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Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2)
and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological param-
eters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine
learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostation-
ary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly
incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentra-
tions. The inner machine learning model predicted the NMH from meteorological parameters, which were then
input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its
VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates;
i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully
trained model. Furthermore, NMH was identified as the second most important predictor variable, following the
VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with
varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2
concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a
slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This
study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column
measurements and highlights the significant advantages of geostationary satellites in providing detailed air pol-
lution information at an hourly resolution.
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1 Introduction

Nitrogen dioxide (NO2) is a pivotal trace gas within the
atmosphere, exerting substantial influence on the ecologi-
cal environment, air quality, and climate change (Myhre et
al., 2013). This significance is underscored by its role as
a prominent air pollutant with inhalable characteristics that
pose potential health risks (Xue et al., 2023). Additionally,
it serves as an essential precursor to the formation of sec-
ondary particles and ozone (Li et al., 2019). The origins
of NO2 are multifarious and intricate, stemming from di-
verse sources such as fossil-fuel-fired power plants, vehic-
ular emissions, industrial activities, biofuel combustion, and
residential cooking (Jion et al., 2023). Natural sources en-
compass wildfires, soil emissions, and lightning discharges
(Li et al., 2022). Concerted efforts, including the implemen-
tation of stringent emission control policies in China, have
resulted in a gradual reduction of NO2 concentrations (Fan
et al., 2020). Despite these positive trends, severe NO2 pol-
lution issues persist due to the heavy emissions associated
with China’s rapid economic development, particularly in ur-
ban agglomerations (Meng et al., 2018). The polluted regions
in China continue to exhibit NO2 concentrations that sur-
pass the safety standard set by the World Health Organization
(WHO) air quality guidelines (AQGs) (Chi et al., 2022).

While ground-based monitoring excels in accurately cap-
turing NO2 concentrations, the challenge lies in the low den-
sity and scattered distribution of observation stations (Wei et
al., 2022). The inherent limitations in the geographical cover-
age of these stations, coupled with the elevated costs, render
it challenging to effectively fulfill the requirements for mon-
itoring ground-level NO2 concentrations across extensive re-
gions (Kong et al., 2021). This spatial limitation introduces
substantial uncertainties when endeavoring to assess the lev-
els of exposure on a large scale (Chi et al., 2022). Satellite in-
struments offer continuous air quality monitoring with broad
spatial coverage (Li and Managi, 2022). Satellite-retrieved
vertical column densities (VCDs) of NO2 have been exten-
sively utilized to identify variations in NO2 pollution and
emissions of nitrogen oxides (NOx) across various regions
(Cui et al., 2021; Iqbal et al., 2022; Park et al., 2021). How-
ever, the official satellite products provide only the column
amount of NO2, not the ground-level concentrations (Lam-
sal et al., 2014). Consequently, there has been a discernible
surge in scientific research focused on deriving ground-level
NO2 concentrations through satellite data analyses.

The NO2 columns have been measured through polar sun-
synchronous low-Earth-orbiting (LEO) satellite instruments
(Yang et al., 2023). These LEO satellite instruments have a
daily overpass time at exact locations. However, NO2 pollu-
tion may vary significantly during different times of the day,
driven by emissions, meteorology, and atmospheric chem-
istry (Shen et al., 2023). The single measurement per day

from the LEO satellite instruments, typically taken around
noon or in the afternoon, may lead to an underestimation
of annual mean values (Qin et al., 2017). Previous studies
have explored the diurnal variations of NO2 by leveraging
the differences in overpass times among these LEO satellite
instruments (Boersma et al., 2008; Lin et al., 2010). How-
ever, these analyses are largely affected by the varied per-
formance of on-board monitoring sensors and unstable data
pairing (Hilboll et al., 2013). This highlights the importance
of using a quantitatively uniform air quality dataset with a
much higher temporal resolution from a single suite of on-
board monitoring sensors to provide new insights into the
diurnal variation of air pollution.

The Geostationary Environment Monitoring Spectrometer
(GEMS) stands as the inaugural satellite instrument launched
for the explicit purpose of monitoring both gaseous and
aerosol pollutants from a geostationary Earth orbit (GEO)
over Asia (Kim et al., 2020). It was launched successfully by
the Republic of Korea on 19 February 2020 and entered its
intended orbit on 6 March 2020. The primary objective of the
GEMS mission is to provide hourly columnar measurements
of critical air quality parameters, including NO2, ozone, and
aerosols, across the Asian region. Unlike traditional LEO
satellite instruments, the GEO-based GEMS provides more
frequent monitoring of the columnar concentration of air pol-
lutants, thereby enhancing our comprehension of the diurnal
variations of NO2 over Asia (Yang et al., 2023). Addition-
ally, the data acquired through GEMS measurements show
a significant improvement in spatial resolution compared to
most existing LEO measurements.

Various studies have been conducted to estimate ground-
level NO2 concentrations from satellite measurements, lever-
aging their ability to cover a large spatial extent (Fan et
al., 2021; Qin et al., 2020; Wu et al., 2021). The ma-
jor bridge linking the VCDs of NO2 with the ground-
level concentration is theoretically the NO2 mixing height
(NMH). Various meteorological conditions can govern the
variations in the NMH (Ahmad et al., 2024). For instance,
increased temperature facilitates the vertical dispersion of
NO2, leading to an increase in the NMH. To convert the
VCDs of NO2 into ground-level concentrations, studies have
employed various techniques, such as air quality models,
machine learning techniques, land-use regression, and geo-
graphically weighted regression (Chi et al., 2022; Lamsal et
al., 2008; Wei et al., 2022; Xu et al., 2021). These conver-
sion models have considered multiple meteorological factors,
such as temperature, humidity, and wind, along with the plan-
etary boundary layer height (PBLH) (Chi et al., 2022; Qin et
al., 2020; Wei et al., 2022).

Numerous past studies have highlighted the importance of
the boundary layer structure in governing the occurrence and
evolution of extreme air pollution episodes (Shi et al., 2020).
A significant relationship between a surge in surface air pol-
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lutant concentrations and a shallow PBLH has been exten-
sively reported (Miao et al., 2019; Su et al., 2020b). It has
also been recognized that air pollutants aloft can play a core
role in the evolution of extreme surface pollution episodes
via vertical mixing (Zhang and Rao, 1999). When the top of
the mixing layer reaches the aloft pollutant-rich layer dur-
ing the daytime, air pollutants can be entrained downwards,
which rapidly increases surface air pollutant concentrations
(Zhang et al., 2016). In addition to the vertical exchange, ra-
diative absorption and scattering by pollutants can modify
the boundary layer structure and consequently affect ground-
level pollutant concentrations. For instance, high loadings of
scattering pollutants can cool the air near the ground and re-
sult in a more stable boundary layer, which further worsens
air quality (Li et al., 2017). As a result, the PBLH has been
used as a proxy of the NMH because of its ability to reg-
ulate near-surface pollution levels. However, as NO2 may
not be uniformly distributed within the planetary boundary
layer, a significant difference may exist between the PBLH
and NMH. It is important to develop a conversion model that
directly considers the impacts of the NMH, which paves the
way to refine the processes of converting satellite-derived
columnar measurements into ground-level NO2 concentra-
tions (Ahmad et al., 2024).

