Supplement of Atmos. Chem. Phys., 24, 9733–9748, 2024 https://doi.org/10.5194/acp-24-9733-2024-supplement © Author(s) 2024. CC BY 4.0 License.

Supplement of

Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China

Yuan Dai et al.

Correspondence to: Xinlei Ge (caxinra@163.com)

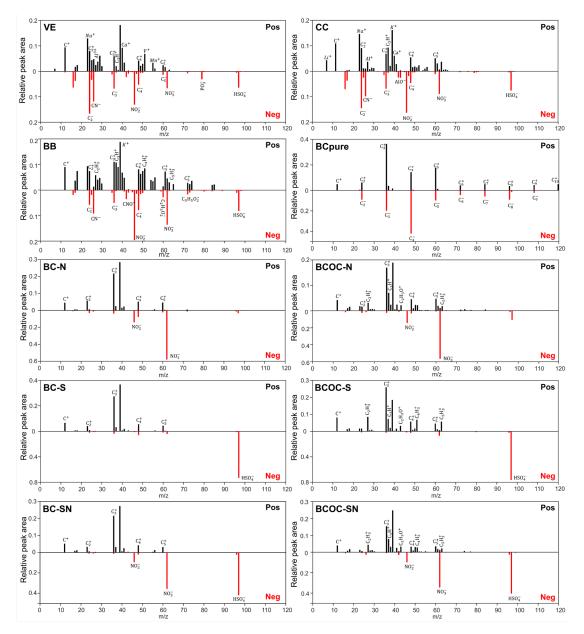

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Summary of descriptions of BCc particle types

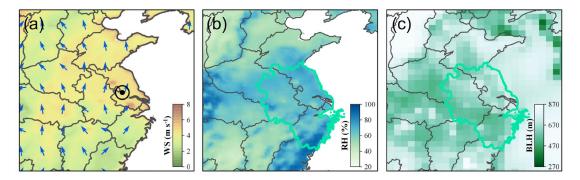
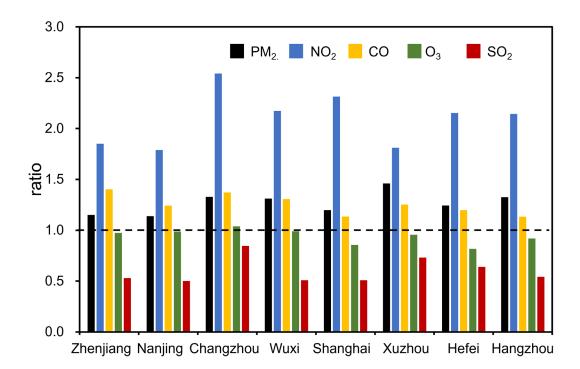

	Classification	Description of		
Type group	of particles	species	Characteristics ion markers	
BC-fresh	BCpure	Almost completely BC	$[C_n]^+$ and $[C_n]^-$	
	BB	BC from biomass burning	$39[K]^+$ (peak area >1500) and two of the signals in $45[CHO_2]^-$, $59[C_2H_3O_2]^-$ and $73[C_3H_5O_2]^-$ (peak area >200)	
	CC	BC from coal combustion	7[Li] ⁺ (peak area >200) or 23[Na] ⁺ , 27[Al] ³⁺ , 43[AlO] ⁻ (peak area >200) or 80[SO ₃] ⁻ , 97[HSO ₄] ⁻ (relative peak area >2%).	
	VE	BC from traffic emission	55[Mn] ⁺ (peak area >200 without [Na] ⁺ and [Al] ⁺) or 40[Ca] ⁺ (with abundant nitrate) or 79[PO ₃] ⁻ (with abundant nitrate) or 51[V] ⁺ and 67[VO] ⁺ (peak area >200).	
	Mix	BC mixed more than one sources	Same as the above.	
BC-aged	BC-S	BC internally mixed with sulfate	97[HSO ₄] ⁻ (relative peak area >70%).	
	BC-N	BC internally mixed with nitrate	$46[NO_2]^-$ and $62[NO_3]^-$ (relative peak area >70%).	
	BC-SN	BC internally mixed with sulfate and nitrate	$46[NO_2]^-$ and $62[NO_3]^-$ are comparable with $97[HSO_4]^-$.	
	BCOC-S	BC internally mixed with OC and sulfate	three of the signals in $37[C_3H]^+$, $43[C_2H_3O]^+$, $51[C_4H_3]^+$ and $63[C_5H_3]^+$ (relative peak area >2%) with sulfate.	
	BCOC-N	BC internally mixed with OC and nitrate	three of the signals in $37[C_3H]^+$, $43[C_2H_3O]^+$, $51[C_4H_3]^+$ and $63[C_5H_3]^+$ (relative peak area >2%) with nitrate.	
	BCOC-SN	BC internally mixed with OC, sulfate, and nitrate	three of the signals in $37[C_3H]^+$, $43[C_2H_3O]^+$, $51[C_4H_3]^+$ and $63[C_5H_3]^+$ (relative peak area >2%) with comparable nitrate and sulfate.	
BC-other	BC-other	Remaining BCc particles that do not belong to the BCc types listed above		

