8) and DC
(red line in Fig. S8) at U-ZK and R-PY sites, respectively,
the changes in pH (1pH in Fig. 5) indicate that the decrease
in TNHx concentration and the increase in T in the DC led
to a decrease in pH values (1pH: 0.09 at U-ZK and 0.08 at
R-PY sites) compared to the PC. However, this effect was
outweighed by the decrease in TH2SO4 (1pH: 0.07 and 0.8
at U-ZK and R-PY sites, respectively) and TNO3 (1pH: 0.05
and 0.4 at U-ZK and R-PY sites, respectively) concentrations
as well as the increase in K+ (1pH: 0.03 at U-ZK and 0.2 at
R-PY site) and Mg2+ (1pH: 0.01 at U-ZK and 0.04 at R-PY
site) concentrations in the DC, resulting in an overall increase
in pH values in the DC. Furthermore, the relationship be-
tween particle pH with the concentrations of Required-NHx
and Excess-NHx , which considers all chemical components,
is investigated to examine the dominant factor on the increas-
ing pH in the DC. As shown in Fig. 6, the higher Excess-NHx
concentrations in the DC led to higher increases in pH values
(1pH: 1 at U-ZK and 0.5 at R-PY site) than those in the PC
(1pH: 0.3 at U-ZK and 0.2 at R-PY site); thus Excess-NHx
concentrations may be the key factor in promoting the pH
values.

3.4 The influence of pH on HONO

The observed HONO concentrations decreased by 18 % and
54 % at U-ZK (0.8 ppb) and R-PY (0.9 ppb) sites in the
DC, respectively, compared to those (1.0 and 2.2 ppb) in
the PC. Moreover, all the known HONO production sources
rates including Pemi, POH+NO, Pground, Pground+hv, Paerosol,
Paerosol+hv, and Pnitrate (Fig. 7, Figs. S9 and S10) show a de-
creasing trend from the PC to DC, with total reductions of
38 % (from 30 % to 45 % in the scenario with the minimum
and maximum uncertainty, respectively) and 79 % (from
77 % to 82 % in the scenario with the minimum and maxi-
mum uncertainty, respectively) for U-ZK and R-PY, respec-
tively. At the U-ZK, Pground+hv decreased the most (84 %),
while at the R-PY, Pnitrate had the largest decrease of about
85 %, which was speculated to be related to the decrease in
NOx and NO−3 concentration in the DC. Note that the reduc-
tion rates in the overall known source and almost individual
sources were greater than the reduction rates in HONO con-
centrations (Figs. 7 and 8); thus we hypothesized that there
should be other sources capable of promoting HONO pro-
duction.

There were positive correlations between HONO with
SO2, Excess-NHx , SO2−

4 , and pH (Fig. S12) indicating that
Reaction (R1) might form an amount of HONO and con-
tribute to less reduction in the observed HONO concentra-
tions. Considering that Reaction (R1) mainly reacts in the
liquid phase, the calculated reaction rates of Reaction (R1)
under the conditions of RH> 60 % in the PC and DC peri-
ods are illustrated in Figs. 8 and S12. Despite the decrease
in NO2 and SO2 concentrations in the DC, the increase in
particle pH, increasing HSO−3 concentration in the aqueous
phase, promoted the Reaction (R1) reaction rates by 58 %
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Figure 5. Changes in pH (1pH) through the sensitivity tests (Figs. S5 and S6) by changing parameters between the PC and DC at the
(a) U-ZK and (b) R-PY sites.

Figure 6. Particle pH corresponds to increasing TNHx at U-ZK and R-PY sites to examine the effects of major indicators of NH3 (i.e.,
TNHx , Required-NHx , and Excess-NHx ) on aerosol acidity. Particle pH was calculated using a wide range of TNHx (25–130 µgm−3) and
average values of other parameters in the PC and DC of U-ZK and R-PY sites. The concentrations of TNHx , Required-NHx , and Excess-
NHx with corresponding pH values are marked by a hollow box, hollow circle, and arrow, respectively. The yellow and blue background
colors correspond to the NHx -poor and NHx -rich conditions, respectively.
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Figure 7. Comparison of HONO sources at (a) U-ZK and (b) R-PY sites before (PC) and during (DC) the COVID-19 outbreak. The
calculation method can be found in Sect. S4.

Figure 8. Decline ratios of (a) NO2, (b) HONO concentration, and (c) HONO production rate at U-ZK and R-PY sites before (PC) and during
(DC) the COVID-19 outbreak. The center point represents the mean value, and the upper and lower whiskers represent the 95 % confidence
interval of the mean. The shadows in the figure represent the uncertainties of NO2 measurement (± 10 %), HONO measurement (± 20 %),
and the HONO formation rate of Reaction (R1) (−78 % to 123 %), respectively.

and 59 % at U-ZK and R-PY (Fig. 8), respectively. Conse-
quently, the enhanced Reaction (R1) might prevent a large
decrease in HONO (18 % at U-ZK and 53 % at R-PY) under
the conditions of a significant reduction in vehicle emissions
and a decline of 66 % and 69 % in NO2 concentrations at U-
ZK and R-PY, respectively.

