

Supplement of

Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from $\Delta^3\text{-}carene$ ozonolysis

Yuanyuan Luo et al.

Correspondence to: Yuanyuan Luo (yuanyuan.luo@helsinki.fi) and Mikael Ehn (mikael.ehn@helsinki.fi)

The copyright of individual parts of the supplement might differ from the article licence.

S1. Details for chamber facilities

20

Figure S1. Experimental set-ups. The set-up of experiments conducted in the COALA chamber is shown in panel (a), while the setup in the AURA chamber is shown in panel (b). The dashed lines represent injections only used for specific experiments.

COALA chamber

- The COALA chamber is a 2 m³ Teflon reactor, which is maintained at room temperature (25 ± 1°C) and under dry conditions with RH < 1%. To prevent contamination from external sources, the chamber was operated at a slightly elevated pressure (~3 Pa). More details of the COALA chamber can be found in Riva et al. (2019). During this campaign, the chamber was run in continuous mode with a total inflow of 40 L min⁻¹ (average residence time: ~50 min). Each experiment ran for a minimum of 140 minutes, allowing the chamber to reach a steady state. For a more in-depth discussion about the dynamics of our continuous mode "steady-state" chamber, see Peräkylä et al. (2020). Purified dry air was injected into the chamber as the main inflow, while ozone was generated and injected by passing 5 L min⁻¹ purified air through a Dasibi 1008-PC ozone generator. Δ³-carene or α-pinene (for comparison) was introduced using a syringe pump with a 0.5 L min⁻¹ nitrogen flow as the carrier gas. The injection rate of VOC or the strength of the ozone generator was adjusted to achieve different oxidation conditions in the chamber. In some experiments (Table S1), approximately 200 ppm of CO from a gas bottle was introduced to the chamber as an OH scavenger. The majority of the outflow from the chamber was sampled by instruments, while the remaining flow was flushed out as exhaust. A schematic of the COALA chamber setup is shown in Figure S1(a).
- Measurements of temperature, RH, and pressure inside the chamber were obtained using a Vaisala temperature and humidity probe (INTERCAP® HMP60) and a differential pressure sensor (Sensirion SDP1000-L025). To monitor the precursors and oxidation products of Δ³-carene ozonolysis, two state-of-the-art mass spectrometers were utilized. A proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000, Ionicon Analytik GmbH) was deployed to measure VOC concentrations,
 calibrated before the experiments directly with a mixture of VOCs, including monoterpenes. A chemical ionization atmospheric pressure interface time-of-flight mass analyser (CIMS, Tofwerk AG/Aerodyne Research, Inc.) was employed to
 - probe oxygenated products from Δ^3 -carene ozonolysis, with a primary focus on HOMs. Nitric acid (HNO₃) and an X-ray source were used to produce nitrate reagent ions (NO₃⁻) for the CI inlet. The equipped long TOF analyser enables the

measurement of ions within the HOM region (m/z 300 – 600 Th) with a mass resolving power of ~8000 Th. During the experiments, the NO₃-CIMS continuously sampled chamber flow at a rate of 10 L min⁻¹ and recorded averaged mass spectra every 10 s. The data from both PTR-TOF and NO₃-CIMS were pre-processed using the tofTools MATLAB package (version 612). Chamber background was determined during the period before VOC injection in each experiment. All data collected in the COALA chamber, unless specified otherwise, were subtracted with chamber background and averaged to 10 min resolution. Further technical details and instrument specifications have been presented by Jordan et al. (2009) and Jokinen et

50 al. (2012) for PTR-TOF and NO₃-CIMS, respectively.

_

Table S1. Experimental conditions for Δ^3 -carene (a) and α -pinene (b) ozonolysis conducted in the COALA chamber. For all experiments, the chamber was run in continuous mode at room temperature (25 ± 1°C) and under dry conditions (RH < 1%).

(a)	Date	Experiment	injected Δ^3 -carene (ppb)	injected O ₃ (ppb)	injected CO (ppm)
	2023-2-9	1	10±1	30±2	
		2	20±2	30±2	
		3	20±2	30±2	~200
		4	30±2	30±2	~200
		5	30±2	30±2	
	2023-2-10	6	10±1	30±2	
		7	30±2	30±2	
		8	30±2	50±3	
	2023-2-11*	9	30→0	30±2	
	2023-2-13	10	20±2	30±2	
	2023-2-14	11	20±2	30±2	~200

(b)	Date	Experiment	injected α-pinene (ppb)	injected O ₃ (ppb)	injected CO (ppm)
	2023-2-6	12	20±2	30±2	
		13	25±1	45±1	
	2023-2-7	14	50±2	60±1	
		15	50±2	60±1	
	2023-2-8	16	45±2	13±1	
		17	45±2	13±1	~200
		18	45±2	13±1	
	2023-2-14	19	20±2	30±2	
		20	20±2	30±2	~200

* The Δ^3 -carene in the syringe ran out at around 10:40 am, causing the injection of Δ^3 -carene decreased from ~30 ppb to 0 ppb gradually

55 afterwards.

						NO ₃ -CIMS cond	ition
Date	Experiment	∆ ³ -carene (ppb)	O ₃ (ppb)	T (°C)	RH (%)	flow from chamber* (L min ⁻¹)	Setting [#]
2022-1-11	20A	10±5	181±15	20.2±0.1	0±0	5	1
2022-1-13	10A	10±5	174±15	10.1 ± 0.1	0 ± 0	5	1
2022-1-24	10D	10±5	174±15	10.2 ± 0.1	78±2	10	2
2022-1-31	10E	20±5	169±15	10.2 ± 0.1	76±1	10	2
2022-2-2	0A	10±5	159±15	0.1 ± 0.1	1.6±1.6	10	3
2022-2-4	10B	10±5	171±15	10.1 ± 0.1	$0.4{\pm}0.8$	10	3
2022-2-5	20B	10±5	181±15	20.2 ± 0.1	0±0	10	3

Table S2. Experimental conditions for Δ^3 -carene ozonolysis experiments conducted in the AURA chamber. Δ^3 -carene and O₃ are the starting concentrations of VOC and O_3 at experiment time = 0 min, respectively.

* The total inlet flow of NO₃-CIMS was 10 L min⁻¹ for all experiments, and the flow from chamber shows the proportion of the total inlet flow sampled directly from the chamber.

[#] During the AURA chamber campaign, the settings of NO₃-CIMS was modified three times. Setting 1 was the original setting. In Setting 2, the TofDaq setting was kept the same as in Setting 1, but the TPS setting was adjusted. In Setting 3, the TPS setting remained the same as in Setting 2, while the ToFDaq setting was altered. By rapidly switching between Setting 2 and Setting 3 at some point during the experiments, a correction factor of 2.43 was determined for Setting 2 to enable comparability of the data collected using this setting with

65

70

75

60

that obtained using Setting 3.

The AURA chamber is a 5 m³ Teflon chamber situated in a temperature-controlled room (temperature range: -16 - 26 °C). A detailed description of the AURA chamber can be found in Kristensen et al. (2017). The setup of the AURA chamber is illustrated in Figure S1(b). Throughout the campaign, the AURA chamber was run in batch mode, meaning the sources and sinks for products were progressively accumulated from the beginning of each experiment. For each experiment, the chamber was first filled with purified air, and a specific amount of water vapour and O₃ were injected to achieve the desired RH and O₃ levels. The experiment commenced with the introduction of 10 or 20 ppb Δ^3 -carene into the chamber, marking the time as experiment time = 0 min. The conditions of the ozonolysis experiments conducted in the AURA chamber are briefly summarized in Table S2, while a comprehensive description of the experiments can be found in Thomsen et al. (2024). In general, the HOM formation of Δ^3 -carene ozonolysis was examined under dry conditions (RH < 15%) at 20 °C (20A & B), 10 °C (10A & B), and 0 °C (0A), and twice under humid conditions (RH = 80%) at 10 °C with two different Δ^3 -carene loadings (10D: 10 ppb and 10E: 20 ppb).

As shown in Figure S1(b), instruments for both gas-phase and particle-phase measurements were utilized. Particle size distributions were determined using a scanning mobility particle sizer (SMPS, TSI Incorporated), while the chemical

- 80 composition of the aerosols was analysed with a high-resolution time-of-flight aerosol mass spectrometer (AMS, Aerodyne Research, Inc., DeCarlo et al. (2006)), and a filter-inlet for gases and aerosols chemical ionization mass spectrometer (FIGAERO, Lopez-Hilfiker et al. (2014)). Additionally, particles were continuously collected with a sequential spot sampler (Series 110 A, Aerosol Devices, Eiguren Fernandez et al. (2014); Eiguren-Fernandez et al. (2014)) for detailed offline analysis using an ultra-high-performance liquid chromatography (UHPLC) coupled with a quadrupole time-of-flight mass spectrometry
- 85 (QTOF-MS, Compact, Bruker). For HOM measurement, a NO₃-CIMS with a long TOF analyser (Tofwerk AG/Aerodyne Research, Inc.) was employed (Jokinen et al., 2012). The inlet flow rate of the NO₃-CIMS was 10 L min⁻¹ for all experiments listed in Table S2. However, for 20A and 10A experiments, a dilution flow of purified air (5 L min⁻¹) was added to the sample flow from the chamber (5 L min⁻¹), while the total 10 L min⁻¹ of the inlet flow was from the chamber for the remaining experiments. Due to unknown instrumental issues causing a dramatic decrease in sensitivity, certain voltage and acquisition
- 90 settings of the NO₃-CIMS had to be manually adjusted during the campaign to improve the signal strengths. This adds additional uncertainties to our ability to compare different experiments. Some key parameters of the instrument in each experiment are shown in Figure S2. By rapidly switching between Setting 2 and 3 at certain points during the experiments, a correction factor of 2.43 was estimated for scaling data collected with Setting 2 to data collected with Setting 3 (Figure S3). The NO₃-CIMS data were pre-processed with the tofTools MATLAB package (version 612). Chamber background was
- 95 determined during the period before VOC injection in each experiment, and the all NO₃-CIMS data were after background subtraction.

This study is exclusively concentrated on the formation of HOMs from Δ^3 -carene ozonolysis in the gas phase. For further insights into particle phase properties and composition, detailed analyses using AMS, SMPS, and UHPLC-QTOF-MS are provided in the work of Thomsen et al. (2024). Additionally, research on the partitioning of volatile organic compounds, employing the FIGAERO, is extensively discussed in the study by Li et al. (2024).

100

Continuous vs. batch-mode chamber

Continuous and batch modes are commonly employed in environmental chamber studies to investigate atmospheric processes. In continuous mode, exemplified by the COALA chamber in our study, there is a constant inflow of air with steady concentrations of reactants, matched by an equal total outflow. The balance between sources and sinks allows the chamber to reach a steady state, characterized by consistent concentrations of precursors and products. The duration to achieve steady state

105 reach a steady state, characterized by consi primarily depends on the total inflow rate

In contrast, the batch mode, as demonstrated by the AURA chamber in this study, involves introducing a fixed amount of reactants into a clean chamber all at once, with no additional inflow during the experiment. This leads to a high initial concentration of precursors that diminishes over time due to chemical reactions and physical processes, with product

110 concentrations accumulating progressively. As the instrument continued sampling, the volume of the Teflon bag decreased throughout the experiment. The estimated volume fraction used in the chamber bag was 50% for each experiment. Batch mode, however, requires careful consideration of mixing to prevent the formation of local hot spots and ensure homogeneity. Continuous mode offers the advantage of studying reaction dynamics under stable conditions, reducing the effects of local concentration disparities and ensuring a uniform reaction environment over time, while batch mode effectively simulates abrupt atmospheric events and allows for the examination of the aging process over longer periods.

Figure S2. NO₃-CIMS pressures in the (a) SSQ and (b) BSQ chambers, and (c) signal counts of different experiments conducted in the AURA chamber. Box plots in panel (c) show averages of the sum of all ion signals (TIC: red) and the sum of all reagent ion signals (RIC: blue). Signal intensities of reagent ions are also shown separately with different markers in panel (c). The colours of shaded areas in all panels represent different settings of NO₃-CIMS.

115

Figure S3. Scatter plot of the normalized signal intensity with Setting 2 and Setting 3. The colour shows the mass-to-charge ratio in the spectra where the compound was identified. The black solid lines indicate y : x=2.43. For experiments 0A, 10B, 20B and 10E in the AURA chamber, after the experiments had been running for around 70-80 min, the TofDaq settings of the instrument were quickly switched to the another (Setting 3 to 2 for 0A, 10B, and 20B; Setting 2 to 3 for 10E) to collect data for 5-10 minutes. As the change of the products was slow at that time, the difference in the signal intensities was mainly caused by the change of the setting. We estimated a factor of 2.43 to convert the data collected with Setting 2 to Setting 3 based on the averaged slope of the linear fit.