Based on the GEMS measurements, Ahmad et al. (2024)
evaluated the impacts of meteorological factors on the varia-
tions in the NMH over China and applied a machine learning
method to predict the NMH from the meteorological param-
eters. In the present study, we developed a nested machine-
learning-based model to evaluate the effects of NMH on the
conversion of columnar NO2 measurements to ground-level
NO2 concentrations. The inner machine learning model pre-
dicted the NMH from the meteorological parameters. Subse-
quently, the predicted NMH was incorporated into the main
machine learning model to predict the ground-level NO2 con-
centrations from its VCDs. Furthermore, the satellite-derived
ground-level NO2 data were analyzed for subregions with
different geographic locations and urbanization levels. This
study aims to enhance our understanding of the effects of
NMH on the conversion of satellite-based columnar mea-
surements to ground-level NO2 concentrations. Additionally,
it seeks to enrich the information on spatial and diurnal pat-
terns of ground-level NO2 across China using the world’s
first geostationary environmental satellite.

2 Study area, data, and methodology

2.1 Study area

This study investigated the spatial and temporal variations in
ground-level NO2 concentrations using GEMS NO2 VCDs
and various ground measurements for 2021. The study area
is illustrated in Fig. 1, covering most of China between 18–
43° N and 103–123° E. Considering the varied characteristics
of air pollution in different regions of China, we divided the

study area into six subregions: northwestern China (NWC,
including Gansu, Ningxia, and Shaanxi); northern China
(NC, including Beijing, Tianjin, Hebei, Shanxi, and Inner
Mongolia); central China (CC, including Henan, Hubei, and
Hunan); eastern China (EC, including Shandong, Jiangsu,
Anhui, Shanghai, Zhejiang, Jiangxi, Fujian, and Taiwan);
southwestern China (SWC, including Sichuan, Chongqing,
Guizhou, and Yunnan); and southern China (SC, includ-
ing Guangdong, Guangxi, and Hainan). Satellite-derived
ground-level NO2 data were analyzed across these subre-
gions.

2.2 GEMS NO2 VCDs

The GEMS NO2 VCDs from its level-2 product were em-
ployed in this study. The NO2 VCD retrieval algorithm is
developed based on the differential optical absorption spec-
troscopy (DOAS) technique (Platt et al., 2008). It initially
computes slant column densities (SCDs) of NO2 within
the wavelength range of 432–450 nm. Subsequently, these
SCDs are transformed into VCDs using hourly air mass
factors (AMFs). The nominal detection limit for the NO2
VCDs is 1 × 1014 molec. cm−2, with a retrieval accuracy
of 1 × 1015 molec. cm−2. NO2 VCDs surpassing the GEMS
detection limit of 1 × 1017 molec. cm−2 were considered
noise and consequently excluded from further analysis. The
nominal spatial resolution of the GEMS NO2 product was
7 km× 7.7 km, by binning two pixels of 3.5 km× 7.7 km
each (Ahmad et al., 2024). Despite the irregular shape of
satellite measurement pixels due to east-to-west scans, this
study performed re-gridding, which standardized the VCDs
of NO2 onto a regular grid of 0.2°× 0.4° by calculating the
average of all the NO2 VCDs within the 0.2°× 0.4° grid
from 08:00 to 15:00 LT (local time; all instances of time
in the text are in local time) in China. Data were excluded
in the presence of cloudy conditions and solar zenith angles
greater than 70°. Additional information on the GEMS mis-
sion and retrieval algorithms is available in the study by Kim
et al. (2020).

2.3 Population data

We used the latest population data for 2021 from Oak Ridge
National Laboratory’s (ORNL) LandScan global product
(https://landscan.ornl.gov/, last access: 1 December 2023).
The LandScan population data are derived via an innova-
tive methodology that combines geographic information sci-
ence, remote sensing technology, and machine learning algo-
rithms. Operating at a remarkably fine resolution of approx-
imately 1 km, LandScan represents the most detailed global
population distribution data accessible. As the satellite NO2
measurements were on a regular grid of 0.2°× 0.4°, we re-
gridded the LandScan population data onto a regular grid
of 0.2°× 0.4°. The spatial distribution of population den-
sity (DP, people km−2) in the study area is shown in Fig. 2.
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Figure 1. Study area and six subregions shown as different background colors. Blue circles show distributions of ground-based NO2 moni-
toring stations. Yellow circles show the distributions of meteorological stations.

Based on population density, we divided the study region into
four categories: lightly populated (LP) when DP≤ 200 peo-
ple km−2; moderately populated (MP) when DP> 200 peo-
ple km−2 but ≤ 500 people km−2; highly populated (HP)
when DP> 500 people km−2 but ≤ 1000 people km−2; and
supremely highly populated (SHP) when DP> 1000 peo-
ple km−2. Satellite-derived ground-level NO2 data were ana-
lyzed across subregions with varying urbanization levels.

2.4 Ground-based NO2 and meteorological
measurements

In this study, we acquired hourly NO2 concentration data
for 2021 from ground air quality monitoring networks sit-
uated within the study region. The spatial distribution of 856
ground-based NO2 stations, sourced from the China National

Environmental Monitoring Center (https://www.cnemc.cn/,
last access: 1 September 2023) and the Taiwan Environmen-
tal Protection Administration (http://210.69.101.63/taqm/en/
default.aspx, last access: 1 September 2023), is shown as
blue circles in Fig. 1. Meteorological variables encompassing
temperature (T ), air pressure (P ), wind speed (WS), relative
humidity (RH), dew point (DP), visibility (VIS), and precip-
itation (PRECIP) were used in this study. These meteorolog-
ical parameters were acquired from the global telecommu-
nications system of the World Meteorological Organization.
The spatial distribution of 208 meteorological stations is il-
lustrated as yellow circles in Fig. 1.
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Figure 2. Spatial distribution of population density (DP, peo-
ple km−2) within the study area.

2.5 Locations matching between different datasets

Satellite measurements, characterized by their extensive spa-
tial coverage, stand in contrast to the localized nature of
ground measurements available at specific locations. To es-
tablish a correspondence between satellite measurements and
ground air quality monitoring networks, the satellite NO2
data specific to the geographical coordinates corresponding
to ground stations were meticulously extracted. Notably, the
locations of meteorological stations may differ from those
of air quality monitoring stations. Therefore, meteorological
data were assigned to air quality monitoring stations situated
within a 50 km radius of the meteorological station. The fil-
tering process for model training involved the selection of
stations with valid observations for all meteorological and
air quality variables. These station-based datasets were used
to train the machine learning model. For predicting ground-
level NO2 concentrations from satellite measurements, all
meteorological variables were mapped onto a regular grid of
0.2°× 0.4° using the bilinear interpolation method. The spa-
tial interpolation results of these meteorological parameters,
together with the satellite measurements on the same regular
grid, were employed to estimate ground-level NO2 concen-
tration at a resolution of 0.2°× 0.4°.

2.6 Nested machine learning model to consider the
effects of NMH

Machine learning models have been successfully employed
in estimating ground-level NO2 concentrations using satellite

data, typically following a two-fold procedural framework.
Initializing this process involves the construction of a regres-
sion model, which is conventionally utilized to establish the
overarching relationship between ground-measured NO2 and
its influencing factors (Chen et al., 2019; Chi et al., 2022).
In this phase, the sample data undergo division into a train-
ing dataset and a test dataset for model training and subse-
quent verification, respectively. The attainment of an optimal
regression model is facilitated through parameter optimiza-
tion techniques. Subsequently, the second phase entails the
application of the regression model, where relevant data are
inputted for application analysis to estimate the results.