3.5 Uncertainty

According to sensitivity tests of pH (Fig. S8) and Re-
action (R1) (Fig. S12), pH increases with an increase in
the concentrations of cations (TNHx , TNa, K+, Ca2+, and
Mg2+) and OC as well as a decrease in the anion concentra-
tions (TH2SO4, TNO3, and Cl−), T , and RH. Reaction (R1)

is positively correlated with AWC, NO2, SO2, pH, and pres-
sure and negatively correlated with T . Therefore, two ex-
treme scenarios (i.e., the maximum and minimum rate sce-
narios) were evaluated to estimate the uncertainty of pH and
Reaction (R1) based on the measurement uncertainties at the
U-ZK and R-PY sites. Figure S13 suggests that the two ex-
treme scenarios can lead to −10 % to 7 % and −71 % to
125 % uncertainties at the U-ZK site and −10 % to 7 % and
−78 % to 123 % uncertainties at the R-PY site for pH and
Reaction (R1), respectively. Even considering the above un-
certainty in Fig. 8, it can still be observed that during the DC
period, the decrease in HONO was less than that of NO2, and
the rate of the Reaction (R1) increased.
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Considering the conclusions of this study are based solely
on observational data, there are certain limitations. For exam-
ple, only the changes in the Reaction (R1) reaction of PM2.5
were calculated, without considering variations in compo-
nents, pH values, and Reaction (R1) reaction rates of coarse
particles. Additionally, although this study selected scenar-
ios with RH >60 % to calculate Reaction (R1) to ensure the
presence of a liquid phase, there might still be some errors
in calculating Reaction (R1). Furthermore, due to thermo-
dynamic model calculations of pH values, changes in the
mixed state of particle components, and the omission of or-
ganic acids, alongside the absence of gaseous HNO3 and HCl
in this study, these factors may lead to inaccuracies in pH
value simulations and uncertainty in Reaction (R1) calcula-
tions (Pye et al., 2020; Haskins et al., 2018; Nah et al., 2018).
Therefore, there is a certain degree of uncertainty in the con-
clusions regarding the growth of Reaction (R1) reactions in
this paper. Nevertheless, by calculating the changes in the
reactions in Reaction (R1), this study provides a possible ex-
planation for the relatively small decrease in HONO during
the epidemic period.

4 Implications

HONO plays a crucial role as a precursor of OH radicals in
the tropospheric atmosphere (Xue, 2022). There have been
significant observations of high HONO concentrations in ur-
ban areas during the daytime, leading to a growing interest in
understanding its sources in atmospheric chemistry (Jiang et
al., 2022; Xu et al., 2019). The heterogeneous reaction mech-
anism of NO2 on aerosol surfaces is currently the focus of
research on HONO sources, particularly in regions with ele-
vated levels of atmospheric particulate matter, where it could
potentially become a major contributor to HONO production
(Zhang et al., 2022; Liao et al., 2021). One of the pathways
for heterogeneous reactions on aerosol surfaces is the redox
reaction of NO2 with SO2. However, the significance of this
reaction in HONO production in the real atmosphere is of-
ten overlooked, as it relies on the high pH of aerosols (Ge et
al., 2019). In recent years, there has been increasing atten-
tion on the enhancing effect of NH3 on the redox reaction,
with laboratory experiments demonstrating its ability to gen-
erate substantial amounts of HONO (Ge et al., 2019). This
study highlights the importance of this reaction based on ac-
tual atmospheric observations. Furthermore, numerous stud-
ies have indicated that if control over NH3 emissions con-
tinues to relax while SO2 and NO2 emissions decrease, the
particle pH in future China is expected to rise steadily (Xie
et al., 2020; Song et al., 2019; Wang et al., 2020). Conse-
quently, the redox reaction of NO2 with SO2 could become a
significant source of HONO in China. Therefore, it is crucial
to coordinate the control of SO2, NOx , and NH3 emissions
to avoid a rapid increase in the particle pH.

5 Conclusions

Elevated NH3 concentration was observed during the
COVID-19 pandemic at both urban and rural sites in China.
In addition to the rise in T and decrease in RH during the
COVID-19 pandemic, which favored the conversion of NH+4
to NH3, the significant decrease in sulfate and nitrate con-
centrations led to the decline in Required-NHx and was ben-
eficial to the particle-phase NH+4 portioning to gas-phase
NH3. Furthermore, under the environmental conditions of in-
creased anion concentrations (especially sulfate and nitrate)
and increased cation concentrations, the pH values increased
by 0.5 and 0.3 at U-ZK and R-PY sites during the pandemic,
respectively. Consequently, the high pH values accelerated
the formation rate of HONO through the oxidation–reduction
reaction of NO2 with SO2 (an increase of 58 % at U-ZK and
59 % at R-PY, respectively), partially compensating for the
decrease in HONO concentration caused by the decline in
vehicle emissions and NO2 and NO−3 concentrations during
the COVID-19 pandemic.
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