S2. HOM dynamics and yield estimates

130 The rate of change in HOM concentration within a chamber can be expressed as:

$$\frac{d[HOM]}{dt} = Production_{HOM} - Loss_{HOM}$$
(S1)

Where $Production_{HOM}$ and $Loss_{HOM}$ are the total production and loss rates of HOMs, respectively. [HOM] is the concentration of HOMs in the chamber, which can be estimated as:

$$[HOM] = C \times \frac{\sum_{i} HOM_{i} \cdot NO_{3}^{-}}{NO_{3}^{-} + HNO_{3}NO_{3}^{-} + (HNO_{3})_{2}NO_{3}^{-}}$$
(S2)

- Here, C is a calibration factor, and in this study, a value of $C=1\times10^{10}$ cm⁻³ was used based on typical values reported earlier (Ehn et al., 2014; Jokinen et al., 2012; Jokinen et al., 2014). HOM_i·NO₃⁻ is the signal intensity of a cluster of HOM species with NO₃⁻, and (HNO₃)_jNO₃⁻ (j=0,1,2) is the signal intensity of reagent ions measured by NO₃-CIMS. Note that the NO₃-CIMS was not calibrated in this study, and therefore quantification of HOMs has a very large uncertainty, estimated to be at least a factor of 3. The ionization of HOMs with the NO₃-CIMS is expected to be collision-limited, i.e. HOMs collide with NO₃⁻ forming clusters irreversibly, which is why we can roughly estimate the instrument sensitivity even without a direct calibration
- (Ehn et al., 2014). Nevertheless, the large uncertainty must always be kept in mind when interpreting the data. For HOM formation during Δ^3 -carene ozonolysis, the production rate of HOMs can be written as $k_1\gamma$ [carene][O₃], where k_1 is the carene-O₃ reaction rate coefficient, γ is the HOM molar yield, [carene] is the Δ^3 -carene concentration, and [O₃] is the ozone concentration. The losses of HOMs arise from condensation on the chamber walls and particles, and flush-out from the chamber (in the case of a continuous-mode chamber). The total loss rate of HOMs can be represented as k_{loss} [HOM], where

k_{loss} is the total loss rate of HOMs. The COALA chamber was operated in continuous mode, meaning that the inflow of all gases and VOCs was constant. When

the chamber reached a steady state, the concentrations of all reactants and products should be constant as well. Therefore, the Equation S1 can be written as:

150

155

$$\frac{d[HOM]}{dt} = k_1 \gamma [carene][O_3] - k_{loss}[HOM] = 0$$
(S3)

$$\Rightarrow \gamma = \frac{k_{loss}[HOM]}{k_1[carene][O_3]}$$
(S4)

Since no seed particles were injected in the COALA chamber, and the dataset suggested none or only a negligible amount of particles were formed, the total loss rate of HOMs was mainly driven by loss to the walls and flush-out. The k_{loss} was determined to be ~ 0.0025 s⁻¹ in the COALA chamber. This determination was achieved by modelling the decay of HOMs using a simple box model after the removal of O₃ and Δ^3 -carene injection at the end of experiment 11. The k_1 was reported to be 3.7×10^{-17} cm³s⁻¹ at room temperature by Chen et al. (2015).

The AURA chamber was operated in batch mode, meaning that the concentrations of products depended on the cumulative sources and sinks within the chamber. The temporal change in HOM concentrations was not zero, therefore Equation S1 can be written as:

160
$$\gamma = \frac{k_{loss}[HOM] + \frac{d[HOM]}{dt}}{k_1[carene][O_3]}$$
(S5)

We observed particle formation for all experiments in the AURA chamber, and thus the loss of HOMs (k_{loss}) also included the condensation on particles (CS) in addition to the chamber walls (k_{wall}). We used the method reported by Tuovinen et al. (2021) to estimate CS for HOM monomers and dimers separately for each experiment, and the loss rate to the chamber wall k_{wall} is constant across one experiment and assumed to less than the order of 10^{-3} s⁻¹ (Quéléver et al., 2019). The time series of typical CS for HOM monomers and dimers and wall loss across one experiment are shown in Figure S4. Since the temperature-dependent reaction rate of Δ^3 -carene ozonolysis has not yet been experimentally determined, in this study, we assumed that the temperature dependence of k_1 is the same as that for α -pinene in MCM: $3.7 \times 10^{-16} \exp\left(-\frac{640}{T}\right) \text{ cm}^3 \text{ s}^{-1}$, where T represents the chamber temperature. The estimated k_1 at 300 K aligns with the measured value reported by Hantschke et al. (2021). With Equation S5, the molar yield of HOMs can be derived as the slope of a linear fit when we plot k_1 [carene][O₃] on the x axis and k_{loss} [HOM] + $\frac{d[HOM]}{dt}$ on the y axis. The period we used for HOM estimation is from experiment time = ~20 min to 180 min.

Figure S4. Estimated condensation sink from particles and wall loss rate for HOMs in the 20B experiment in the AURA chamber.

175

Figure S5. Differential spectrum (diff-spectrum) of (a) carene ozonolysis and (b) α -pinene ozonolysis after CO injection (diff-spectrum = spectrum with CO presence – spectrum before CO injection). The high resolution (HR) the mass spectra from carene and α -pinene ozonolysis were collected under the same conditions (VOC = 20 ppb, O₃ = 30 ppb). All peaks labelled here were detected as a cluster with NO₃. Grey dashed lines mark some of the products with the same formulas detected in carene and α -pinene ozonolysis experiments.

Figure S6. Time series of the selected HOMs after injecting CO into (a) the carene ozonolysis system and (b) the α-pinene185ozonolysis system in the COALA chamber.

Figure S7. Time series of the selected HOMs in (a) the COALA chamber (Experiment 10) and (b) the AURA chamber (20B).

Figure S8. (a) Normalized signal intensity of the largest 8 HOM dimers and (b) the temporal behaviours of the normalized ratios of these dimers (M) to the reference dimer ($C_{20}H_{32}O_{11}$) during the 20B experiment in the AURA chamber. The "normalized ratio" on the y-axis was determined by first calculating the ratio M: $C_{20}H_{32}O_{11}$ at each time point, and this ratio was then normalized by dividing it by the ratio value at experiment time = 10 min.

Figure S9. Molar yield of HOM_{0≥9} (the sum of HOM monomers with no fewer than 9 O-atoms and all HOM dimers (O-atoms \geq 6)) from Δ^3 -carene ozonolysis in the COALA chamber at room temperature. Dotted and dashed lines represent the upper and lower limits of the estimated HOM_{0≥9} yields.

Figure S10. Panels (a)-(c): UMR (unit-mass resolution) mass spectra from 10B (RH < 15%), 10D, and 10 E (RH = 80%) carene ozonolysis experiments in the AURA chamber. The grey bars are the water clusters. Panels (d)-(e): Scatter plot of the normalized HOM signal intensity from the dry condition experiment (10B) and two high humidty experiments (10D and 10E). The signal intensities were multiplied by 4 and 2 in panels (b) and (c), respectively. The circles represent HOM monomers, and the triangles represent HOM dimers. The colour indicates the O-atom content in the identified species.</p>

Figure S11. Modelled CO, HO₂, OH, and total RO₂ concentrations during the COALA Δ^3 -carene ozonolysis experiment with CO addition after ~5 hours (Experiment 10 and 11). Panel (e) shows the modelled loss rate of PRAM RO₂ species due to reactions with RO₂ and HO₂ respectively. Panel (f) shows the modelled fraction of Δ^3 -carene that react with ozone and OH, respectively.

Figure S12. Modelled and measured particle number size distributions and SOA mass concentrations for five different AURA experiments. Panels (a)–(b) show results from exp. 20A (T = 20 °C, estimated initial [Δ³-carene] = 9 ppb), panels (c)–(d) results from exp. 20B (T = 20 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) results from exp. 10A (T = 10 °C, estimated initial [Δ³-carene] = 13.5 ppb), panels (e)–(f) resul

carene] = 6.5 ppb), panels (g)–(h) results from exp. 10B (T = 10 °C, estimated initial [Δ^3 -carene] = 13.5 ppb) and panels (i)–(j) results from exp. 0A (T = 0 °C, estimated initial [Δ^3 -carene] = 5.5 ppb).

220

Figure S13. Modelled Peroxy Radical Autoxidation Products (PRAP) SOA yield distribution on a 2-dimensional molecular oxygen and carbon atoms domain for AURA experiment (a2) 0A (a), (b) 10A, and (c) 0A. The colours represent the number of carbon atoms. The monomer distribution (number of $C \le 10$) and dimers (number of $C \ge 17$) can be clearly distinguished. The number of oxygen atoms in the PRAP species distribution decreases when the temperature is lowered. This is both a result of slower autoxidation rates and lower saturation vapour pressures at low temperatures.

22.5 Tabel 55. Wolar yield of mitial peroxy radical (RO2) products that can undergo autoxidat

Name	Total molar yield after Δ^3 -carene + O ₃
D3CO2_O4i1	2.75%
D3CO2_O4i2	0.605%
D3CO2_O4i3	1.925%
D3CO2_C9_O4	Maximum ~1.2% if all D3C109O2 react with NO or RO_2

Table S4. Δ^3 -carene ozone oxidation chemistry based on proposed initial oxidation steps by Wang et al. (2019), with slight modifications to achieve a 65% OH yield from the initial ozonolysis reaction of Δ^3 -carene in accordance with Hantschke et al. (2021). The subsequent multigeneration oxidation mechanism is adopted from the α -pinene mechanism in MCMv3.3.1.

Reactions	Rate constants (cm ³ s ⁻¹)	Notes
$D3CARENE + O3 \rightarrow D3COOA$	3.7E-16*EXP(- 640/TEMP)*0.5	Criegee intermediate conformer Z-Cl1 in Wang et al. (2019)
$D3CARENE + O3 \rightarrow D3COOB$	3.7E-16*EXP(- 640/TEMP)*0.2	Criegee intermediate conformer Z-Cl2 in Wang et al. (2019)
$D3CARENE + O3 \rightarrow D3COOC$	3.7E-16*EXP(- 640/TEMP)*0.3	Criegee intermediate conformer E-Cl1 in Wang et al. (2019)
$D3COOA \rightarrow D3CSOZ$	0.5*KDEC	Secondary ozonoide (SOZ) formation based on Wang et al. (2019)

$D3COOA \rightarrow D3CVHP1$	0.5*KDEC	Vinyl hydroperoxide (VHP) product 1, VHP1 in Wang et al. (2019), Schemes 1 and 4
$D3COOB \rightarrow D3CSOZ$	0.5*KDEC	Secondary ozonoide (SOZ) formation based on Wang et al. (2019)
$D3COOB \rightarrow D3CVHP2$	0.5*KDEC	Vinyl hydroperoxide (VHP) product 2, VHP2 in Wang et al. (2019), Scheme 1
$D3COOC \rightarrow D3CVHP1$	KDEC	Vinyl hydroperoxide (VHP) product 1, VHP1 in Wang et al. (2019), Schemes 1 and 4
$D3CSOZ \rightarrow D3CONIC$	KDEC	cis-3-caronic acid formation, 35 % production yield
$D3CONIC + OH \rightarrow D3C96O2 + CO + OH$	6.65E-12	
$D3CVHP1 \rightarrow D3C109O2 + OH$	KDEC*0.904	D3C109O2 analogous to MCMv3.3.1 α-pinene ozonolysis product C109O2
$D3CVHP1 \rightarrow D3CO2_O4i1 + OH$	KDEC*0.05	Reaction leading to C ₁₀ RO ₂ autoxidation products
$D3CVHP1 \rightarrow D3CO2_O4i2 + OH$	KDEC*0.011	Reaction leading to C ₁₀ RO ₂ autoxidation products
$D3CVHP1 \rightarrow D3CO2_O4i3 + OH$	KDEC*0.035	Reaction leading to C ₁₀ RO ₂ autoxidation products
$D3CVHP2 \rightarrow D3C107O2 + OH$	KDEC	
Continued multigeneration oxidation chemistry analogous to 2	MCMv3.3.1 a-pinene C109O2	2 product reaction pathway
$D3C109O2 + HO2 \rightarrow D3C109OOH$	KRO2HO2*0.914	
$D3C109O2 + NO \rightarrow D3C109O + NO2$	KRO2NO	
$D3C109O2 + NO3 \rightarrow D3C109O + NO2$	KRO2NO3	

$D3C109O2 + NO3 \rightarrow D3C109O + NO2$	KRO2NO3	
$D3C109O2 \rightarrow D3C109CO$	1.00E-11*RO2*0.05	
$D3C109O2 \rightarrow D3C109O$	1.00E-11*RO2*0.95	
$D3C109O2 \rightarrow D3C109OH$	1.00E-11*RO2*0.05*0.0	
$D3C109O \rightarrow D3C89CO3 + HCHO$	KDEC*0.88	
$D3C109O \rightarrow D3C920CO3$	KDEC*0.1	
$D3C109O \rightarrow D3CO2_C9_O4 + HCHO$	KDEC*0.02	Reaction leading to C ₉ RO ₂ autoxidation products
$D3C109OOH + OH \rightarrow D3C109CO + OH$	5.47E-11	
$D3C109OOH \rightarrow D3C109O + OH$	J(41)+J(15)	Photolysis reaction
$D3C109OOH \rightarrow D3C89CO3 + HCHO + OH$	J(22)	Photolysis reaction
$D3C109CO + OH \rightarrow D3C89CO3 + CO$	5.47E-11	
$D3C109CO \rightarrow D3C89CO3 + CO + HO2$	J(34)+J(15)	Photolysis reaction
$D3C109OH + OH \rightarrow D3C109CO + HO2$	4.45E-11	
$D3C109OH \rightarrow D3C89CO3 + HCHO + HO2$	J(22)	Photolysis reaction
$D3C109OH \rightarrow D3C920O2 + CO + HO2$	J(15)	Photolysis reaction
$D3C89CO3 + HO2 \rightarrow D3C89CO2 + OH$	KAPHO2*0.44	
$D3C89CO3 + HO2 \rightarrow D3C89CO2H + O3$	KAPHO2*0.15	
$D3C89CO3 + HO2 \rightarrow D3C89CO3H$	KAPHO2*0.41	