Within machine learning studies, the ensemble learning
paradigm emerges as a prevailing methodology to amalga-
mate diverse learning algorithms into a cohesive regression
model characterized by robust performance across multi-
faceted domains. Owing to the disparate methodologies em-
ployed in the generation of individual learners, ensemble
learning bifurcates into two principal categories: the sequen-
tial instantiation of individual learners, as encapsulated by
the boosting approach, and the concurrent instantiation of in-
dividual learners, exemplified by bagging and random for-
est (Friedman et al., 2000; Prasad et al., 2006). The boost-
ing algorithm, a variant of the lifting technique, is instru-
mental in diminishing variance in supervised learning scenar-
ios, wherein distinct models are formed through the employ-
ment of disparate loss functions. XGBoost leverages both
first-order and second-order derivatives to enhance the pre-
cision of model loss, a strategy that proves instrumental in
achieving higher accuracy. Notably, during the process of se-
lecting the optimal splitting point, XGBoost facilitates par-
allel optimization. This concurrent optimization significantly
mitigates computational complexity, thereby effectively cur-
tailing overfitting tendencies in the model. XGBoost stands
out as a notably efficient end-to-end gradient boosting tree
framework, adept at transforming numerous weak learn-
ers into robust ones through boosting. This framework fre-
quently demonstrates reduced computational overhead and
enhanced predictive accuracy when compared with alterna-
tive ensemble tree models (Chen and Guestrin, 2016). More-
over, XGBoost exhibits a lower susceptibility to overfitting
by mitigating the bias within the context of bias–variance de-
composition. XGBoost has been empirically demonstrated to
adeptly capture nonlinear relationships between predictions
and predictors, yielding precise estimations through its regu-
larized boosting methodology. This approach constructs the
ultimate model by iteratively refining simpler and weaker
models. Each subsequent tree learns from its predecessors
and updates residual errors via gradient descent to optimize
the loss function. Within the XGBoost framework, an aug-
mented penalty term is incorporated into the error function to
fine-tune the objective function, thereby smoothing the final
learned weights and mitigating overfitting tendencies. Addi-
tionally, to further mitigate overfitting, feature sub-sampling
and shrinkage techniques are integrated (Liu, 2021). The
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study by Van et al. (2023) also demonstrated the XGBoost
algorithm as the most suitable lightweight algorithm based
on the comparative analysis of three machine learning mod-
els, i.e., XGBoost, decision tree, and random forest. The XG-
Boost algorithm has proven to be useful in various air quality
studies, including those focusing on the conversion between
satellite-based column measurements and ground-level con-
centrations (Shao et al., 2023; Zhao et al., 2023). More de-
tails on the XGBoost regression model can be found in Chi
et al. (2022).

In this study, a nested XGBoost machine learning model
was developed to incorporate the NMH to convert columnar
measurements into ground-level NO2 concentrations. The
schematic illustration of the nested XGBoost machine learn-
ing model implemented in this study is depicted in Fig. 3.
Firstly, an inner machine learning model (i.e., random forest)
was applied to predict the NMH using meteorological vari-
ables as input parameters. The evaluation of the predicted
NMH showed a good agreement with the measurement-
based results, with respective coefficient of determination
(R2) values of 0.84 and 0.96 for the 10-fold cross-validation
and fully trained model (Ahmad et al., 2024). The NMH
dataset was then mapped onto a regular grid of 0.2°× 0.4°
and incorporated into the main machine learning model (i.e.,
XGBoost regression) to estimate ground-level NO2 concen-
trations. The main XGBoost machine learning model em-
ployed 11 input parameters, including GEMS NO2 VCDs,
NMH, 2 temporal variables (i.e., month of the year and hour
of the day ranging from 08:00 to 15:00), and 7 meteorologi-
cal parameters (i.e., T , P , WS, RH, DP, VIS, and PRECIP).
The months are numbered from 1 to 12, corresponding to
January through December, exactly as per the real months
of the observations. All common meteorological variables
available from the ground monitoring network were used in
this study. The ability of these meteorological variables to
regulate near-surface NO2 levels is ranked by feature im-
portance in the machine learning model. In our previous
study, these meteorological parameters were shown to im-
pact the vertical mixing of NO2 to varying extents (Ahmad et
al., 2024). For instance, elevated temperatures are conducive
to the upward mixing of air pollutants. Increased wind speed
is associated with an unstable atmosphere and can impact
NO2 levels by modifying the vertical dispersion and hori-
zontal transport of air pollutants. Increased surface air pres-
sure often leads to large-scale sinking air motion, which sup-
presses the vertical dispersion of NO2. In this study, all input
parameters were filtered based on available satellite observa-
tions for the year 2021. To reveal the impacts of the NMH,
we compared the performance of the basic XGBoost machine
learning model without considering the NMH (Model I) and
the nested XGBoost machine learning model after consider-
ing the NMH (Model II).

To avoid overfitting and assess the efficacy of the model,
the 10-fold cross-validation methodology was employed.
The dataset was partitioned into 10 groups of comparable

size, with nine folds utilized for model fitting. The remaining
fold served as a validation set to gauge model performance.
This iterative process was repeated 10 times, with each fold
serving as the validation set, to evaluate the model’s perfor-
mance across all folds comprehensively. A set of widely rec-
ognized statistical metrics, including R2, root mean square
error (RMSE), mean deviation (MD), and mean absolute per-
centage error (MAPE), were adopted to quantify the model’s
performance. In addition to the cross-validation, the XG-
Boost regression model was trained using the entire dataset
of input parameters to predict the ground-level NO2 concen-
trations on a regular grid of 0.2°× 0.4° across the study re-
gion for the year 2021. The fully trained model was assessed
using the same statistical indicators to evaluate its predictive
performance comprehensively.

2.7 Hourly, seasonal, and annual correction factors

There were some missing data for satellite NO2 VCDs due to
cloudy conditions between 08:00 and 15:00 for 2021. There-
fore, we applied the correction factors, representing the ra-
tio between the average NO2 from all ground measurements
and the average ground NO2 measurements when satellite
data were available (Eq. 1). These correction factors were
used to obtain a bias-corrected estimation of satellite-derived
ground-level NO2 concentrations for each hour from 08:00
to 15:00.

F (k)=
1
m

∑m
i=1Cg(i,k)

1
n

∑n
i=1Cg(i,k)

(1)

Here, F (k) represents the correction factor for hour k (each
hour from 08:00 to 15:00), Cg represents ground-measured
NO2 concentrations, m shows all ground measurements of
NO2, and n corresponds to ground measurements of NO2
only when the satellite data were available. For a specific
hour, the maximum possible value of m index in Eq. (1) is
365 for 1 year. The station-based spatial distributions of cor-
rection factors for each hour from 08:00 to 15:00 are shown
in Fig. S1 in the Supplement. As the predicted NO2 con-
centrations in the study region were on a regular grid of
0.2°× 0.4°, the bilinear interpolation was applied to map the
correction factors for each hour from 08:00 to 15:00 on the
same regular grid of 0.2°× 0.4° (Fig. S2). The bias-corrected
ground-level NO2 concentrations for each hour from 08:00 to
15:00 were then estimated using Eq. (2).