Table S2 Bands of PM_{2.5}, SO₂ and NO₂ in Copernicus Atmosphere Monitoring Service (CAMS) Global Near-Real-Time dataset


Band Names		Description
particulate_matter_d_less_than_25_um_surface		Surface mass concentration of PM _{2.5}
total_column_nitrogen_dioxide_surface	kg m ⁻²	Total surface column concentration of NO ₂
total_column_sulphur_dioxide_surface	kg m ⁻²	Total surface column concentration of SO ₂

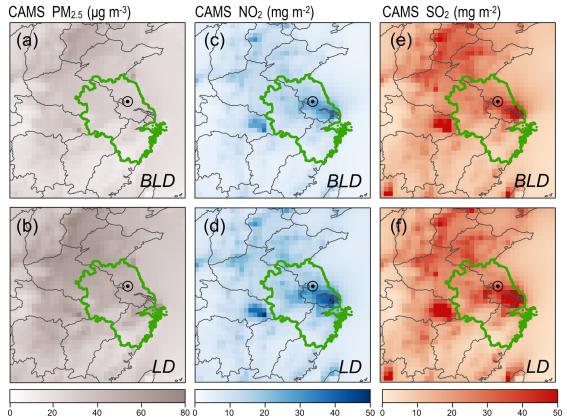

Figure S1. Average mass spectra of different types of BCc particles (Mass spectra of particles of Mix and BC-other types are not shown)

Figure S2. Meteorological conditions during the lockdown period (LD) based on the ERA5 reanalysis data. (a) Wind direction (WD, vectors) and wind speed (WS, contours) at 20 m. (b) Relative humidity (RH). (c) Boundary-layer height (BLH). The circle symbols in the maps indicate the location of Yangzhou and the green line regions represent the YRD area.

Figure S3. The ratios of gaseous and particulate levels in the major cities of the YRD compared to those in Yangzhou during the LD period. The black dashed line represents the pollution levels of Yangzhou.

Figure S4. Spaceborne measurements of PM_{2.5}, NO₂ and SO₂ from Copernicus Atmosphere Monitoring Service (CMAS) during the BLD and LD periods. (**a**, **b**) PM_{2.5} surface concentrations. (**c**, **d**) Total surface column concentrations of NO₂. (**e**, **f**) Total surface column concentrations of SO₂. The circle symbols indicate the location of Yangzhou and the green line regions represent the YRD area.

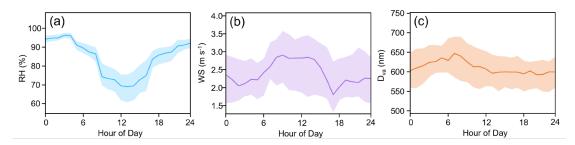
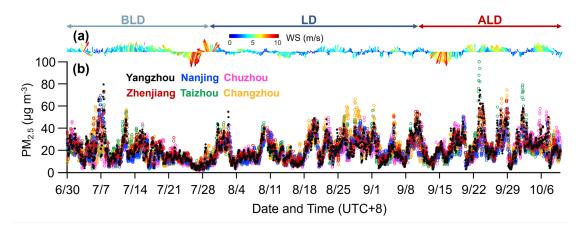



Figure S5. The diurnal variation of (a) relative humidity (RH), (b) wind speed (WS), and (c) vacuum aerodynamic dimeter (D_{va}) during the LD period (shaded area represents one standard deviation)

Figure S6. Temporal variations of **(a)** wind direction (WD) observed at the sampling site colored by wind speed (WS), and **(b)** PM_{2.5} concentration in Yangzhou and five surrounding cities in YRD, e.g., Nanjing, Zhenjiang, Changzhou, Taizhou, Chuzhou. Three campaign periods are also indicated.