$D3C89CO3 + NO \rightarrow D3C89CO2 + NO2$	KAPNO	
$D3C89CO3 + NO2 \rightarrow D3C89PAN$	KFPAN	
$D3C89CO3 + NO3 \rightarrow D3C89CO2 + NO2$	KRO2NO3*1.74	
$D3C89CO3 \rightarrow D3C89CO2$	1.00E-11*RO2*0.7	
$D3C89CO3 \rightarrow D3C89CO2H$	1.00E-11*RO2*0.3	
$D3C89CO2 \rightarrow D3C811CO3$	KDEC*0.8000	
$D3C89CO2 \rightarrow D3C89O2$	KDEC*0.2000	
$D3C89CO2H + OH \rightarrow D3C89CO2$	2.69E-11	
$D3C89CO2H \rightarrow D3C89CO2 + HO2$	J(15)	Photolysis reaction
$D3C89CO3H + OH \rightarrow D3C89CO3$	3.00E-11	
$D3C89CO3H \rightarrow D3C89CO2 + OH$	J(41)+J(15)	Photolysis reaction
$D3C89PAN + OH \rightarrow CH3COCH3 + CO13C4CHO + CO + NO2$	2.52E-11	
$D3C89PAN \rightarrow D3C89CO3 + NO2$	KBPAN	
$D3C89O2 + HO2 \rightarrow D3C89OOH$	KRO2HO2*0.859	
$D3C89O2 + NO \rightarrow D3C89NO3$	KRO2NO*0.104	
$D3C89O2 + NO \rightarrow D3C89O + NO2$	KRO2NO*0.896	
$D3C89O2 + NO3 \rightarrow D3C89O + NO2$	KRO2NO3	
$D3C89O2 \rightarrow D3C89O$	6.70E-15*RO2*0.7	
$D3C89O2 \rightarrow D3C89OH$	6.70E-15*RO2*0.3	
$D3C89OOH + OH \rightarrow D3C89O2$	3.61E-11	
$D3C89OOH \rightarrow D3C89O + OH$	J(41)+J(15)	Photolysis reaction
$D3C89NO3 + OH \rightarrow CH3COCH3 + CO13C4CHO + NO2$	2.56E-11	
$D3C89NO3 \rightarrow D3C89O + NO2$	J(55)+J(15)	Photolysis reaction
$D3C89O \rightarrow D3C810O2$	2.70D+14*EXP(- 6643/TEMP)	
$D3C89OH + OH \rightarrow D3C89O$	2.86E-11	
$D3C89OH \rightarrow D3C89O + HO2$	J(15)	Photolysis reaction
$D3C920CO3 + HO2 \rightarrow D3C920CO3H$	KAPHO2*0.41	
$D3C920CO3 + HO2 \rightarrow D3C920O2 + OH$	KAPHO2*0.44	
$D3C920CO3 + HO2 \rightarrow HOD3CONIC + O3$	KAPHO2*0.15	OH-3-caronic acid formation
$D3C920CO3 + NO \rightarrow D3C920O2 + NO2$	KAPNO	
$D3C920CO3 + NO2 \rightarrow D3C920PAN$	KFPAN	
$D3C920CO3 + NO3 \rightarrow D3C920O2 + NO2$	KRO2NO3*1.74	
$D3C920CO3 \rightarrow D3C920O2$	1.00E-11*RO2*0.70	
$D3C920CO3 \rightarrow HOD3CONIC$	1.00E-11*RO2*0.30	OH-3-caronic acid formation
$D3C920O2 + HO2 \rightarrow D3C920OOH$	KRO2HO2*0.890	
$D3C920O2 + NO \rightarrow D3C920O + NO2$	KRO2NO	
$D3C920O2 + NO3 \rightarrow D3C920O + NO2$	KRO2NO3	
$D3C920O2 \rightarrow D3C920O$	1.30E-12*RO2	
$D3C920CO3H + OH \rightarrow D3C920CO3$	9.16E-12	

$D3C920CO3H \rightarrow D3C920O2 + OH$	J(41)+J(22)	Photolysis reaction
$D3C920PAN + OH \rightarrow D3C109OH + CO + NO2$	5.56E-12	
$D3C920PAN \rightarrow D3C920CO3 + NO2$	KBPAN	
$D3C920OOH + OH \rightarrow D3C920O2$	2.36E-11	
$D3C920OOH \rightarrow D3C920O + OH$	J(41)+J(22)	Photolysis reaction
$D3C9200 \rightarrow D3C92102$	4.20D+10*EXP(- 3523/TEMP)	
$D3C811CO3 + HO2 \rightarrow D3C811CO3H$	KAPHO2*0.4100	
$D3C811CO3 + HO2 \rightarrow D3C811O2 + OH$	KAPHO2*0.4400	
$D3C811CO3 + HO2 \rightarrow D3CIC + O3$	KAPHO2*0.1500	cis-3-caric acid formation
$D3C811CO3 + NO \rightarrow D3C811O2 + NO2$	KAPNO	
$D3C811CO3 + NO2 \rightarrow D3C811PAN$	KFPAN	
$D3C811CO3 + NO3 \rightarrow D3C811O2 + NO2$	KRO2NO3*1.74	
$D3C811CO3 \rightarrow D3C811O2$	1.0001E-11*RO2*0.70	
$D3C811CO3 \rightarrow D3CIC$	1.0001E-11*RO2*0.30	cis-3-caric acid formation
$D3C811CO3H + OH \rightarrow D3C811CO3$	1.04E-11	
$D3C811CO3H \rightarrow D3C811O2 + OH$	J(41)	Photolysis reaction
$D3C811O2 + HO2 \rightarrow D3C811OOH$	KRO2HO2*0.859	
$D3C811O2 + NO \rightarrow D3C811NO3$	KRO2NO*0.138	
$D3C811O2 + NO \rightarrow D3C811O + NO2$	KRO2NO*0.862	
$D3C811O2 + NO3 \rightarrow D3C811O + NO2$	KRO2NO3	
$D3C811O2 \rightarrow D3C721CHO$	1.30E-12*RO2*0.2	
$D3C811O2 \rightarrow D3C811O$	1.30E-12*RO2*0.6	
$D3C811O2 \rightarrow D3C811OH$	1.30E-12*RO2*0.2	
$D3CIC + OH \rightarrow D3C811O2$	7.29E-12	
$D3C811PAN + OH \rightarrow D3C721CHO + CO + NO2$	6.77E-12	
$D3C811PAN \rightarrow D3C811CO3 + NO2$	KBPAN	
$D3C811OOH + OH \rightarrow D3C721CHO + OH$	1.70E-11	
$D3C811OOH \rightarrow D3C811O + OH$	J(41)	Photolysis reaction
$D3C811NO3 + OH \rightarrow D3C721CHO + NO2$	3.29E-12	
$D3C811NO3 \rightarrow D3C811O + NO2$	J(53)	Photolysis reaction
$D3C811O \rightarrow D3C812O2$	KDEC	
$D3C811OH + OH \rightarrow D3C721CHO + HO2$	7.89E-12	
$D3C810O2 + HO2 \rightarrow D3C810OOH$	KRO2HO2*0.914	
$D3C810O2 + NO \rightarrow D3C810NO3$	KRO2NO*0.104	
$D3C810O2 + NO \rightarrow D3C810O + NO2$	KRO2NO*0.896	
$D3C810O2 + NO3 \rightarrow D3C810O + NO2$	KRO2NO3	
$D3C810O2 \rightarrow D3C810O$	6.70E-15*RO2*0.7	
$D3C810O2 \rightarrow D3C810OH$	6.70E-15*RO2*0.3	
$D3C810OOH + OH \rightarrow D3C810O2$	8.35E-11	
$D3C810OOH \rightarrow D3C810O + OH$	J(41)+J(15)	Photolysis reaction

$D3C810NO3 + OH \rightarrow CH3COCH3 + CO13C4CHO + NO2$	4.96E-11	
$D3C810NO3 \rightarrow D3C810O + NO2$	J(55)+J(15)	Photolysis reaction
$D3C8100 \rightarrow CH3COCH3 + C514O2$	2.70D+14*EXP(- 6643/TEMP)	
$D3C810OH + OH \rightarrow D3C810O$	8.00E-11	
$D3C810OH \rightarrow D3C810O + HO2$	J(15)	Photolysis reaction
$D3C812O2 + HO2 \rightarrow D3C812OOH$	KRO2HO2*0.859	
$D3C812O2 + NO \rightarrow D3C812O + NO2$	KRO2NO	
$D3C812O2 + NO3 \rightarrow D3C812O + NO2$	KRO2NO3	
$D3C812O2 \rightarrow D3C812O$	9.20E-14*RO2*0.7	
$D3C812O2 \rightarrow D3C812OH$	9.20E-14*RO2*0.3	
$D3C812OOH + OH \rightarrow D3C812O2$	1.09E-11	
$D3C812OOH \rightarrow D3C812O + OH$	J(41)	Photolysis reaction
$D3C812O \rightarrow D3C813O2$	KDEC	
$D3C812OH + OH \rightarrow D3C812O$	7.42E-12	
$D3C813O2 + HO2 \rightarrow D3C813OOH$	KRO2HO2*0.859	
$D3C813O2 + NO \rightarrow D3C813NO3$	KRO2NO*0.104	
$D3C813O2 + NO \rightarrow D3C813O + NO2$	KRO2NO*0.896	
$D3C813O2 + NO3 \rightarrow D3C813O + NO2$	KRO2NO3	
$D3C813O2 \rightarrow D3C813O$	6.70E-15*RO2*0.7	
$D3C813O2 \rightarrow D3C813OH$	6.70E-15*RO2*0.3	
$D3C813OOH + OH \rightarrow D3C813O2$	1.86E-11	
$D3C813OOH \rightarrow D3C813O + OH$	J(41)+J(34)	Photolysis reaction
$\label{eq:constraint} \begin{array}{l} \text{D3C813NO3} + \text{OH} \rightarrow \text{CH3COCH3} + \text{CO13C3CO2H} + \\ \text{HCHO} + \text{NO2} \end{array}$	7.82E-12	
$D3C813NO3 \rightarrow D3C813O + NO2$	J(55)+J(34)	Photolysis reaction
$D3C813O \rightarrow CH3COCH3 + C516O2$	KDEC	
$D3C813OH + OH \rightarrow D3C813O$	1.75E-11	
$D3C813OH \rightarrow D3C813O + HO2$	J(34)	Photolysis reaction
$D3C921O2 + HO2 \rightarrow D3C921OOH$	KRO2HO2*0.890	
$D3C921O2 + NO \rightarrow D3C921O + NO2$	KRO2NO	
$D3C921O2 + NO3 \rightarrow D3C921O + NO2$	KRO2NO3	
$D3C921O2 \rightarrow D3C921O$	6.70E-15*RO2	
$D3C921OOH + OH \rightarrow D3C921O2$	1.29E-11	
$D3C921OOH \rightarrow D3C921O + OH$	J(41)+J(22)	Photolysis reaction
$D3C921O \rightarrow D3C922O2$	KDEC	
$D3C922O2 + HO2 \rightarrow D3C922OOH$	KRO2HO2*0.890	
$D3C922O2 + NO \rightarrow D3C922O + NO2$	KRO2NO	
$D3C922O2 + NO3 \rightarrow D3C922O + NO2$	KRO2NO3	
$D3C922O2 \rightarrow D3C922O$	6.70E-15*RO2	
$D3C922OOH + OH \rightarrow D3C922O2$	1.51E-11	

$D3C922OOH \rightarrow D3C922O + OH$	J(41)+J(22)	Photolysis reaction
$D3C922O \rightarrow CH3COCH3 + C621O2$	KDEC	
$D3C96O2 + HO2 \rightarrow D3C96OOH$	KRO2HO2*0.890	
$D3C96O2 + NO \rightarrow D3C96NO3$	KRO2NO*0.157	
$D3C96O2 + NO \rightarrow D3C96O + NO2$	KRO2NO*0.843	
$D3C96O2 + NO3 \rightarrow D3C96O + NO2$	KRO2NO3	
$D3C96O2 \rightarrow D3C96O$	1.30E-12*0.6*RO2	
$D3C96O2 \rightarrow D3C96OH$	1.30E-12*0.2*RO2	
$D3C96O2 \rightarrow NORD3CAL$	1.30E-12*0.2*RO2	
$D3C96CO3 + HO2 \rightarrow D3C96O2 + OH$	KAPHO2*0.44	
$D3C96CO3 + HO2 \rightarrow PERD3CONIC$	KAPHO2*0.41	
$D3C96CO3 + HO2 \rightarrow D3CONIC + O3$	KAPHO2*0.15	cis-3-caronic acid formation
$D3C96CO3 + NO \rightarrow D3C96O2 + NO2$	KAPNO	
$D3C96CO3 + NO2 \rightarrow D3CPAN$	KFPAN	
$D3C96CO3 + NO3 \rightarrow D3C96O2 + NO2$	KRO2NO3*1.74	
$D3C96CO3 \rightarrow D3C96O2$	1.00E-11*0.7*RO2	
$D3C96CO3 \rightarrow D3CONIC$	1.00E-11*0.3*RO2	cis-3-caronic acid formation
$D3C96OOH + OH \rightarrow D3C96O2$	1.90E-12*EXP(190/TEMP)	
$D3C96OOH + OH \rightarrow NORD3CAL + OH$	1.30E-11	
$D3C96OOH \rightarrow D3C96O + OH$	J(41)+J(22)	Photolysis reaction
$D3C96NO3 + OH \rightarrow NORD3CAL + NO2$	2.88E-12	
$D3C96NO3 \rightarrow D3C96O + NO2$	J(53)+J(22)	Photolysis reaction
$D3C96O \rightarrow D3C97O2$	4.20D+10*EXP(- 3523/TEMP)	
$D3C96OH + OH \rightarrow NORD3CAL + HO2$	7.67E-12	
$D3C96OH \rightarrow D3C96O + HO2$	J(22)	Photolysis reaction
$D3CPAN + OH \rightarrow NORD3CAL + CO + NO2$	3.66E-12	
$D3CPAN \rightarrow D3C96CO3 + NO2$	KBPAN	
PERCANONIC + OH \rightarrow D3C96CO3	9.73E-12	
$PERCANONIC \rightarrow D3C96O2 + OH$	J(41)+J(22)	Photolysis reaction
$NORD3CAL + NO3 \rightarrow D3C85CO3 + HNO3$	KNO3AL*8.5	
NORD3CAL + OH \rightarrow D3C85CO3	2.64E-11	
NORD3CAL \rightarrow D3C85O2 + CO + HO2	J(15)	Photolysis reaction
$D3C85CO3 + HO2 \rightarrow D3C85CO3H$	KAPHO2*0.56	
$D3C85CO3 + HO2 \rightarrow D3C85O2 + OH$	KAPHO2*0.44	
$D3C85CO3 + NO \rightarrow D3C85O2 + NO2$	KAPNO	
$D3C85CO3 + NO2 \rightarrow D3C9PAN$	KFPAN	
$D3C85CO3 + NO3 \rightarrow D3C85O2 + NO2$	KRO2NO3*1.74	
$D3C85CO3 \rightarrow D3C85O2$	1.00E-11*RO2	
$D3C85O2 + HO2 \rightarrow D3C85OOH$	KRO2HO2*0.859	
$D3C85O2 + NO \rightarrow D3C85O + NO2$	KRO2NO	