Cs(k)= Cs,0(k)×F (k), (2)

where Cs(k) represents the bias-corrected satellite-estimated
ground-level NO2 concentrations for the hour k, and Cs,0(k)
represents initially predicted NO2 concentrations.

Further, as the satellite data were available only during
the daytime from 08:00 to 15:00, there were also missing
satellite data for nighttime and other hours of the day be-
yond 08:00 and 15:00. Therefore, for seasonal correction fac-
tors, we calculated the ratio between the seasonal average of
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Figure 3. Schematic diagram of the nested XGBoost machine learning model, including an inner model to predict the NMH from meteoro-
logical values and main XGBoost regression model to convert the column measurements into ground-level NO2 concentrations. The basic
XGBoost model (Model I) does not consider NMH from the inner model and utilizes only 10 input variables for testing and training: satellite
NO2, 2 temporal variables, and 7 meteorological variables. The nested XGBoost model (Model II) considers the NMH from the inner model
an additional input variable, along with the other 10 input variables used for the basic model. Therefore, the nested model utilizes 11 input
variables for testing and training: satellite NO2, 2 temporal variables, 7 meteorological variables, and the NMH predictions from the inner
model.

all available ground-measured NO2 concentrations for 24 h
and the seasonal average of ground-measured NO2 when the
satellite data were available. The station-based and interpo-
lated spatial distributions of correction factors for each sea-
son (i.e., spring, summer, fall, and winter) are presented in
Fig. S3. Subsequently, Eq. (2) was used to calculate the bias-
corrected ground-level NO2 concentrations for each season.
Similarly, to obtain the annual correction factor, we estimated
the ratio between the annual average of all available ground-
measured NO2 concentrations for 24 h and the annual aver-

age of ground-measured NO2 when the satellite data were
available (Eq. 3).

F =

1
j

∑j

i=1Cg(i)
1
p

∑p

i=1Cg(i)
(3)

Here, F represents the annual correction factor, Cg rep-
resents ground-measured NO2 concentrations, j shows all
ground measurements of NO2, and p corresponds to ground
measurements of NO2 only when the satellite data were
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available. For the annual correction factor, the maximum pos-
sible value of j index in Eq. (3) is 8760 for 1 year. The spatial
distributions of station-based and interpolated annual correc-
tion factors are shown in Fig. S4. Then, Eq. (2) was used for
the bias correction of annual ground-level NO2 concentra-
tions.

3 Results

3.1 Evaluations of the nested XGBoost machine
learning model and its feature contribution

The basic XGBoost model, referred to as Model I, was
trained and evaluated by considering GEMS NO2 VCDs
together with temporal and meteorological variables as in-
put parameters. Then, the nested XGBoost model, referred
to as Model II, was trained and evaluated by considering
the NMH as input parameters in addition to the input pa-
rameters of Model I. Figure 4a shows the 10-fold cross-
validation of Model I. It depicts a value of 0.73 for R2, while
the RMSE, MD, and MAPE were 8.06 µgm−3, 0.09 µgm−3,
and 39.68 %, respectively. The 10-fold cross-validation of
Model II after considering the NMH is revealed in Fig. 4c,
which shows an improved R2 value of 0.93 and a lower
RMSE of 4.19 µg m−3, MD of 0.01 µgm−3, and MAPE of
14.78 %. Further, we trained Model I and Model II on the
entire dataset of the input parameters for the year 2021. The
evaluations of the fully trained Model I and Model II are pre-
sented in Fig. 4b and d, respectively. Again, Model II shows
a lower bias and an improved R2 value after considering the
influences of NMH (e.g., R2 increases from 0.88 to 0.99).
These results clearly demonstrate that the inclusion of NMH
has a great influence on the model’s performance. By adding
NMH as an input parameter to the machine learning model, it
can better capture the vertical distributions of NO2 and hence
can predict the ground-level NO2 concentrations with higher
accuracy and lower bias. Given the superior performance of
Model II in accurately predicting ground-level NO2 concen-
trations, we used the predictions from Model II for further
analysis in this study.

A total of 11 features were involved in the predictions
of ground-level NO2. These features include GEMS NO2
VCDs, NMH, two temporal variables (hour of the day and
month of the year), and seven meteorological variables (T ,
P , WS, RH, VIS, DP, and PRECIP). Based on the XGBoost
machine learning model, the feature contribution of input pa-
rameters in descending order is presented in Fig. 5. GEMS
NO2 VCDs were identified as the top predictor variable with
a feature importance of 54.98 %. The second important pre-
dictor was NMH, with a contribution of 25.64 %. The tem-
poral variables were ranked third and fourth, with an impor-
tance of 3.23 % and 3.21 % for the month of the year and hour
of the day, respectively. They were followed by the meteoro-
logical parameters with a contribution of 2.45 % from tem-
perature, 2.23 % from visibility, 2.01 % from relative humid-

ity, 1.86 % from pressure, 1.84 % from wind speed, 1.63 %
from precipitation, and 0.92 % from dew point. Among the
predictors, the dominant contributors to the predictions were
GEMS NO2 VCDs and NMH, accounting for 80.62 % of the
predictive power. Temporal variables made a modest con-
tribution of 6.44 %, while meteorological parameters con-
tributed only 12.94 % to the overall prediction accuracy.

The Shapley additive explanation (SHAP) values pre-
sented in Fig. 6 were estimated from the XGBoost machine
learning model to understand the impacts of individual in-
put variables on the model’s predictions. The analysis re-
veals that higher values of GEMS NO2 VCDs correspond
to higher predictions of ground-level NO2 concentrations.
In comparison, lower values of GEMS NO2 VCDs result
in lower predicted levels of ground-level NO2. Conversely,
lower NMH values are associated with higher predicted
ground-level NO2 concentrations, whereas higher NMH val-
ues are linked to lower predicted ground-level NO2 concen-
trations. For temporal variables, the month of the year in-
dicates the intra-annual pattern of ground-level NO2, with
lower concentrations observed in warm seasons and higher
concentrations in cold seasons. On the other hand, the hour
of the day indicates the diurnal variations of ground-level
NO2 values, with higher concentrations occurring during the
morning and lower values during the afternoon. However, it
is noted that the SHAP values for the meteorological vari-
ables, including temperature, are all small, clustered around
zero, and have limited influence on the prediction results.
The major and distinct impact on the model’s performance
for predicting ground-level NO2 concentrations is observed
for GEMS NO2 VCDs and NMH.

3.2 Spatial distributions of ground-level NO2
concentrations

Based on the satellite-derived ground-level NO2 concentra-
tions (mentioned as ground-level NO2 concentrations from
hereon), Fig. 7 shows an example of the spatial distribu-
tions of ground-level NO2 concentrations for each hour from
08:00 to 15:00 on 29 September 2021. The figure depicts a
notable diurnal pattern of ground-level NO2, with the high-
est values observed at 08:00 and the lowest values observed
at 15:00, following a decreasing trend from 08:00 to 15:00.
A few GEMS NO2 VCDs were missing due to high cloud
fractions during some hours. Additionally, it should be noted
that satellite measurements are only available during the day-
time. We employed correction factors based on ground mea-
surements to address the data missing issues resulting from
clouds and temporal gaps (see Sect. 2.7).

