

Supplement of

Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta

Jie Wang et al.

Correspondence to: Haichao Wang (wanghch27@mail.sysu.edu.cn) and Yee Jun Tham (thamyj@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

- 19
- 20 Figure S1. The wind rose plot for nocturnal NO concentrations (ppbv) and wind
- 21 direction.

22

23 Figure S2. Peak diameter distribution during IAM and CAM period (5 min time resolution).

Figure S3. N₂O₅ uptake coefficients derived from scatter plots of K_{eq} [NO₂] τ (N₂O₅)⁻¹ versus 0.25cSa K_{eq} [NO₂], K_{eq} : the equilibrium constant between N₂O₅, NO₂, and NO₃; c: the mean molecular speed of N₂O₅; Sa: the aerosol surface area density; γ : the N₂O₅ uptake coefficient; kNO₃: the indirect NO₃ loss frequency.

Figure S4. Diurnal profiles (mean \pm standard deviation) of VOC oxidation rate by atmospheric oxidants, NO₃ and O₃. The pie chart represents the nocturnal fractions of these

34 35

36

Figure S5. (a) Nighttime NO mixing ratio with the gray dashed line denoting the detection limit of the instrument (0.4 ppbv). (b) The fraction ratio of NO to NO₃ loss, with the black

39 dashed line representing a maximum of 100%.

two oxidants to VOC oxidation.

40

Spacing	Period		
species	IAM	CAM	
Propene	143±90	92±72	
Butene	185±130	112 ± 101	
Pentenes	14 ± 8	10±6	
Styrene	11 ± 20	5±4	
DMS	17±6	18±5	
Isoprene	38±20	29±20	
Monoterpene	6±6	4±3	
Phenol	7±3	6±2	
Cresol	5±3	3±2	

41 Table S1. The concentrations of nine most abundant VOCs (pptv) in different air masses.

		k (298K)	A Factor	Ea/R	
	VOC	$(10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	$(10^{-12} \mathrm{cm}^3 \mathrm{molecule}^{-1} \mathrm{s}^{-1})$	(K)	Ref
	Anthropogenic com	pound			
1	Phenol	3800	/	/	1
2	Cresol	14000	/	/	1
3	Formaldehyde	0.00056	/	/	1
4	Hexanal	0.0027	/	/	1
5	i-Butane	0.106	/	/	1
6	n-Butane	0.046	/	/	1
7	Indene	4.1	/	/	1
8	Styrene	1500	/	/	1
9	Toluene	0.07	/	/	1
10	cis-2-Pentene	581	/	/	1
11	trans-2-Pentene	647	/	/	1
12	1-Pentene	15	0.39	0	2
13	cis-2-Butene	352	0.35	0	2
14	trans-2-Butene	390	/	/	1
15	n-Pentane	0.087	3.05	3060	2
16	Acetylene	0.21	/	/	3
17	Benzene	0.03	/	/	4
	Biogenic compound	1			
18	Isoprene	700	3.15	450	1
19	α-Pinene	1190	1.19	-490	1
20	β-Pinene	6160	/	/	1
21	DMS	1100	/	/	5
22	Propane	0.03	/	/	1
23	Propene	9.49	/	/	1
	1 Dutono	14	33	2880	2

Table S2. Reaction rate coefficients of VOCs with respect to NO₃ used in this study. 43

46 Ref3: IUPAC

Ref4: Estimated 47

48 Ref5: (Brown et al., 2012)

49

50 Reference:

51 Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem

Rev, 103, 4605-4638, 10.1021/cr0206420, 2003. 52

- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem Soc Rev,
 41, 6405-6447, Doi 10.1039/C2cs35181a, 2012.
- 55 Brown, S. S., Dube, W. P., Peischl, J., Ryerson, T. B., Atlas, E., Warneke, C., de Gouw, J.
- 56 A., Hekkert, S. T., Brock, C. A., Flocke, F., Trainer, M., Parrish, D. D., Feshenfeld, F.
- 57 C., and Ravishankara, A. R.: Budgets for nocturnal VOC oxidation by nitrate radicals
- aloft during the 2006 Texas Air Quality Study, Journal of Geophysical Research-
- 59 Atmospheres, 116, Artn D24305 10.1029/2011jd016544, 2011.