$D3C85O2 + NO3 \rightarrow D3C85O + NO2$	KRO2NO3	
$D3C85O2 \rightarrow D3C85O$	6.70E-15*RO2	
$D3C85CO3H + OH \rightarrow D3C85CO3$	1.02E-11	
$D3C85CO3H \rightarrow D3C85O2 + OH$	J(41)+J(22)	Photolysis reaction
$D3C9PAN + OH \rightarrow D3C85OOH + CO + NO2$	6.60E-12	
$D3C9PAN \rightarrow D3C85CO3 + NO2$	KBPAN	
$D3C85OOH + OH \rightarrow D3C85O2$	1.29E-11	
$D3C85OOH \rightarrow D3C85O + OH$	J(41)+J(22)	Photolysis reaction
$D3C85O \rightarrow D3C86O2$	KDEC	
$D3C86O2 + HO2 \rightarrow D3C86OOH$	KRO2HO2*0.859	
$D3C86O2 + NO \rightarrow D3C86O + NO2$	KRO2NO	
$D3C86O2 + NO3 \rightarrow D3C86O + NO2$	KRO2NO3	
$D3C86O2 \rightarrow D3C86O$	6.70E-15*RO2	
$D3C86OOH + OH \rightarrow D3C86O2$	3.45E-11	
$D3C86OOH \rightarrow D3C86O + OH$	J(41)+J(15)	Photolysis reaction
$D3C86O \rightarrow C511O2 + CH3COCH3$	KDEC	
Chemistry based on MCM APINENE chemistry C107O2		
$D3C107O2 + HO2 \rightarrow D3C107OOH$	KRO2HO2*0.914	
$D3C107O2 + NO \rightarrow D3C107O + NO2$	KRO2NO	
$D3C107O2 + NO3 \rightarrow D3C107O + NO2$	KRO2NO3	
$D3C107O2 \rightarrow D3C107O$	9.20E-14*0.7*RO2	
$D3C107O2 \rightarrow D3C107OH$	9.20E-14*0.3*RO2	
$D3C107OOH + OH \rightarrow D3C107O2$	3.01E-11	
$D3C107OOH \rightarrow D3C107O + OH$	J(41)+J(15)	Photolysis reaction
$D3C107O \rightarrow D3C108O2$	KDEC	
$D3C107OH + OH \rightarrow D3C107O$	2.66E-11	
$D3C107OH \rightarrow D3C107O + HO2$	J(15)	Photolysis reaction
$D3C108O2 + HO2 \rightarrow D3C108OOH$	KRO2HO2*0.914	
$D3C108O2 + NO \rightarrow D3C108NO3$	KRO2NO*0.125	
$D3C108O2 + NO \rightarrow D3C108O + NO2$	KRO2NO*0.875	
$D3C108O2 + NO3 \rightarrow D3C108O + NO2$	KRO2NO3	
$D3C108O2 \rightarrow D3C108O$	6.70E-15*0.7*RO2	
$D3C108O2 \rightarrow D3C108OH$	6.70E-15*0.3*RO2	
$D3C108OOH + OH \rightarrow D3C108O2$	6.28E-11	
$D3C108OOH \rightarrow D3C108O + OH$	J(41)+J(35)	Photolysis reaction
$D3C108NO3 + OH \rightarrow CO235C6CHO + CH3COCH3 + NO2$	2.85E-11	
$D3C108NO3 \rightarrow D3C108O + NO2$	J(55)+J(35)	Photolysis reaction
$D3C108O \rightarrow C717O2 + CH3COCH3$	KDEC	
$D3C108OH + OH \rightarrow D3C108O$	5.93E-11	
$D3C108OH \rightarrow D3C108O + HO2$	J(35)	Photolysis reaction

$D3C97O2 + HO2 \rightarrow D3C97OOH$	KRO2HO2*0.890	
$D3C97O2 + NO \rightarrow D3C97O + NO2$	KRO2NO	
$D3C97O2 + NO3 \rightarrow D3C97O + NO2$	KRO2NO3	
$D3C97O2 \rightarrow D3C97O$	6.70E-15*0.7*RO2	
$D3C97O2 \rightarrow D3C97OH$	6.70E-15*0.3*RO2	
$D3C97OOH + OH \rightarrow D3C97O2$	1.05E-11	
$D3C97OOH \rightarrow D3C97O + OH$	J(41)+J(22)	Photolysis reaction
$D3C97O \rightarrow D3C98O2$	KDEC	
$D3C97OH + OH \rightarrow D3C97O$	7.20E-12	
$D3C97OH \rightarrow D3C97O + HO2$	J(22)	Photolysis reaction
$D3C98O2 + HO2 \rightarrow D3C98OOH$	KRO2HO2*0.890	
$D3C98O2 + NO \rightarrow D3C98NO3$	KRO2NO*0.118	
$D3C98O2 + NO \rightarrow D3C98O + NO2$	KRO2NO*0.882	
$D3C98O2 + NO3 \rightarrow D3C98O + NO2$	KRO2NO3	
$D3C98O2 \rightarrow D3C98O$	6.70E-15*0.7*RO2	
$D3C98O2 \rightarrow D3C98OH$	6.70E-15*0.3*RO2	
$D3C98OOH + OH \rightarrow D3C98O2$	2.05E-11	
$D3C98OOH \rightarrow D3C98O + OH$	J(41)+J(35)	Photolysis reaction
$D3C98NO3 + OH \rightarrow CH3COCH3 + C614CO + NO2$	5.37E-12	
$D3C98NO3 \rightarrow D3C98O + NO2$	J(55)+J(35)	Photolysis reaction
$D3C98O \rightarrow C614O2 + CH3COCH3$	KDEC	
$D3C98OH + OH \rightarrow D3C98O$	1.69E-11	
$D3C98OH \rightarrow D3C98O + HO2$	J(35)	Photolysis reaction
$D3C721CHO + NO3 \rightarrow D3C721CO3 + HNO3$	KNO3AL*8.5	
$D3C721CHO + OH \rightarrow D3C721CO3$	2.63E-11	
$D3C721CHO \rightarrow D3C721O2 + CO + HO2$	J(15)	Photolysis reaction
$D3C721CO3 + HO2 \rightarrow D3C721CO3H$	KAPHO2*0.41	
$D3C721CO3 + HO2 \rightarrow D3C721O2 + OH$	KAPHO2*0.44	
$D3C721CO3 + HO2 \rightarrow NORD3CIC + O3$	KAPHO2*0.15	
$D3C721CO3 + NO \rightarrow D3C721O2 + NO2$	KAPNO	
$D3C721CO3 + NO2 \rightarrow D3C721PAN$	KFPAN	
$D3C721CO3 + NO3 \rightarrow D3C721O2 + NO2$	KRO2NO3*1.74	
$D3C721CO3 \rightarrow D3C721O2$	1.00E-11*RO2*0.7	
$D3C721CO3 \rightarrow NORD3CIC$	1.00E-11*RO2*0.3	
$D3C721O2 + HO2 \rightarrow D3C721OOH$	KRO2HO2*0.820	
$D3C721O2 + NO \rightarrow D3C721O + NO2$	KRO2NO	
$D3C721O2 + NO3 \rightarrow D3C721O + NO2$	KRO2NO3	
$D3C721O2 \rightarrow D3C721O$	1.30E-12*RO2	
$D3C721CO3H + OH \rightarrow D3C721CO3$	9.65E-12	
$D3C721CO3H \rightarrow D3C721O2 + OH$	J(41)	Photolysis reaction

$D3C721PAN + OH \rightarrow D3C721OOH + CO + NO2$	2.96E-12	
$D3C721PAN \rightarrow D3C721CO3 + NO2$	KBPAN	
$D3C721OOH + OH \rightarrow D3C721O2$	1.27E-11	
$D3C721OOH \rightarrow D3C721O + OH$	J(41)	Photolysis reaction
$D3C721O \rightarrow C722O2$	KDEC	
NORD3CIC + OH \rightarrow D3C721O2	6.57E-12	

MCMv3.3.1.

Reactions	Rate constants (cm ³ s ⁻¹)	Notes
$D3CENE + OH \rightarrow D3C1O2$	0.6*2.48E-11*EXP(357./TEMP)	Absolute rate from Dillon et al. (2017)
$D3CENE + OH \rightarrow D3C2O2$	0.4*2.48E-11*EXP(357./TEMP)	Absolute rate from Dillon et al. (2017)
$D3C1O2 + NO \rightarrow D3CO$	0.77*KRO2NO	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C1O2 + NO \rightarrow D3C1NO3$	0.23*KRO2NO	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C1O2 + HO2 \rightarrow D3C1OOH$	KRO2HO2*0.914	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C1O2 + NO3 \rightarrow D3CO$	KRO2NO3	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C1O2 \rightarrow D3CO$	0.6*RO2*8.8E-13	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C1O2 \rightarrow D3COH$	0.2*RO2*8.8E-13	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C1O2 \rightarrow D3CCO$	0.2*RO2*8.8E-13	Analogous to APINBO2 reactions in MCMv3.3.1
$D3C2O2 + NO \rightarrow D3CO$	0.77*KRO2NO	Analogous to APINAO2 reactions in MCMv3.3.1
$D3C2O2 + NO \rightarrow D3C2NO3$	0.23*KRO2NO	Analogous to APINAO2 reactions in MCMv3.3.1
$D3C2O2 + HO2 \rightarrow D3C2OOH$	KRO2HO2*0.914	Analogous to APINAO2 reactions in MCMv3.3.1
$D3C2O2 + NO3 \rightarrow D3CO$	KRO2NO3	Analogous to APINAO2 reactions in MCMv3.3.1
$D3C2O2 \rightarrow D3CO$	0.7*RO2*9.4E-14	Analogous to APINAO2 reactions in MCMv3.3.1
$D3C2O2 \rightarrow D3COH$	0.3*RO2*9.4E-14	Analogous to APINAO2 reactions in MCMv3.3.1
$D3CO \rightarrow D3CAL + HO2$	KDEC*0.997	3-caronaldehyde formation
$D3CO \rightarrow D3CO2_OH_O4i3$	KDEC*0.003	
$D3CAL + OH \rightarrow D3C96CO3$	0.772*4.1E-11	Analogous to PINAL (pinonaldehyde) in MCMv3.3.1
$D3CAL + OH \rightarrow D3CALO2$	0.228*4.1E-11	Analogous to PINAL (pinonaldehyde) in MCMv3.3.1
$D3CAL \rightarrow D3C96O2$	J(15)	Analogous to PINAL (pinonaldehyde) in MCMv3.3.1
$D3COH + OH \rightarrow D3CCO + HO2$	1.49E-11	

$D3C2OOH + OH \rightarrow D3C2O2$	1.83E-11	
$D3C2OOH \rightarrow D3CO + OH$	J(41)	Photolysis reaction
$D3C1OOH + OH \rightarrow D3CCO + OH$	3.28E-11	
$D3C1OOH \rightarrow D3CO + OH$	J(41)	Photolysis reaction
$D3C1NO3 + OH \rightarrow D3CCO + NO2$	3.64E-12	
$D3C2NO3 + OH \rightarrow D3CAL + NO2$	5.5E-12	
$D3CCO + OH \rightarrow D3C96CO3$	8.18E-12	
$D3CALO2 + HO2 \rightarrow D3CALOOH$	KRO2HO2*0.914	
$D3CALO2 + NO \rightarrow D3CALNO3$	KRO2NO*0.050	
$D3CALO2 + NO \rightarrow D3CALO + NO2$	KRO2NO*0.950	
$D3CALO2 + NO3 \rightarrow D3CALO + NO2$	KRO2NO3	
$D3CALO2 \rightarrow D3CALO$	6.70E-15*0.7*RO2	
$D3CALO2 \rightarrow D3CALOH$	6.70E-15*0.3*RO2	
$D3CALOOH + OH \rightarrow D3CALO2$	2.75E-11	
$D3CALOOH \rightarrow D3CALO + OH$	J(41)+J(15)	Photolysis reaction
$D3CALNO3 + OH \rightarrow CO235C6CHO + CH3COCH3 + NO2$	2.25E-11	
$D3CALNO3 \rightarrow D3CALO + NO2$	J(55)+J(15)	Photolysis reaction
$D3CALO \rightarrow D3C106O2$	KDEC	
$D3CALOH + OH \rightarrow D3CALO$	2.41E-11	
$D3CALOH \rightarrow D3CALO + HO2$	J(22)	Photolysis reaction
$D3C106O2 + HO2 \rightarrow D3C106OOH$	KRO2HO2*0.914	
$D3C106O2 + NO \rightarrow D3C106NO3$	KRO2NO*0.125	
$D3C106O2 + NO \rightarrow D3C106O + NO2$	KRO2NO*0.875	
$D3C106O2 + NO3 \rightarrow D3C106O + NO2$	KRO2NO3	
$D3C106O2 \rightarrow D3C106O$	6.70E-15*0.7*RO2	
$D3C106O2 \rightarrow D3C106OH$	6.70E-15*0.3*RO2	
$D3C106OOH + OH \rightarrow D3C106O2$	8.01E-11	
$D3C106OOH \rightarrow D3C106O + OH$	J(41)+J(15)	Photolysis reaction
$D3C106NO3 + OH \rightarrow CO235C6CHO + CH3COCH3 + NO2$	7.03E-11	
$D3C106NO3 \rightarrow D3C106O + NO2$	J(55)+J(15)	Photolysis reaction
$D3C106O \rightarrow C716O2 + CH3COCH3$	KDEC	
$D3C106OH + OH \rightarrow D3C106O$	7.66E-11	
$D3C106OH \rightarrow D3C106O + HO2$	J(15)	Photolysis reaction

235 Table S6. Peroxy radical autoxidation mechanism (PRAM), monomer production. Rx (e.g. R1) in the 'Reactions' and 'Notes' columns corresponds to the reactions numbered in the main text.