The bias-corrected ground-level NO2 concentrations were
applied in the further analyses. Figure 8 shows the spatial
distributions of the annual average ground-level NO2 con-
centrations for the year 2021 across the study region, includ-
ing four urban agglomerations: the Beijing–Tianjin–Hebei
(BTH) region, the Yangtze River Delta (YRD), the Pearl
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Figure 4. The 10-fold cross-validation (a) and the validation of a fully trained model (b) for satellite-estimated ground-level NO2 concen-
trations from basic Model I without considering the NMH. The 10-fold cross-validation (c) and the validation of a fully trained model (d) for
satellite-estimated ground-level NO2 concentrations from nested Model II after considering the NMH. The red dotted line represents a 1 : 1
relationship. The solid black line is the line of best fit between the ground-measured NO2 and the satellite-estimated NO2. The scattered dots
represent the individual NO2 values for each ground measurement and satellite-based estimation. The color scale ranging from red to blue
represents the density of the NO2 values, with red indicating high density and blue representing low density.

Figure 5. Relative importance of individual input features (i.e.,
GEMS NO2 VCDs, NMH, temporal variables, and meteorological
parameters) in the XGBoost machine learning model.

River Delta (PRD), and the Sichuan Basin (SCB). Most ur-
ban agglomerations depicted ground-level NO2 concentra-
tions around 40 µgm−3 or even higher. The highest ground-
level NO2 concentrations were observed in the BTH region,
with a spatial distribution characterized by higher values in
the region’s central, southern, and southeast parts and lower
concentrations in the northern and southwestern parts. In the
YRD region, elevated values were observed over Shanghai,
the southern part of Jiangsu, and the northern part of Zhe-
jiang. The PRD region exhibited the highest ground-level
NO2 concentrations in its central region, along with Guang-
dong’s coast and central areas. In the SCB, the western
part of Chongqing depicted the highest ground-level NO2
concentrations, which can be attributed to its large popula-
tion and higher emissions. The presence of a few scattered
clusters of NO2 pollution in the SCB could be attributed
to economic factors and the influence of topography (Li et
al., 2023). These spatial patterns are in good agreement with
previous studies conducted using LEO satellite instruments
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Figure 6. Shapley additive explanation (SHAP) values from the
XGBoost machine learning model to explain the impacts of individ-
ual input variables on the model’s prediction of ground-level NO2
concentrations.

(Chi et al., 2022; Qin et al., 2020; Wei et al., 2022; Wu et
al., 2021; Xu et al., 2021).

Considering the human health risks associated with NO2,
we evaluated the population exposure levels for different
provinces in the study region. The provincial-level NO2 con-
centrations were estimated from the annual average ground-
level NO2 concentrations. Figure 9 compares the spatial
mean and population-weighted mean of NO2 concentra-
tions for individual provinces in descending order by the
population-weighted mean. The population-weighted mean
NO2 concentrations were consistently higher than the spatial
mean NO2 concentrations, indicating that relying solely on
the spatial mean may underestimate the population exposure
level. The underestimation of population exposure levels us-
ing the spatial mean was more pronounced in provinces with
centralized populations (e.g., Hebei and Guangdong).

The population in the province of Tianjin was exposed to
the highest levels of NO2, with a population-weighted NO2
mean of 40.26 µgm−3. This level of exposure is close to the
WHO interim target 1 (IT-1) of 40 µgm−3. The NO2 expo-
sure level of people living in Hebei, Shanghai, Shandong,
and Jiangsu exceeded the IT-2 levels of 30 µgm−3. The NO2
exposure levels for Beijing and Zhejiang were slightly un-
der the IT-2 levels, with population-weighted means of 28.86
and 28.25 µgm−3, respectively. Residents in Henan, An-
hui, Shanxi, Hubei, Sichuan, Hunan, and Jiangxi provinces
were exposed to NO2 levels exceeding the IT-3 levels of
20 µgm−3. All provinces depicted population exposure lev-
els of NO2 exceeding the AQG levels of 10 µgm−3. Hainan
had the lowest population-weighted mean NO2 concentra-
tions of 10.57 µgm−3, which closely approached the levels
set by the AQG.

The annual average ground-level NO2 concentrations were
further evaluated for all subregions with different geolo-
cations and urbanization levels. Results are presented in
Fig. 10. Overall, the highest NO2 concentrations were ob-
served in NC, followed by EC, CC, NWC, SWC, and SC.
Additionally, compared to lightly populated areas, the highly
populated areas exhibited higher NO2 concentration levels,
primarily due to increased emissions and a more developed
economy (Qiu et al., 2023). Among all subregions, the high-
est NO2 concentrations for highly populated and supremely
highly populated areas were found in the NC region, while
the highest NO2 concentrations for lightly populated areas
were observed in the EC region. In the highly populated ar-
eas in the NC region, NO2 concentrations exceeded IT-2 lev-
els and were nearly double the concentrations of lightly pop-
ulated areas. NO2 concentrations in highly populated areas
of NWC, NC, CC, SWC, and SC exceeded the IT-3 levels.
Only NC, CC, and EC exceeded the IT-3 level for moder-
ately populated areas. Furthermore, all the subregions and
their urbanization categories, including the lightly populated
areas, depicted their NO2 values higher than the AQG level.

3.3 Seasonal variations of ground-level NO2
concentrations

Similar to the annual average, the estimation of seasonal-
average NO2 incorporated correction factors to address the
data missing issues resulting from clouds and in the night-
time. Based on the bias-corrected NO2 data, the seasonal-
average NO2 concentrations for lightly populated, moder-
ately populated, highly populated, and supremely highly
populated areas are shown in Fig. 11. Among all subregions,
the ground-level NO2 concentrations were highest in winter.
This can be attributed to the more stable atmospheric struc-
ture and lower precipitation during this season, which cre-
ates less favorable conditions for the dispersion and deposi-
tion of ground-level NO2. Additionally, the reduced photol-
ysis rate of NO2 due to low temperatures in winter leads to
an increased residence time of NO2 in the atmosphere (Xu
et al., 2021). The temperature inversion in winter can fur-
ther prolong the lifetime of the ground-level NO2, leading to
higher accumulations near the ground. Furthermore, the ele-
vated concentrations in winter can be attributed to increased
energy consumption for heating purposes.

Among the six subregions, NC and EC depicted the
highest NO2 concentrations, reaching levels close to IT-1
(40 µgm−3) in winter for highly populated areas. Conversely,
the lowest ground-level NO2 concentrations were observed
during summer for all six subregions. During this season, the
increased precipitation coupled with the monsoon-induced
atmospheric convection fosters wet deposition and disper-
sion of ground-level NO2. Additionally, abundant sunlight
promotes the decomposition of NO2. Furthermore, the NO2
emissions are generally lower in summer than in winter
(Bhattarai et al., 2021; Fan et al., 2020; Tian et al., 2019).

Atmos. Chem. Phys., 24, 9645–9665, 2024 https://doi.org/10.5194/acp-24-9645-2024



N. Ahmad et al.: NO2 using GEMS 9655

Figure 7. Spatial distributions of the satellite-derived hourly ground-level NO2 concentrations on 29 September 2021, for each hour from
08:00 to 15:00.