Reactions	Rate constants (cm ³ s ⁻¹)	Notes
$D3CO2_O4i1 \rightarrow D3CO2_O6i1$	3E16*exp(-1.2077D4/TEMP)	0.075 s ⁻¹ at 298 K
$D3CO2_O4i2 \rightarrow D3CO2_O6i2$	3E16*exp(-1.2077D4/TEMP)	0.075 s ⁻¹ at 298 K

$D3CO2_O4i3 \rightarrow D3CO2_O6i3$	3E16*exp(-1.2077D4/TEMP)	0.075 s ⁻¹ at 298 K
$D3CO2_C9_O4 \rightarrow D3CO2_C9_O6$	3E16*exp(-1.2077D4/TEMP)	0.075 s ⁻¹ at 298 K
$D3CO2_O5i1 \rightarrow D3CO2_O7i1$	1E16*exp(-1.2077D4/TEMP)	0.025 s ⁻¹ at 298 K
$D3CO2_O5i2 \rightarrow D3CO2_O7i2$	1E16*exp(-1.2077D4/TEMP)	0.025 s ⁻¹ at 298 K
$D3CO2_O5i3 \rightarrow D3CO2_O7i3$	1E16*exp(-1.2077D4/TEMP)	0.025 s ⁻¹ at 298 K
$D3CO2_C9_O5 \rightarrow D3CO2_C9_O7$	1E16*exp(-1.2077D4/TEMP)	0.025 s ⁻¹ at 298 K
$D3CO2_O6i1 \rightarrow D3CO2_O8i1$	1E18*exp(-1.2077D4/TEMP)	2.5 s ⁻¹ at 298 K
$D3CO2_O6i3 \rightarrow D3CO2_O8i3$	1E18*exp(-1.2077D4/TEMP)	2.5 s ⁻¹ at 298 K
$D3CO2_C9_O6 \rightarrow D3CO2_C9_O8$	1E18*exp(-1.2077D4/TEMP)	2.5 s ⁻¹ at 298 K
$D3CO2_O7i1 \rightarrow D3CO2_O9i1$	1E17*exp(-1.2077D4/TEMP)	0.25 s ⁻¹ at 298 K
$D3CO2_O7i3 \rightarrow D3CO2_O9i3$	1E17*exp(-1.2077D4/TEMP)	0.25 s ⁻¹ at 298 K
$D3CO2_O8i1 \rightarrow D3CO2_O10i1$	1E18*exp(-1.2077D4/TEMP)	2.5 s ⁻¹ at 298 K
$D3CO2_C9_O8 \rightarrow D3CO2_C9_O10$	1E18*exp(-1.2077D4/TEMP)	2.5 s ⁻¹ at 298 K
$D3CO2_O9i1 \rightarrow D3CO2_O11i1$	1E17*exp(-1.2077D4/TEMP)	0.25 s ⁻¹ at 298 K
$D3CO2_O10i1 \rightarrow D3CO2_O12$	1E15*exp(-1.2077D4/TEMP)	0.0025 s ⁻¹ at 298 K
R1. Unimolecular termination $RO_2 \rightarrow R=O + OH$		
$D3CO2_O7i1 \rightarrow D3CO6CBNiU1 + OH$	0.0	R1
$D3CO2_O7i2 \rightarrow D3CO6CBNiU2 + OH$	0.0	R1
$D3CO2_O7i3 \rightarrow D3CO6CBNiU3 + OH$	0.0	R1
$D3CO2_O8i1 \rightarrow D3CO7CBNiU1 + OH$	0.0	R1
$D3CO2_O8i2 \rightarrow D3CO7CBNiU2 + OH$	0.0	R1
$D3CO2_O8i3 \rightarrow D3CO7CBNiU3 + OH$	2E-2	R1 Based on COALA exp.
$D3CO2_O9i1 \rightarrow D3CO8CBNiU1 + OH$	0.0	R1
$D3CO2_O9i3 \rightarrow D3CO8CBNiU3 + OH$	2E-2	R1 Based on COALA exp.
$D3CO2_O10i1 \rightarrow D3CO9CBNiU1 + OH$	2E-2	R1 Based on COALA exp.
$D3CO2_O11i1 \rightarrow D3CO10CBNiU1 + OH$	0.0	R1
$D3CO2_O12 \rightarrow D3CO11CBNiU1 + OH$	2E-2	R1 Based on COALA exp.
R11. Conversion of PRAM alkoxy radicals to pero	xy radicals $(RO + O_2 \rightarrow RO_2)$	
$D3CO_O3i1 \rightarrow D3CO2_O5i1$	KDEC	R11
$D3CO_O3i2 \rightarrow D3CO2_O5i2$	KDEC	R11
$D3CO_O3i3 \rightarrow D3CO2_O5i3$	KDEC	R11
$D3CO_C9_O3 \rightarrow D3CO2_C9_O5$	KDEC	R11
$D3CO_O4i1 \rightarrow D3CO2_O6i1$	KDEC	R11
$D3CO_O4i2 \rightarrow D3CO2_O6i2$	KDEC	R11
$D3CO_O4i3 \rightarrow D3CO2_O6i3$	KDEC	R11
$D3CO_C9_O4 \rightarrow D3CO2_C9_O6$	KDEC	R11
$D3CO_O5i1 \rightarrow D3CO2_O7i1$	KDEC	R11
$D3CO_O5i2 \rightarrow D3CO2_O7i2$	KDEC	R11
$D3CO_O5i3 \rightarrow D3CO2_O7i3$	KDEC	R11
$D3CO_C9_O5 \rightarrow D3CO2_C9_O7$	KDEC	R11

$D3CO_O6i1 \rightarrow D3CO2_O8i1$	KDEC	R11
$D3CO_O6i2 \rightarrow D3CO2_O8i2$	KDEC	R11
$D3CO_O6i3 \rightarrow D3CO2_O8i3$	KDEC	R11
$D3CO_C9_O6 \rightarrow D3CO2_C9_O8$	KDEC	R11
$D3CO_O7i1 \rightarrow D3CO2_O9i1$	KDEC	R11
$D3CO_O7i2 \rightarrow D3CO2_O9i2$	KDEC	R11
$D3CO_O7i3 \rightarrow D3CO2_O9i3$	KDEC	R11
$D3CO_C9_O7 \rightarrow D3CO2_C9_O9$	KDEC	R11
$D3CO_O8i1 \rightarrow D3CO2_O10i1$	KDEC	R11
$D3CO_C9_O8 \rightarrow D3CO2_C9_O10$	KDEC	R11
$D3CO_O9i1 \rightarrow D3CO2_O11i1$	KDEC	R11
$D3CO_O9i2 \rightarrow D3CO2_O11i2$	KDEC	R11
$D3CO_O9i3 \rightarrow D3CO2_O11i2$	KDEC	R11
R6. $\mathbf{RO}_2 + \mathbf{HO}_2 \rightarrow \mathbf{ROOH} + \mathbf{O}_2$		
$D3CO2_O4i1 + HO2 \rightarrow D3CO4iH1$	KRO2HO2	R6
$D3CO2_O4i2 + HO2 \rightarrow D3CO4iH2$	KRO2HO2	R6
$D3CO2_O4i3 + HO2 \rightarrow D3CO4iH3$	KRO2HO2	R6
$D3CO2_C9_O4 + HO2 \rightarrow D3C9O4$	KRO2HO2	R6
$D3CO2_O5i1 + HO2 \rightarrow D3CO5iH1$	KRO2HO2	R6
$D3CO2_O5i2 + HO2 \rightarrow D3CO5iH2$	KRO2HO2	R6
$D3CO2_O5i3 + HO2 \rightarrow D3CO5iH3$	KRO2HO2	R6
$D3CO2_C9_O5 + HO2 \rightarrow D3C9O5$	KRO2HO2	R6
$D3CO2_O6i1 + HO2 \rightarrow D3CO6iH1$	KRO2HO2	R6
$D3CO2_O6i2 + HO2 \rightarrow D3CO6iH2$	KRO2HO2	R6
$D3CO2_O6i3 + HO2 \rightarrow D3CO6iH3$	KRO2HO2	R6
$D3CO2_C9_O6 + HO2 \rightarrow D3C9O6$	KRO2HO2	R6
$D3CO2_O7i1 + HO2 \rightarrow D3CO7iH1$	KRO2HO2	R6
$D3CO2_O7i2 + HO2 \rightarrow D3CO7iH2$	KRO2HO2	R6
$D3CO2_O7i3 + HO2 \rightarrow D3CO7iH3$	KRO2HO2	R6
$D3CO2_C9_O7 + HO2 \rightarrow D3C9O7$	KRO2HO2	R6
$D3CO2_O8i1 + HO2 \rightarrow D3CO8iH1$	KRO2HO2	R6
$D3CO2_O8i2 + HO2 \rightarrow D3CO8iH2$	KRO2HO2	R6
$D3CO2_O8i3 + HO2 \rightarrow D3CO8iH3$	KRO2HO2	R6
$D3CO2_C9_O8 + HO2 \rightarrow D3C9O8$	KRO2HO2	R6
$D3CO2_O9i1 + HO2 \rightarrow D3CO9iH1$	KRO2HO2	R6
$D3CO2_O9i2 + HO2 \rightarrow D3CO9iH2$	KRO2HO2	R6
$D3CO2_O9i3 + HO2 \rightarrow D3CO9iH3$	KRO2HO2	R6
$D3CO2_C9_O9 + HO2 \rightarrow D3C9O9$	KRO2HO2	R6
$D3CO2_O10i1 + HO2 \rightarrow D3CO10iH1$	KRO2HO2*0.25	R6 Based on COALA CO exp.

$D3CO2_O10i1 + HO2 \rightarrow D3CO_O9iH1 + OH$	KRO2HO2*0.75	R8 Based on COALA CO exp.
$D3CO_O9iH1 \rightarrow C511OOH+ CH3CO3 + HCOCH2CHO$	KDEC	R10
$D3CO2_C9_O10 + HO2 \rightarrow D3C9O10$	KRO2HO2	R6
$D3CO2_O11i1 + HO2 \rightarrow D3CO11iH1$	KRO2HO2	R6
$D3CO2_O11i2 + HO2 \rightarrow D3CO11iH2$	KRO2HO2	R6
$D3CO2_O12 + HO2 \rightarrow D3CO12iH$	KRO2HO2	R6
R2, R3 & R5 RO ₂ + RO ₂ reactions leading to closed she	ll monomers and alkoxy radicals (F	RO)
$D3CO2_O4i1 \rightarrow D3CO3CBNi1$	1.2E-12*0.3*RO2	R3
$D3CO2_O4i1 \rightarrow D3CO_O3i1$	1.2E-12*0.4*RO2	R2
D3CO2_O4i1 → D3CO3i1	1.2E-12*0.3*RO2	R3
$D3CO2_O4i2 \rightarrow D3CO3CBNi2$	1.2E-12*0.3*RO2	R3
$D3CO2_O4i2 \rightarrow D3CO_O3i2$	1.2E-12*0.4*RO2	R2
$D3CO2_O4i2 \rightarrow D3CO3i2$	1.2E-12*0.3*RO2	R3
$D3CO2_O4i3 \rightarrow D3CO3CBNi3$	1.2E-12*0.3*RO2	R3
$D3CO2_O4i3 \rightarrow D3CO_O3i3$	1.2E-12*0.4*RO2	R2
$D3CO2_O4i3 \rightarrow D3CO3i3$	1.2E-12*0.3*RO2	R3
$D3CO2_C9_O4 \rightarrow D3C9O3CBN$	1.2E-12*0.3*RO2	R3
$D3CO2_C9_O4 \rightarrow D3CO_C9_O3$	1.2E-12*0.4*RO2	R2
$D3CO2_C9_O4 \rightarrow D3C9O3$	1.2E-12*0.3*RO2	R3
$D3CO2_O5i1 \rightarrow D3CO4CBNi1$	1.2E-12*0.3*RO2	R3
$D3CO2_O5i1 \rightarrow D3CO_O4i1$	1.2E-12*0.3*RO2	R2
$D3CO2_O5i1 \rightarrow D3CO4i1$	1.2E-12*0.3*RO2	R3
$D3CO2_O5i2 \rightarrow D3CO4CBNi2$	1.2E-12*0.3*RO2	R3
$D3CO2_O5i2 \rightarrow D3CO_O4i2$	1.2E-12*0.4*RO2	R2
$D3CO2_O5i2 \rightarrow D3CO4i2$	1.2E-12*0.3*RO2	R3
$D3CO2_O5i3 \rightarrow D3CO4CBNi3$	1.2E-12*0.3*RO2	R3
$D3CO2_O5i3 \rightarrow D3CO_O4i3$	1.2E-12*0.4*RO2	R2
$D3CO2_O5i3 \rightarrow D3CO4i3$	1.2E-12*0.3*RO2	R3
$D3CO2_C9_O5 \rightarrow D3C9O4CBN$	1.2E-12*0.3*RO2	R3
$D3CO2_C9_O5 \rightarrow D3CO_C9_O4$	1.2E-12*0.4*RO2	R2
$D3CO2_C9_O5 \rightarrow D3C9O4$	1.2E-12*0.3*RO2	R3
$D3CO2_O6i1 \rightarrow D3CO5CBNi1$	1.6E-12*0.4*RO2	R3
$D3CO2_O6i1 \rightarrow D3CO_O5i1$	1.6E-12*0.2*RO2	R2
$D3CO2_O6i1 \rightarrow D3CO5i1$	1.6E-12*0.4*RO2	R3
$D3CO2_O6i2 \rightarrow D3CO5CBNi2$	1.6E-12*0.4*RO2	R3
$D3CO2_O6i2 \rightarrow D3CO_O5i2$	1.6E-12*0.2*RO2	R2
$D3CO2_O6i2 \rightarrow D3CO5i2$	1.6E-12*0.4*RO2	R3
$D3CO2_O6i3 \rightarrow D3CO5CBNi3$	1.6E-12*0.4*RO2	R3
$D3CO2_O6i3 \rightarrow D3CO_O5i3$	1.6E-12*0.2*RO2	R2

$D3CO2_O6i3 \rightarrow D3CO5i3$	1.6E-12*0.4*RO2	R3
$D3CO2_C9_O6 \rightarrow D3C9O6CBN$	1.6E-12*0.4*RO2	R3
$D3CO2_C9_O6 \rightarrow D3CO_C9_O6$	1.6E-12*0.2*RO2	R2
$D3CO2_C9_O6 \rightarrow D3C9O6$	1.6E-12*0.4*RO2	R3
$D3CO2_O7i1 \rightarrow D3CO6CBNi1$	2E-12*0.3*RO2	R3
$D3CO2_O7i1 \rightarrow D3CO_O6i1$	2E-12*0.2*RO2	R2
D3CO2_O7i1 → D3CO6i1	2E-12*0.5*RO2	R3
$D3CO2_O7i2 \rightarrow D3CO6CBNi2$	2E-12*0.3*RO2	R3
$D3CO2_O7i2 \rightarrow D3CO_O6i2$	2E-12*0.2*RO2	R2
$D3CO2_O7i2 \rightarrow D3CO6i2$	2E-12*0.5*RO2	R3
$D3CO2_O7i3 \rightarrow D3CO6CBNi3$	2E-12*0.3*RO2	R3
$D3CO2_O7i3 \rightarrow D3CO_O6i3$	2E-12*0.2*RO2	R2
$D3CO2_O7i3 \rightarrow D3CO6i3$	2E-12*0.5*RO2	R3
$D3CO2_C9_O7 \rightarrow D3C9O6CBN$	2E-12*0.3*RO2	R3
$D3CO2_C9_O7 \rightarrow D3CO_C9_O6$	2E-12*0.2*RO2	R2
$D3CO2_C9_O7 \rightarrow D3C9O6$	2E-12*0.5*RO2	R3
D3CO2_O8i1 → D3CO7CBNi1	2E-12*0.5*RO2	R3
$D3CO2_O8i1 \rightarrow D3CO_O7i1$	2E-12*0.2*RO2	R2
$D3CO2_O8i1 \rightarrow D3CC7H8O7 + CH3COCH3$	2E-12*0.0*RO2	R2 + R10
$D3CO2_O8i1 \rightarrow D3CO7i1$	2E-12*0.3*RO2	R3
$D3CO2_O8i2 \rightarrow D3CO7CBNi2$	2E-12*0.5*RO2	R3
$D3CO2_O8i2 \rightarrow D3CO_O7i2$	2E-12*0.2*RO2	R2
$D3CO2_O8i2 \rightarrow D3CC7H8O7 + CH3COCH3$	2E-12*0.0*RO2	R2 + R10
$D3CO2_O8i2 \rightarrow D3CO7i2$	2E-12*0.3*RO2	R3
$D3CO2_O8i3 \rightarrow D3CO7CBNi3$	2E-12*0.27*RO2	R3 Based on COALA exp
$D3CO2_O8i3 \rightarrow D3CO_O7i3$	2E-12*0.2*RO2	R2
$D3CO2_O8i3 \rightarrow D3CC7H8O7 + CH3COCH3$	2E-12*0.3*RO2	R2 + R10
$D3CO2_O8i3 \rightarrow D3CO7i3$	2E-12*0.23*RO2	Based on COALA exp
$D3CO2_C9_O8 \rightarrow D3C9O7CBN$	2E-12*0.5*RO2	R3
$D3CO2_C9_O8 \rightarrow D3CO_C9_O7$	2E-12*0.2*RO2	R2
$D3CO2_C9_O8 \rightarrow D3C9O7$	2E-12*0.3*RO2	R3
$D3CO2_O9i1 \rightarrow D3CO8CBNi1$	2E-12*0.1*RO2	R3 Based on COALA exp
$D3CO2_O9i1 \rightarrow D3CC7H8O8 + CH3COCH3$	2E-12*0.1*RO2	R2 + R10
$D3CO2_O9i1 \rightarrow D3CO8i1$	2E-12*0.8*RO2	R3 Based on COALA exp
$D3CO2_O9i2 \rightarrow D3CO8CBNi2$	2E-12*0.1*RO2	R3
$D3CO2_O9i2 \rightarrow D3CC7H8O8 + CH3COCH3$	2E-12*0.1*RO2	R2 + R10
$D3CO2_O9i2 \rightarrow D3CO8i2$	2E-12*0.8*RO2	R3
$D3CO2_O9i3 \rightarrow D3CO8CBNi3$	2E-12*0.1*RO2	R3
$D3CO2_O9i3 \rightarrow D3CC7H8O8 + CH3COCH3$	2E-12*0.1*RO2	R2 + R10
$D3CO2_O9i3 \rightarrow D3CO8i3$	2E-12*0.8*RO2	R3

$D3CO2_C9_O9 \rightarrow D3C9O8CBN$	2E-12*0.7*RO2	R3
$D3CO2_C9_O9 \rightarrow D3CO_C9_O8$	2E-12*0.1*RO2	R2
$D3CO2_C9_O9 \rightarrow D3C9O8$	2E-12*0.2*RO2	R3
$D3CO2_O10i1 \rightarrow D3CO9CBNi1$	2E-12*0.55*RO2	R3 Based on COALA exp
D3CO2_O10i1 → D3CC7H8O8 + CH3COCH3	2E-12*0.0*RO2	R2 + R10
D3CO2_O10i1 → D3CO9iR1	2E-12*0.45*RO2	R3 Based on COALA exp
$D3CO2_C9_O10 \rightarrow D3C9O9CBN$	2E-12*0.5*RO2	R3 Based on COALA exp
$D3CO2_C9_O10 \rightarrow D3C9O9$	2E-12*0.5*RO2	R3 Based on COALA exp
D3CO2_O11i1 → D3CO10CBNi1	2E-12*0.2*RO2	R3
D3CO2_O11i1 → D3CC7H8O8 + CH3COCH3	2E-12*0.6*RO2	R2 + R10
D3CO2_O11i1 → D3CO10i1	2E-12*0.2*RO2	R3
$D3CO2_O12 \rightarrow D3CO11CBN$	2E-12*0.8*RO2	R3
$D3CO2_O12 \rightarrow D3CC7H8O8 + CH3COCH3$	2E-12*0.1*RO2	R2 + R10
$D3CO2_O12 \rightarrow D3CO11$	2E-12*0.1*RO2	R3
Functionalization of PRAM RO2 when they react with N	$NO (RO_2 + NO \rightarrow RO + NO_2)$	
$D3CO2_O4i1 + NO \rightarrow D3CO_O3i1 + NO2$	0.8*KRO2NO	
$D3CO2_O4i2 + NO \rightarrow D3CO_O3i2 + NO2$	0.8*KRO2NO	
$D3CO2_O4i3 + NO \rightarrow D3CO_O3i3 + NO2$	0.8*KRO2NO	
$D3CO2_C9_O4 + NO \rightarrow D3CO_C9_O3 + NO2$	0.8*KRO2NO	
$D3CO2_O5i1 + NO \rightarrow D3CO_O4i1 + NO2$	0.6*KRO2NO	
$D3CO2_O5i2 + NO \rightarrow D3CO_O4i2 + NO2$	0.6*KRO2NO	
$D3CO2_O5i3 + NO \rightarrow D3CO_O4i3 + NO2$	0.6*KRO2NO	
$D3CO2_C9_O5 + NO \rightarrow D3CO_C9_O4 + NO2$	0.6*KRO2NO	
$D3CO2_O6i1 + NO \rightarrow D3CO_O5i1 + NO2$	0.4*KRO2NO	
$D3CO2_O6i2 + NO \rightarrow D3CO_O5i2 + NO2$	0.4*KRO2NO	
$D3CO2_O6i3 + NO \rightarrow D3CO_O5i3 + NO2$	0.4*KRO2NO	
$D3CO2_C9_O6 + NO \rightarrow D3CO_C9_O5 + NO2$	0.4*KRO2NO	
$D3CO2_O7i1 + NO \rightarrow D3CO_O6i1 + NO2$	0.2*KRO2NO	
$D3CO2_O7i2 + NO \rightarrow D3CO_O6i2 + NO2$	0.2*KRO2NO	
$D3CO2_O7i3 + NO \rightarrow D3CO_O6i3 + NO2$	0.2*KRO2NO	
$D3CO2_C9_O7 + NO \rightarrow D3CO_C9_O6 + NO2$	0.2*KRO2NO	
Fragmentation of RO2 when they react with NO		
$D3CO2_O4i1 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.08*KRO2NO	
$D3CO2_O4i2 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.08*KRO2NO	
$D3CO2_O4i3 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.08*KRO2NO	
$D3CO2_C9_O4 + NO \rightarrow C717O2 + CH3CHO + NO2$	0.08*KRO2NO	
$D3CO2_O5i1 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.16*KRO2NO	
$D3CO2_O5i2 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.16*KRO2NO	
$D3CO2_O5i3 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.16*KRO2NO	
$D3CO2_C9_O5 + NO \rightarrow C717O2 + CH3CHO + NO2$	0.16*KRO2NO	

$D3CO2_O6i1 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.24*KRO2NO
$D3CO2_O6i2 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.24*KRO2NO
$D3CO2_O6i3 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.24*KRO2NO
$D3CO2_C9_O6 + NO \rightarrow C717O2 + CH3CHO + NO2$	0.24*KRO2NO
$D3CO2_O7i1 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.32*KRO2NO
$D3CO2_O7i2 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.32*KRO2NO
$D3CO2_O7i3 + NO \rightarrow C717O2 + CH3COCH3 + NO2$	0.32*KRO2NO
$D3CO2_C9_O7 + NO \rightarrow C717O2 + CH3CHO + NO2$	0.32*KRO2NO
$D3CO2_O8i1 + NO \rightarrow D3CC7H8O7 + CU2COCH2 + NO2$	0.4*KRO2NO
D3CO2 $O8i2 + NO \rightarrow D3CC7H8O7 +$	
CH3COCH3+NO2	0.4*KRO2NO
$D3CO2_08i3 + NO \rightarrow D3CC7H8O7 + CH3COCH3+NO2$	0.4*KRO2NO
$D3CO2_C9_O8 + NO \rightarrow D3CC7H8O7 + CH3CHO + NO2$	0.4*KRO2NO
$D3CO2_O9i1 + NO \rightarrow R_C7H11O7 + MGLYOX+NO2$	0.4*KRO2NO
$D3CO2_O9i2 + NO \rightarrow R_C7H11O7 + MGLYOX+NO2$	0.4*KRO2NO
$D3CO2_O9i3 + NO \rightarrow R_C7H11O7 + MGLYOX+NO2$	0.4*KRO2NO
$D3CO2_C9_O9 + NO \rightarrow R_C7H1107 + GLYOX + NO2$	0.4*KRO2NO
$D3CO2_O10i1 + NO \rightarrow R_C7H11O7 + CH3COCO2H+NO2$	0.4*KRO2NO
$D3CO2_C9_O10 + NO \rightarrow R_C7H11O7 + GLYOX + NO2$	0.4*KRO2NO
$D3CO2_O11i1 + NO \rightarrow D3CC7H8O8 + CH3COCH3+NO2$	0.4*KRO2NO
$D3CO2_O11i2 + NO \rightarrow D3CC7H8O8 + CH3COCH3+NO2$	0.4*KRO2NO
$D3CO2_O12 + NO \rightarrow D3CC7H8O8 + CH3COCH3+NO2$	0.4*KRO2NO
$R_C7H11O7 + NO \rightarrow D3CC7NO3_O8$	KRO2NO
$R_C7H11O7 \rightarrow D3CC7H10O6$	5.0E-12*RO2
$RO_2 + NO \rightarrow R \rightarrow O + NO_2 + HO_2$	
$D3CO2_O4i1 + NO \rightarrow D3CO3CBNi1 + NO2 + HO2$	0.06*KRO2NO
$D3CO2_O4i2 + NO \rightarrow D3CO3CBNi2 + NO2 + HO2$	0.06*KRO2NO
$D3CO2_O4i3 + NO \rightarrow D3CO3CBNi3 + NO2 + HO2$	0.06*KRO2NO
$D3CO2_C9_O4 + NO \rightarrow D3C9O3CBN + NO2 + HO2$	0.06*KRO2NO
$D3CO2_O5i1 + NO \rightarrow D3CO4CBNi1 + NO2 + HO2$	0.12*KRO2NO
$D3CO2_O5i2 + NO \rightarrow D3CO4CBNi2 + NO2 + HO2$	0.12*KRO2NO
$D3CO2_O5i3 + NO \rightarrow D3CO4CBNi3 + NO2 + HO2$	0.12*KRO2NO
$D3CO2_C9_O5 + NO \rightarrow D3C9O4CBN + NO2 + HO2$	0.12*KRO2NO
$D3CO2_O6i1 + NO \rightarrow D3CO5CBNi1 + NO2 + HO2$	0.18*KRO2NO
$D3CO2_O6i2 + NO \rightarrow D3CO5CBNi2 + NO2 + HO2$	0.18*KRO2NO
$D3CO2_O6i3 + NO \rightarrow D3CO5CBNi3 + NO2 + HO2$	0.18*KRO2NO
$D3CO2_C9_O6 + NO \rightarrow D3C9O5CBN + NO2 + HO2$	0.18*KRO2NO