Figure 8. Spatial distributions of annual average ground-level NO2 concentrations for 2021 derived from satellite measurements in the study
region (a) and in the four major urban agglomerations in China: (b) the Beijing–Tianjin–Hebei (BTH) region, (c) the Yangtze River Delta
(YRD), (d) the Pearl River Delta (PRD), and (e) the Sichuan Basin (SCB). This annual average concentration represents the 24 h average
throughout the year of 2021 after the bias correction for the missing data issue.
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Figure 9. Spatial mean and population-weighted mean ground-
level NO2 concentrations for 2021 in different provinces of China
in the study region.

Considering the different population densities in the subre-
gions, the NO2 pollution levels were lowest in lightly popu-
lated areas and highest in highly populated areas for all sea-
sons. In lightly populated areas, the average NO2 concentra-
tions were approximately 50 % of those observed in highly
populated areas.

3.4 Diurnal variations of ground-level NO2
concentrations

The estimations of hourly averaged ground-level NO2 con-
centrations incorporated correction factors to address data
gaps caused by clouds. Based on the bias-corrected NO2
data, Fig. 12 shows the spatial distribution of average ground-
level NO2 concentrations for each hour between 08:00 and
15:00 in 2021. Consistent spatial patterns were observed dur-
ing this time range, with higher ground-level NO2 concen-
trations in highly populated urban areas characterized by el-
evated NOx emissions. In the morning, clear indications of
high ground-level NO2 concentrations were noticed over ur-
ban centers, reflecting NOx emissions related to traffic. The
spatial gradients of ground-level NO2 concentrations were
notably pronounced from urban centers to the outskirts dur-

ing this time. However, these spatial gradients were less pro-
nounced during noon and afternoon hours. Compared to the
highly populated urban areas, ground-level NO2 distributions
in lightly populated areas displayed lower diurnal variability.
These variations in ground-level NO2 distributions can be at-
tributed to changes in NOx emission patterns, meteorological
conditions, and photochemistry throughout different times of
the day (Shen et al., 2023). For instance, Xu et al. (2023)
observed the minimum NO2 lifetime at noon, which can be
attributed to higher photochemical reaction rates resulting
from increased temperature and ultraviolet radiation (Gao et
al., 2023).

The diurnal variations of ground-level NO2 concentrations
for the subregions are illustrated in Fig. 13. In most subre-
gions, the peak of ground-level NO2 was observed between
08:00 and 09:00 in highly populated areas. Additionally, a
slight increase in NO2 concentrations was observed in the
late afternoon (i.e., 15:00). In lightly populated and moder-
ately populated areas, NWC and NC depicted a decreasing
trend from 08:00 to 13:00, followed by a slight increase at
14:00 and 15:00. Lightly populated areas of CC showed an
increasing trend from 08:00 to 10:00, followed by a nearly
constant value. However, moderately populated areas of CC
showed a decreasing trend from 08:00 to 13:00 and then dis-
played an increasing trend at 14:00 and 15:00. EC exhibited
increasing values from 08:00 to 09:00, followed by a de-
creasing trend until 14:00, and again increased until 15:00
for both lightly populated and moderately populated areas.
In lightly populated and moderately populated areas of SWC,
NO2 concentrations showed an increasing trend from 08:00
to 10:00, followed by a decreasing trend throughout the after-
noon. For the SC region, NO2 concentrations remained rela-
tively consistent from 08:00 to 10:00, followed by a decreas-
ing trend in both lightly populated and moderately populated
areas.

Overall, highly populated areas exhibited peak ground-
level NO2 concentrations during the early morning rush hour
(08:00–09:00), followed by a decreasing trend. The mini-
mum NO2 levels were observed at 13:00–17:00, with a slight
increase observed at 15:00. This diurnal pattern of ground-
level NO2 concentrations aligns with the findings of Zhang
et al. (2023). The decrease in NO2 levels from early morning
to afternoon can be attributed to reduced traffic emissions,
increased photochemical consumption, and higher NMH lev-
els (Ahmad et al., 2024; Xie et al., 2016). In lightly popu-
lated and moderately populated areas, a slight morning peak
was observed around 09:00 or 10:00, occurring later than the
peak observed in urban areas. This delayed morning peak in
these areas can be attributed to regional dispersions originat-
ing from urban sources. The diurnal pattern of ground-level
NO2 concentrations observed in this study is consistent with
previous studies using ground-based air quality monitoring
stations (Shen et al., 2023; Yu et al., 2020; Zhao et al., 2016).
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Figure 10. Annual mean ground-level NO2 concentrations for 2021 in subregions with different geolocations (e.g., NWC, NC, CC, EC,
SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). The vertical bars represent 1σ standard deviation.

Figure 11. Seasonal variations in ground-level NO2 concentrations for 2021 in subregions with different geolocations (e.g., NWC, NC, CC,
EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). The vertical bars represent 1σ standard deviation.

4 Discussion

The scientific contributions of this study are summarized as
follows. First, the results of this study have contributed to
enriching our scientific understanding of the relationship be-
tween columnar NO2 and ground-level NO2. We have proven
that the mixing height of NO2 plays a key role in linking
satellite-derived VCDs of NO2 with ground-level concentra-
tions, though the impacts of NMH were rarely considered in
a direct manner in previous studies. Secondly, the analyses in

this study have improved our understanding of the spatiotem-
poral variations of NO2, particularly the diurnal variations
that cannot be obtained from common polar-orbiting satel-
lite measurements. The diurnal variations in NO2 concentra-
tion differ between urban and rural areas, resulting from the
different emission sources and pollutant dispersion charac-
teristics. Thirdly, the analyses of NO2 variation have policy
implications for air pollution control. It was found that the
spatial coincidence between NO2 concentrations and popu-
lation density increased overall population exposure and the
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Figure 12. Spatial distributions of the average ground-level NO2 concentrations for each hour between 08:00 and 15:00 in 2021.

associated health impacts. This suggests that for more ef-
fective reduction of overall population exposure and better
protection of public health, control efforts should be further
targeted at highly populated and highly polluted areas. Ad-
ditionally, land-use and city planning should encourage pop-
ulation redistribution away from the most heavily polluted
regions.

PBL characteristics are pivotal in regulating the verti-
cal dispersion and horizontal transport of atmospheric pol-
lutants, subsequently determining the vertical variations of
NO2 and its concentration at the Earth’s surface (Akther et
al., 2023; Xiang et al., 2019). Results in this study high-
light the key role of the mixing height of NO2 in linking
satellite-derived VCDs of NO2 with ground-level concentra-
tions. To convert the VCDs of NO2 into ground-level NO2
concentrations, previous conversion models have used PBLH
as a proxy of the NMH, because of its ability to regulate
ground-level pollution levels. For example, within a stable
PBL, pollutants like NO2 from ground sources mainly ac-
cumulate near the ground surface (Yuval et al., 2020). In-
tense solar heating can induce elevated temperatures, foster-
ing an unstable PBL that is conducive to the upward disper-
sion of air pollutants including NO2 (Kalmus et al., 2022; Su
et al., 2020a). The wind pattern is connected to atmospheric
stability and can impact NO2 levels by modifying pollu-

tants’ dispersion and horizontal transport (Yin et al., 2019).
High surface air pressure often leads to large-scale sinking
air motion, resulting in the limited vertical diffusion of NO2
(Chow et al., 2018). Elevated relative humidity levels act as
a suppressive factor, constraining the PBLH and exacerbat-
ing the accumulation of pollutants near the ground (Xiang et
al., 2019). Therefore, different meteorological factors signif-
icantly impact the vertical distribution of NO2 in the atmo-
sphere (Huang et al., 2021). This study developed a conver-
sion model that directly considers the impacts of the NMH.
The predictions of NMH from the inner model directly in-
corporated the impacts of meteorological parameters (T , P ,
WS, RH, DP, VIS, and PRECIP). It was found that temper-
ature, wind speed, dew point, and visibility were positively
correlated with NMH, while relative humidity and air pres-
sure mainly demonstrated an inverse relationship (Ahmad et
al., 2024). The atmosphere’s dynamic and thermodynamic
aspects played crucial roles in developing the vertical struc-
ture of NO2. The incorporation of the NMH in the model
paved the way to refine the processes of converting satellite-
derived columnar measurements into ground-level NO2 con-
centrations.