$D3CO2_O7i1 + NO \rightarrow D3CO6CBNi1 + NO2 + HO2$	0.24*KRO2NO
$D3CO2_O7i2 + NO \rightarrow D3CO6CBNi2 + NO2 + HO2$	0.24*KRO2NO
$D3CO2_O7i3 + NO \rightarrow D3CO6CBNi3 + NO2 + HO2$	0.24*KRO2NO
$D3CO2_C9_O7 + NO \rightarrow D3C9O6CBN + NO2 + HO2$	0.24*KRO2NO
$D3CO2_O8i1 + NO \rightarrow D3CO7CBNi1 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O8i2 + NO \rightarrow D3CO7CBNi2 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O8i3 + NO \rightarrow D3CO7CBNi3 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_C9_O8 + NO \rightarrow D3C9O7CBN + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O9i1 + NO \rightarrow D3CO8CBNi1 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O9i2 + NO \rightarrow D3CO8CBNi2 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O9i3 + NO \rightarrow D3CO8CBNi3 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_C9_O9 + NO \rightarrow D3C9O8CBN + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O10i1 + NO \rightarrow D3CO9CBNi1 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_C9_O10 + NO \rightarrow D3C9O9CBN + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O11i1 + NO \rightarrow D3CO10CBNi1 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O11i2 + NO \rightarrow D3CO10CBNi2 + NO2 + HO2$	0.3*KRO2NO
$D3CO2_O12 + NO \rightarrow D3CO11CBN + NO2 + HO2$	0.3*KRO2NO
$\mathbf{RO}_2 + \mathbf{NO} \rightarrow \mathbf{R}\text{-}\mathbf{NO}_3$	
$D3CO2_O4i1 + NO \rightarrow D3CNO5i1$	0.06*KRO2NO
$D3CO2_O4i2 + NO \rightarrow D3CNO5i2$	0.06*KRO2NO
$D3CO2_O4i3 + NO \rightarrow D3CNO5i3$	0.06*KRO2NO
$D3CO2_C9_O4 + NO \rightarrow D3C9NO5$	0.06*KRO2NO
$D3CO2_O5i1 + NO \rightarrow D3CNO6i1$	0.12*KRO2NO
$D3CO2_O5i2 + NO \rightarrow D3CNO6i2$	0.12*KRO2NO
$D3CO2_O5i3 + NO \rightarrow D3CNO6i3$	0.12*KRO2NO
$D3CO2_C9_O5 + NO \rightarrow D3C9NO6$	0.12*KRO2NO
$D3CO2_O6i1 + NO \rightarrow D3CNO7i1$	0.18*KRO2NO
$D3CO2_O6i2 + NO \rightarrow D3CNO7i2$	0.18*KRO2NO
$D3CO2_O6i3 + NO \rightarrow D3CNO7i3$	0.18*KRO2NO
$D3CO2_C9_O6 + NO \rightarrow D3C9NO7$	0.18*KRO2NO
$D3CO2_O7i1 + NO \rightarrow D3CNO8i1$	0.24*KRO2NO
$D3CO2_O7i2 + NO \rightarrow D3CNO8i2$	0.24*KRO2NO
$D3CO2_O7i3 + NO \rightarrow D3CNO8i3$	0.24*KRO2NO
$D3CO2_C9_O7 + NO \rightarrow D3C9NO8$	0.24*KRO2NO
$D3CO2_O8i1 + NO \rightarrow D3CNO9i1$	0.3*KRO2NO
$D3CO2_O8i2 + NO \rightarrow D3CNO9i2$	0.3*KRO2NO
$D3CO2_O8i3 + NO \rightarrow D3CNO9i3$	0.3*KRO2NO
$D3CO2_C9_O8 + NO \rightarrow D3C9NO9$	0.3*KRO2NO
$D3CO2_O9i1 + NO \rightarrow D3CNO10i1$	0.3*KRO2NO
$D3CO2_O9i2 + NO \rightarrow D3CNO10i2$	0.3*KRO2NO

$D3CO2_O9i3 + NO \rightarrow D3CNO10i3$	0.3*KRO2NO
$D3CO2_C9_O9 + NO \rightarrow D3C9NO10$	0.3*KRO2NO
$D3CO2_O10i1 + NO \rightarrow D3CNO11i1$	0.3*KRO2NO
$D3CO2_C9_O10 + NO \rightarrow D3C9NO11$	0.3*KRO2NO
$D3CO2_O11i1 + NO \rightarrow D3CNO12i1$	0.3*KRO2NO
$D3CO2_O11i2 + NO \rightarrow D3CNO12i2$	0.3*KRO2NO
$D3CO2_O12 + NO \rightarrow D3CNO13$	0.3*KRO2NO

Table S7. Peroxy radical autoxidation mechanism (PRAM), dimer production. Rx (e.g., R1) in the 'Notes' column corresponds to

240

the reactions numbered in the main text.

Reactions	Rate constants (cm ³ s ⁻¹)	Notes
$D3C1O2+D3CO2_O4i1 \rightarrow D3C20H32_O5$	1E-13	R4
$D3C2O2+D3CO2_O4i1 \rightarrow D3C20H32_O5$	1E-13	R4
$D3C96CO3+D3CO2_O4i1 \rightarrow D3C20H30_O6$	1E-13	R4
$D3CALO2+D3CO2_O4i1 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C106O2+D3CO2_O4i1 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C107O2+D3CO2_O4i1 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C108O2+D3CO2_O4i1 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C109O2+D3CO2_O4i1 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C920CO3+D3CO2_O4i1 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C96O2+D3CO2_O4i1 \rightarrow D3C19H30_O5$	1E-13	R4
$D3C89CO3+D3CO2_O4i1 \rightarrow D3C19H28_O6$	1E-13	R4
$D3C920O2+D3CO2_O4i1 \rightarrow D3C19H30_O6$	1E-13	R4
$D3C811CO3+D3CO2_O4i1 \rightarrow D3C19H28_O7$	1E-13	R4
$D3C921O2+D3CO2_O4i1 \rightarrow D3C19H30_O7$	1E-13	R4
$D3C922O2+D3CO2_O4i1 \rightarrow D3C19H30_O8$	1E-13	R4
$D3C97O2+D3CO2_O4i1 \rightarrow D3C19H30_O6$	1E-13	R4
$D3C98O2+D3CO2_O4i1 \rightarrow D3C19H30_O7$	1E-13	R4
$D3C89O2+D3CO2_O4i1 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C810O2 + D3CO2_O4i1 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C811O2 + D3CO2_O4i1 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C812O2+D3CO2_O4i1 \rightarrow D3C18H28_O7$	1E-13	R4
$D3C813O2 + D3CO2_O4i1 \rightarrow D3C18H28_O8$	1E-13	R4
$D3C85O2+D3CO2_O4i1 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C86O2 + D3CO2_O4i1 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C721CO3+D3CO2_O4i1 \rightarrow D3C18H26_O7$	1E-13	R4
$D3C1O2+D3CO2_O4i2 \rightarrow D3C20H30_O5$	1E-13	R4
$D3C2O2+D3CO2_O4i2 \rightarrow D3C20H30_O5$	1E-13	R4

$D3C96CO3+D3CO2_O4i2 \rightarrow D3C20H30_O6$	1E-13	R4
$D3CALO2+D3CO2_O4i2 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C106O2+D3CO2_O4i2 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C107O2+D3CO2_O4i2 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C108O2+D3CO2_O4i2 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C109O2+D3CO2_O4i2 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C920CO3+D3CO2_O4i2 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C96O2+D3CO2_O4i2 \rightarrow D3C19H30_O5$	1E-13	R4
$D3C89CO3+D3CO2_O4i2 \rightarrow D3C19H28_O6$	1E-13	R4
$D3C920O2+D3CO2_O4i2 \rightarrow D3C19H30_O6$	1E-13	R4
$D3C811CO3+D3CO2_O4i2 \rightarrow D3C19H28_O7$	1E-13	R4
$D3C921O2+D3CO2_O4i2 \rightarrow D3C19H30_O7$	1E-13	R4
$D3C922O2+D3CO2_O4i2 \rightarrow D3C19H30_O8$	1E-13	R4
$D3C97O2+D3CO2_O4i2 \rightarrow D3C19H30_O6$	1E-13	R4
$D3C98O2+D3CO2_O4i2 \rightarrow D3C19H30_O7$	1E-13	R4
$D3C89O2+D3CO2_O4i2 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C810O2+D3CO2_O4i2 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C811O2+D3CO2_O4i2 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C812O2+D3CO2_O4i2 \rightarrow D3C18H28_O7$	1E-13	R4
$D3C813O2 + D3CO2_O4i2 \rightarrow D3C18H28_O8$	1E-13	R4
$D3C85O2+D3CO2_O4i2 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C86O2+D3CO2_O4i2 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C721CO3+D3CO2_O4i2 \rightarrow D3C18H26_O7$	1E-13	R4
$D3C1O2+D3CO2_O4i3 \rightarrow D3C20H32_O5$	1E-13	R4
$D3C2O2+D3CO2_O4i3 \rightarrow D3C20H32_O5$	1E-13	R4
$D3C96CO3+D3CO2_O4i3 \rightarrow D3C20H30_O6$	1E-13	R4
$D3CALO2+D3CO2_O4i3 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C106O2+D3CO2_O4i3 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C107O2+D3CO2_O4i3 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C108O2+D3CO2_O4i3 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C109O2+D3CO2_O4i3 \rightarrow D3C20H30_O6$	1E-13	R4
$D3C920CO3+D3CO2_O4i3 \rightarrow D3C20H30_O7$	1E-13	R4
$D3C96O2+D3CO2_O4i3 \rightarrow D3C19H30_O5$	1E-13	R4
$D3C89CO3+D3CO2_O4i3 \rightarrow D3C19H28_O6$	1E-13	R4
$D3C920O2+D3CO2_O4i3 \rightarrow D3C19H30_O6$	1E-13	R4
$D3C811CO3+D3CO2_O4i3 \rightarrow D3C19H28_O7$	1E-13	R4
$D3C921O2+D3CO2_O4i3 \rightarrow D3C19H30_O7$	1E-13	R4
$D3C922O2+D3CO2_O4i3 \rightarrow D3C19H30_O8$	1E-13	R4
$D3C97O2+D3CO2_O4i3 \rightarrow D3C19H30_O6$	1E-13	R4

$D3C98O2+D3CO2_O4i3 \rightarrow D3C19H30_O7$	1E-13	R4
$D3C89O2+D3CO2_O4i3 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C810O2 + D3CO2_O4i3 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C811O2+D3CO2_O4i3 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C812O2+D3CO2_O4i3 \rightarrow D3C18H28_O7$	1E-13	R4
$D3C813O2+D3CO2_O4i3 \rightarrow D3C18H28_O8$	1E-13	R4
$D3C85O2+D3CO2_O4i3 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C86O2 + D3CO2_O4i3 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C721CO3+D3CO2_O4i3 \rightarrow D3C18H26_O7$	1E-13	R4
$D3C1O2+D3CO2_C9_O4 \rightarrow D3C19H30_O5$	1E-13	R4
$D3C2O2+D3CO2_C9_O4 \rightarrow D3C19H30_O5$	1E-13	R4
$D3C96CO3+D3CO2_C9_O4 \rightarrow D3C19H28_O6$	1E-13	R4
$D3CALO2+D3CO2_C9_O4 \rightarrow D3C19H28_O6$	1E-13	R4
$D3C106O2+D3CO2_C9_O4 \rightarrow D3C19H28_O7$	1E-13	R4
$D3C107O2+D3CO2_C9_O4 \rightarrow D3C19H28_O6$	1E-13	R4
$D3C108O2+D3CO2_C9_O4 \rightarrow D3C19H28_O7$	1E-13	R4
$D3C109O2+D3CO2_C9_O4 \rightarrow D3C19H28_O6$	1E-13	R4
$D3C920CO3+D3CO2_C9_O4 \rightarrow D3C19H28_O7$	1E-13	R4
$D3C96O2+D3CO2_C9_O4 \rightarrow D3C18H28_O5$	1E-13	R4
$D3C89CO3+D3CO2_C9_O4 \rightarrow D3C18H26_O6$	1E-13	R4
$D3C920O2+D3CO2_C9_O4 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C811CO3+D3CO2_C9_O4 \rightarrow D3C18H26_O7$	1E-13	R4
$D3C921O2+D3CO2_C9_O4 \rightarrow D3C18H28_O7$	1E-13	R4
$D3C922O2+D3CO2_C9_O4 \rightarrow D3C18H28_O8$	1E-13	R4
$D3C97O2+D3CO2_C9_O4 \rightarrow D3C18H28_O6$	1E-13	R4
$D3C98O2+D3CO2_C9_O4 \rightarrow D3C18H28_O7$	1E-13	R4
$D3C89O2+D3CO2_C9_O4 \rightarrow D3C17H26_O5$	1E-13	R4
$D3C810O2+D3CO2_C9_O4 \rightarrow D3C17H26_O6$	1E-13	R4
$D3C811O2+D3CO2_C9_O4 \rightarrow D3C17H26_O6$	1E-13	R4
$D3C812O2+D3CO2_C9_O4 \rightarrow D3C17H26_O7$	1E-13	R4
$D3C813O2+D3CO2_C9_O4 \rightarrow D3C17H26_O8$	1E-13	R4
$D3C85O2+D3CO2_C9_O4 \rightarrow D3C17H26_O5$	1E-13	R4
$D3C86O2+D3CO2_C9_O4 \rightarrow D3C17H26_O6$	1E-13	R4
$D3C721CO3+D3CO2_C9_O4 \rightarrow D3C17H24_O7$	1E-13	R4
$D3C1O2+D3CO2_O5i1 \rightarrow D3C20H32_O6$	2E-13	R4
$D3C2O2+D3CO2_O5i1 \rightarrow D3C20H32_O6$	2E-13	R4
$D3C96CO3+D3CO2_O5i1 \rightarrow D3C20H30_O7$	2E-13	R4
$D3CALO2+D3CO2_O5i1 \rightarrow D3C20H30_O7$	2E-13	R4