Two models were tested and trained: Model I, which
did not consider NMH, and a nested Model II, which in-
corporated NMH. The validation results demonstrated that
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Figure 13. Diurnal variations in ground-level NO2 concentrations from 08:00 to 15:00 for 2021 in subregions with different geolocations
(e.g., NWC, NC, CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). The vertical bars represent 1σ standard
deviation.

nested Model II exhibited more promising outcomes than
Model I, suggesting that including NMH significantly in-
fluenced the model’s performance. Including NMH as an
input parameter in the machine learning model could bet-
ter capture the vertical distributions of NO2 and thus pre-
dict ground-level NO2 concentrations with improved accu-
racy and performance. Additionally, the hour-by-hour 10-
fold cross-validation depicted a distinct improvement in the
ground-level NO2 estimations for nested Model II consider-
ing NMH as an input parameter (Fig. S5 for Model I with-
out NMH and Fig. S6 for nested Model II with NMH). The
R2 values for Model I without NMH were 0.63 for 08:00,
0.70 for 09:00, 0.69 for 10:00 to 13:00, 0.55 for 14:00, and
0.39 for 15:00. The improved R2 values for nested Model II,
which includes NMH, were 0.85 for 08:00, 0.90 for 09:00
to 11:00, 0.91 for 12:00, 0.93 for 13:00, 0.89 for 14:00,
and 0.85 for 15:00. Similarly, nested Model II, considering
the NMH, depicted significantly reduced biases compared to
Model I without NMH. The ground-level NO2 estimations
for all hours were significantly improved when considering
NMH, as it directly incorporates the vertical distributions of
NO2. During the early morning hours, most of the NO2 is
distributed near the ground. However, as the day progresses,

NMH increases, and the ground-level NO2 tends to be mixed
vertically. Further, the improvements in ground-level NO2
estimations were assessed using 10-fold cross-validation for
different population categories, i.e., lightly populated, mod-
erately populated, highly populated, and supremely highly
populated. The nested Model II, considering NMH, depicted
notable improvements compared to Model I without NMH
(Fig. S7). The improved R2 values for nested Model II con-
sidering NMH were 0.91 for lightly populated areas and
0.92 for the other three population categories compared to
Model I without NMH, which depicted an R2 value of 0.63
for lightly populated, 0.73 for moderately populated, 0.77 for
highly populated, and 0.74 for supremely highly populated
areas. The RMSE for nested Model II considering NMH was
improved and observed below 5 µgm−3 for all population
categories compared to Model I without NMH, which de-
picted RMSE values around 8–9 µgm−3 for different popu-
lation categories. The MAPE for nested Model II consider-
ing NMH was also improved for all population categories,
and around 15 % and lower values were observed. These im-
provements depict that nested Model II considering NMH ef-
fectively captures the spatial distributions of vertical mixing
of ground-level NO2 across all population categories. The
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spatiotemporal distributions and diurnal patterns of NMH
have been previously described by Ahmad et al. (2024).
Compared to Model I without NMH, the performance of
the ground-level NO2 estimations through nested Model II
considering NMH showed significant improvement at the
grid points where ground-based observations were available
(Fig. S8). The correlation coefficients for grid-based 10-
fold cross-validation were improved to 0.8–1.0 for nested
Model II considering NMH compared to Model I without
NMH, which depicted lower correlation coefficients. Fur-
thermore, nested Model II considering NMH also depicted
lower RMSE values for grid-based estimations.

GEMS, the world’s first GEO-based environmental satel-
lite instrument, offers a new opportunity for monitoring air
quality across extensive regions, providing unprecedented
spatial and temporal resolution. The quality of GEMS NO2
VCDs, obtained from the level-2 product, has been evaluated
using ground-based instruments in various regions. Encour-
agingly, a good agreement has been observed between the
GEMS NO2 VCDs and measurements from various ground-
based instruments (Ahmad et al., 2024; Kim et al., 2023; Li et
al., 2023). The results presented in this study emphasize the
significant advantage of geostationary satellites in providing
air pollution information at an hourly resolution. They enable
the assessment of diurnal variations in air pollution across
different areas, ranging from lightly populated to supremely
highly populated regions. This represents a substantial im-
provement over traditional LEO-based satellite instruments.
Furthermore, these GEO-based measurements are valuable
supplements to traditional measurements from ground-based
air quality monitoring networks, primarily concentrated in
urban areas, leaving vast rural regions without observations.

The diurnal variations of ground-level NO2 concentrations
across China depicted distinct gradients across all subregions
and population categories. This gradient reflects regional
disparities in industrialization, urbanization, and transporta-
tion infrastructure of Chinese megacities and rural areas.
Highly populated areas depicted the highest concentrations
of ground-level NO2 during the early morning hours, at-
tributed to intensified vehicular traffic in the early morning
hours and higher industrial emissions. In contrast, lightly
populated areas exhibited lower ground-level NO2 concen-
trations and a delayed peak of around 1 to 2 h, indicat-
ing lower anthropogenic influence and more contribution
from regional transport contributed by the NO2 emissions
from highly populated areas. Various driving factors influ-
ence these diurnal variations in ground-level NO2 concentra-
tions, each contributing differently across different regions.
For instance, anthropogenic emissions dominate in highly
populated urban and suburban areas, characterized by traf-
fic emissions peaking in the morning and late afternoon (Liu
et al., 2018; Naiudomthum et al., 2022). This phenomenon
is particularly pronounced in highly populated areas with
high traffic density. As morning rush hour subsides, reduced
vehicular traffic activities in highly populated areas lead to

a gradual decline in NO2 emissions. However, atmospheric
processes such as higher mixing height of NO2, more disper-
sion, and dilution also come into play, resulting in reduced
ground-level NO2 concentrations. Increased turbulent mix-
ing in the lower atmosphere helps disperse pollutants from
their sources in highly populated areas, gradually decreasing
ground-level NO2 concentrations. Additionally, photochem-
istry also influences the diurnal variations of NO2 concen-
trations. The ratio of NO2 to NO is influenced by radiation,
ozone, and peroxyl radicals. During the daytime, NOx under-
goes oxidation through radical-mediated reactions, forming
nitric acid and organic nitrates, with their levels depending
on radiation, ozone, and volatile organic compounds. As a
result, the lifetime of NO2 reaches its lowest point around
noon, typically lasting a few hours during summer. Further-
more, atmospheric transport contributes to the diurnal varia-
tion of NO2, particularly in highly populated areas and their
surrounding regions (Zhang et al., 2023). The hourly ground-
level NO2 concentration results presented in this study pro-
vide high-resolution information on the diurnal variations in
ground-level NO2 pollution levels across different regions
and demographic patterns.

The spatial distribution of ground-level NO2 concentra-
tions in the study region revealed significant regional dis-
parities, with higher levels observed in urban agglomerations
with high population densities (e.g., BTH, YRD, and PRD
regions) than in lightly populated areas (e.g., western China).
Even within the NC region, the highly populated urban areas
had NO2 concentrations nearly double those of lightly popu-
lated rural areas. These spatial disparities are due to distribu-
tions of NO2 emission sources that vary with population den-
sities, decreasing from highly populated to lightly populated
areas. In highly populated urban areas in regions like BTH,
YRD, and PRD, mobile NOx emissions from dense road
networks contribute to a pronounced increase in NO2 lev-
els. Moreover, the short lifespan of NO2 due to atmospheric
chemical reactions results in elevated concentrations near
emission sources in highly populated areas, such as road-
ways, accompanied by rapid declines in NO2 concentrations
with increasing distance from highly populated areas (Lee
et al., 2018). Furthermore, the diverse terrains, land cover,
and climates observed in subregions with different popula-
tion categories collectively influence vertical and horizon-
tal airflows and rates of NO2 formation and deposition, and
they contribute to spatiotemporal variations in ground-level
NO2 concentrations between the highly populated and lightly
populated areas across China. Additionally, the population-
weighted mean NO2 concentrations were consistently higher
than the spatial mean NO2 concentrations in most provinces
across China. This is due to the spatial coincidence between
NO2 concentrations and population density. These results in-
dicate that the use of simple spatial average concentrations
can lead to a systematic underestimation of overall popula-
tion exposure and the associated health impacts. It is impor-
tant to use high-resolution NO2 data to accurately quantify
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true population exposure. Furthermore, the adverse impacts
of high NO2 concentrations in highly populated urban areas
suggest that for a more effective reduction of overall popu-
lation exposure and better protection of public health, con-
trol efforts should be further targeted at highly populated and
highly polluted areas. Targeted control programs to reduce
pollutant levels at population hotspots should be more cost-
effective than trying to reduce pollutant concentrations ev-
erywhere. Additionally, control policies can be implemented
by encouraging the public to relocate to less polluted areas
through land-use development and urban planning.

The GEMS measurements, while valuable, are subject to
uncertainties and limitations. One of the primary challenges
is the impact of cloudy conditions, which can affect the re-
liability of GEMS measurements. To address this issue, data
with a cloud fraction exceeding 30 % were intentionally ex-
cluded from the analysis. This approach aimed to strike a
balance between obtaining an adequate number of measure-
ments and minimizing the influence of cloud-contaminated
data. Additionally, data with a solar zenith angle exceed-
ing 70° were excluded. Regions with a higher likelihood of
cloud cover had more missing data, and there was a rela-
tively small sample size available in the early morning due
to the absence of solar radiation. Another inherent limitation
of satellite measurements is the lack of data during night-
time. The lack of nighttime data and cloudy conditions leads
to skewness in the GEMS measurements, especially for phe-
nomena that exhibit diurnal variations. To align the satellite-
estimated NO2 with ground-measured NO2, correction fac-
tors were applied for hourly, seasonal, and annual averages
(see Sect. 2.7). These correction factors are based solely on
the ground NO2 measurements, which results in reduced and
minimized biases associated with them. However, some lim-
itations still exist, as these correction factors rely on an an-
cillary data source with low spatial resolution. Spatially, the
spatial distributions of the correction factors were obtained
by interpolating the ground monitoring data. We made the
assumption that the correction factors vary smoothly in the
areas between different stations. However, atmospheric con-
ditions and NO2 emissions can vary significantly across dif-
ferent regions at different times of the day. Additionally, we
applied a constant correction factor for seasonal and annual
averages, which may not be able to correct the detailed bias
from hour to hour. It is important to note that the data used
in this study correspond to version 1 of the GEMS product.
Ongoing efforts are being made to enhance the accuracy of
GEMS products, and subsequent versions are expected to of-
fer improved quality and reliability.

Further, to explore the impact of missing GEMS NO2
VCDs and associated biases on estimating average ground-
level NO2 concentrations between 08:00 and 15:00, we cal-
culated the difference between the average NO2 concentra-
tions derived from all ground measurements and the aver-
age ground-measured NO2 concentrations when satellite data
were available. The hourly variations of these concentration

Figure 14. Difference between the average NO2 concentrations
from all ground measurements and the average ground-measured
NO2 concentration when satellite data were available for each hour
from 08:00 to 15:00. The vertical bars represent whiskers that ex-
tend to the most extreme data points within 1.5 times the interquar-
tile range from quartile 1 (25th percentile of data) and quartile 3
(75th percentile of the data).

differences for 2021 are presented in Fig. 14. The issue of
missing data consistently underestimated the average NO2
concentrations for each hour. The degree of underestima-
tion was higher during hours with more missing data. For
instance, at 15:00, 14:00, 13:00, and 08:00, the mean under-
estimation was −6.27± 2.38, −4.38± 1.94, −2.60± 2.50,
and −1.57± 1.19 µgm−3, respectively. The underestimation
gradually decreased for 12:00, 11:00, and 09:00. Notably, the
underestimation was at its minimum for 10:00, with a value
of −0.16± 1.61 µgm−3.

5 Conclusion

This study developed a nested machine learning model to in-
corporate the NMH as an input parameter in the method-
ological framework. The model’s performance in predict-
ing ground-level NO2 concentrations from satellite colum-
nar measurements was then explored. Among the testing and
training of the two models, the model that considered the
NMH as one of the input parameters demonstrated more
promising results. This suggests that the inclusion of the
NMH significantly impacts the model’s performance. Fur-
thermore, the NMH was identified as the second most im-
portant predictor variable after the GEMS NO2 VCDs. The
diurnal variations of satellite-derived ground-level NO2 con-
centrations exhibited a clear gradient across all subregions,
ranging from highly populated to lightly populated areas.
In highly populated areas, peak ground-level NO2 concen-
trations were observed during the early morning rush hour
(08:00–09:00). In areas categorized as lightly populated or
moderately populated, a slight morning peak was observed
around 09:00 or 10:00, occurring later than in urban sites.
In highly and supremely highly populated areas in north-
ern China, NO2 concentrations still exceeded the WHO IT-
2 standards and were double the levels observed in lightly
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populated regions. These satellite-derived ground-level NO2
concentrations provided high-resolution information on the
diurnal variations of NO2 pollution levels across different re-
gions and levels of urbanization. It is important to note that
the GEMS measurements, while valuable, are subject to un-
certainties and limitations, particularly due to the impact of
cloudy conditions and the absence of nighttime data. Cor-
rection factors were applied in this study to mitigate these
issues and address the inherent challenges of satellite mea-
surements. Some limitations still exist, as these correction
factors rely on an ancillary data source with low spatial reso-
lution. Additionally, we applied a constant correction factor
for seasonal and annual averages, which may not be able to
correct the detailed bias that occurs from hour to hour. Over-
all, the findings of this study enhance our understanding of
the effects of the mixing height of NO2 on the conversion
of satellite-based columnar measurements to ground-level
NO2 concentrations. They also provide valuable insights into
the spatial and diurnal patterns of ground-level NO2 across
China.
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