$D3C106O2+D3CO2_O5i1 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C107O2+D3CO2_O5i1 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C108O2+D3CO2_O5i1 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C109O2+D3CO2_O5i1 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C920CO3+D3CO2_O5i1 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C96O2+D3CO2_O5i1 \rightarrow D3C19H30_O6$	2E-13	R4
$D3C89CO3+D3CO2_O5i1 \rightarrow D3C19H28_O7$	2E-13	R4
$D3C920O2+D3CO2_O5i1 \rightarrow D3C19H30_O7$	2E-13	R4
$D3C811CO3+D3CO2_O5i1 \rightarrow D3C19H28_O8$	2E-13	R4
$D3C921O2+D3CO2_O5i1 \rightarrow D3C19H30_O8$	2E-13	R4
$D3C922O2+D3CO2_O5i1 \rightarrow D3C19H30_O9$	2E-13	R4
$D3C97O2+D3CO2_O5i1 \rightarrow D3C19H30_O7$	2E-13	R4
$D3C98O2+D3CO2_O5i1 \rightarrow D3C19H30_O8$	2E-13	R4
$D3C89O2+D3CO2_O5i1 \rightarrow D3C18H28_O6$	2E-13	R4
$D3C810O2+D3CO2_O5i1 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C811O2+D3CO2_O5i1 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C812O2+D3CO2_O5i1 \rightarrow D3C18H28_O8$	2E-13	R4
$D3C813O2+D3CO2_O5i1 \rightarrow D3C18H28_O9$	2E-13	R4
$D3C85O2+D3CO2_O5i1 \rightarrow D3C18H28_O6$	2E-13	R4
$D3C86O2+D3CO2_O5i1 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C721CO3+D3CO2_O5i1 \rightarrow D3C18H26_O8$	2E-13	R4
$D3C1O2+D3CO2_O5i2 \rightarrow D3C20H32_O6$	2E-13	R4
$D3C2O2+D3CO2_O5i2 \rightarrow D3C20H32_O6$	2E-13	R4
$D3C96CO3+D3CO2_O5i2 \rightarrow D3C20H30_O7$	2E-13	R4
$D3CALO2+D3CO2_O5i2 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C106O2+D3CO2_O5i2 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C107O2+D3CO2_O5i2 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C108O2+D3CO2_O5i2 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C109O2+D3CO2_O5i2 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C920CO3+D3CO2_O5i2 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C96O2+D3CO2_O5i2 \rightarrow D3C19H30_O6$	2E-13	R4
$D3C89CO3+D3CO2_O5i2 \rightarrow D3C19H28_O7$	2E-13	R4
$D3C920O2+D3CO2_O5i2 \rightarrow D3C19H30_O7$	2E-13	R4
$D3C811CO3+D3CO2_O5i2 \rightarrow D3C19H28_O8$	2E-13	R4
$D3C921O2+D3CO2_O5i2 \rightarrow D3C19H30_O8$	2E-13	R4
$D3C922O2+D3CO2_O5i2 \rightarrow D3C19H30_O9$	2E-13	R4
$D3C97O2+D3CO2_O5i2 \rightarrow D3C19H30_O7$	2E-13	R4
$D3C98O2+D3CO2_O5i2 \rightarrow D3C19H30_O8$	2E-13	R4
$D3C89O2+D3CO2 O5i2 \rightarrow D3C18H28 O6$	2E-13	R4

$D3C810O2+D3CO2_O5i2 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C811O2+D3CO2_O5i2 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C812O2+D3CO2_O5i2 \rightarrow D3C18H28_O8$	2E-13	R4
$D3C813O2+D3CO2_O5i2 \rightarrow D3C18H28_O9$	2E-13	R4
$D3C85O2+D3CO2_O5i2 \rightarrow D3C18H28_O6$	2E-13	R4
$D3C86O2+D3CO2_O5i2 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C721CO3+D3CO2_O5i2 \rightarrow D3C18H26_O8$	2E-13	R4
$D3C1O2+D3CO2_O5i3 \rightarrow D3C20H32_O6$	2E-13	R4
$D3C2O2+D3CO2_O5i3 \rightarrow D3C20H32_O6$	2E-13	R4
$D3C96CO3+D3CO2_O5i3 \rightarrow D3C20H30_O7$	2E-13	R4
$D3CALO2+D3CO2_O5i3 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C106O2+D3CO2_O5i3 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C107O2+D3CO2_O5i3 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C108O2+D3CO2_O5i3 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C109O2+D3CO2_O5i3 \rightarrow D3C20H30_O7$	2E-13	R4
$D3C920CO3+D3CO2_O5i3 \rightarrow D3C20H30_O8$	2E-13	R4
$D3C96O2+D3CO2_O5i3 \rightarrow D3C19H30_O6$	2E-13	R4
$D3C89CO3+D3CO2_O5i3 \rightarrow D3C19H28_O7$	2E-13	R4
$D3C920O2+D3CO2_O5i3 \rightarrow D3C19H30_O7$	2E-13	R4
$D3C811CO3+D3CO2_O5i3 \rightarrow D3C19H28_O8$	2E-13	R4
$D3C921O2+D3CO2_O5i3 \rightarrow D3C19H30_O8$	2E-13	R4
$D3C922O2+D3CO2_O5i3 \rightarrow D3C19H30_O9$	2E-13	R4
$D3C97O2+D3CO2_O5i3 \rightarrow D3C19H30_O7$	2E-13	R4
$D3C98O2+D3CO2_O5i3 \rightarrow D3C19H30_O8$	2E-13	R4
$D3C89O2+D3CO2_O5i3 \rightarrow D3C18H28_O6$	2E-13	R4
$D3C810O2+D3CO2_O5i3 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C811O2+D3CO2_O5i3 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C812O2+D3CO2_O5i3 \rightarrow D3C18H28_O8$	2E-13	R4
$D3C813O2+D3CO2_O5i3 \rightarrow D3C18H28_O9$	2E-13	R4
$D3C85O2+D3CO2_O5i3 \rightarrow D3C18H28_O6$	2E-13	R4
$D3C86O2+D3CO2_O5i3 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C721CO3+D3CO2_O5i3 \rightarrow D3C18H26_O8$	2E-13	R4
$D3C1O2+D3CO2_C9_O5 \rightarrow D3C19H30_O6$	2E-13	R4
$D3C2O2+D3CO2_C9_O5 \rightarrow D3C19H30_O6$	2E-13	R4
$D3C96CO3+D3CO2_C9_O5 \rightarrow D3C19H28_O7$	2E-13	R4
$D3CALO2+D3CO2_C9_O5 \rightarrow D3C19H28_O7$	2E-13	R4
$D3C106O2+D3CO2_C9_O5 \rightarrow D3C19H28_O8$	2E-13	R4
$D3C107O2+D3CO2_C9_O5 \rightarrow D3C19H28_O7$	2E-13	R4

$D3C108O2+D3CO2_C9_O5 \rightarrow D3C19H28_O8$	2E-13	R4
$D3C109O2+D3CO2_C9_O5 \rightarrow D3C19H28_O7$	2E-13	R4
$D3C920CO3+D3CO2_C9_O5 \rightarrow D3C19H28_O8$	2E-13	R4
$D3C96O2+D3CO2_C9_O5 \rightarrow D3C18H28_O6$	2E-13	R4
$D3C89CO3+D3CO2_C9_O5 \rightarrow D3C18H26_O7$	2E-13	R4
$D3C920O2+D3CO2_C9_O5 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C811CO3+D3CO2_C9_O5 \rightarrow D3C18H26_O8$	2E-13	R4
$D3C921O2+D3CO2_C9_O5 \rightarrow D3C18H28_O8$	2E-13	R4
$D3C922O2+D3CO2_C9_O5 \rightarrow D3C18H28_O9$	2E-13	R4
$D3C97O2+D3CO2_C9_O5 \rightarrow D3C18H28_O7$	2E-13	R4
$D3C98O2+D3CO2_C9_O5 \rightarrow D3C18H28_O8$	2E-13	R4
$D3C89O2+D3CO2_C9_O5 \rightarrow D3C17H26_O6$	2E-13	R4
$D3C810O2+D3CO2_C9_O5 \rightarrow D3C17H26_O7$	2E-13	R4
$D3C811O2+D3CO2_C9_O5 \rightarrow D3C17H26_O7$	2E-13	R4
$D3C812O2+D3CO2_C9_O5 \rightarrow D3C17H26_O8$	2E-13	R4
$D3C813O2+D3CO2_C9_O5 \rightarrow D3C17H26_O9$	2E-13	R4
$D3C85O2+D3CO2_C9_O5 \rightarrow D3C17H26_O6$	2E-13	R4
$D3C86O2+D3CO2_C9_O5 \rightarrow D3C17H26_O7$	2E-13	R4
$D3C721CO3+D3CO2_C9_O5 \rightarrow D3C17H24_O8$	2E-13	R4
$D3C1O2+D3CO2_O6i1 \rightarrow D3C20H32_O7$	1.2E-12	R4
$D3C2O2+D3CO2_O6i1 \rightarrow D3C20H32_O7$	1.2E-12	R4
$D3C96CO3+D3CO2_O6i1 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3CALO2+D3CO2_O6i1 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C106O2+D3CO2_O6i1 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C107O2+D3CO2_O6i1 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C108O2+D3CO2_O6i1 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C109O2+D3CO2_O6i1 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C920CO3+D3CO2_O6i1 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C96O2+D3CO2_O6i1 \rightarrow D3C19H30_O7$	1.2E-12	R4
$D3C89CO3+D3CO2_O6i1 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3C920O2+D3CO2_O6i1 \rightarrow D3C19H30_O8$	1.2E-12	R4
$D3C811CO3+D3CO2_O6i1 \rightarrow D3C19H28_O9$	1.2E-12	R4
$D3C921O2+D3CO2_O6i1 \rightarrow D3C19H30_O9$	1.2E-12	R4
$D3C922O2+D3CO2_O6i1 \rightarrow D3C19H30_O10$	1.2E-12	R4
$D3C97O2+D3CO2_O6i1 \rightarrow D3C19H30_O8$	1.2E-12	R4
$D3C98O2+D3CO2_O6i1 \rightarrow D3C19H30_O9$	1.2E-12	R4
$D3C89O2+D3CO2_O6i1 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C810O2+D3CO2_O6i1 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C811O2+D3CO2_O6i1 \rightarrow D3C18H28_O8$	1.2E-12	R4

$D3C812O2+D3CO2_O6i1 \rightarrow D3C18H28_O9$	1.2E-12	R4
$D3C813O2+D3CO2_O6i1 \rightarrow D3C18H28_O10$	1.2E-12	R4
$D3C85O2+D3CO2_O6i1 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C86O2+D3CO2_O6i1 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C721CO3+D3CO2_O6i1 \rightarrow D3C18H26_O9$	1.2E-12	R4
$D3C1O2+D3CO2_O6i2 \rightarrow D3C20H32_O7$	1.2E-12	R4
$D3C2O2+D3CO2_O6i2 \rightarrow D3C20H32_O7$	1.2E-12	R4
$D3C96CO3+D3CO2_O6i2 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3CALO2+D3CO2_O6i2 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C106O2+D3CO2_O6i2 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C107O2+D3CO2_O6i2 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C108O2+D3CO2_O6i2 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C109O2+D3CO2_O6i2 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C920CO3+D3CO2_O6i2 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C96O2+D3CO2_O6i2 \rightarrow D3C19H30_O7$	1.2E-12	R4
$D3C89CO3+D3CO2_O6i2 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3C920O2+D3CO2_O6i2 \rightarrow D3C19H30_O8$	1.2E-12	R4
$D3C811CO3+D3CO2_O6i2 \rightarrow D3C19H28_O9$	1.2E-12	R4
$D3C921O2+D3CO2_O6i2 \rightarrow D3C19H30_O9$	1.2E-12	R4
$D3C922O2+D3CO2_O6i2 \rightarrow D3C19H30_O10$	1.2E-12	R4
$D3C97O2+D3CO2_O6i2 \rightarrow D3C19H30_O8$	1.2E-12	R4
$D3C98O2+D3CO2_O6i2 \rightarrow D3C19H30_O9$	1.2E-12	R4
$D3C89O2+D3CO2_O6i2 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C810O2+D3CO2_O6i2 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C811O2+D3CO2_O6i2 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C812O2+D3CO2_O6i2 \rightarrow D3C18H28_O9$	1.2E-12	R4
$D3C813O2+D3CO2_O6i2 \rightarrow D3C18H28_O10$	1.2E-12	R4
$D3C85O2+D3CO2_O6i2 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C86O2 + D3CO2_O6i2 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C721CO3+D3CO2_O6i2 \rightarrow D3C18H26_O9$	1.2E-12	R4
$D3C1O2+D3CO2_O6i3 \rightarrow D3C20H32_O7$	1.2E-12	R4
$D3C2O2+D3CO2_O6i3 \rightarrow D3C20H32_O7$	1.2E-12	R4
$D3C96CO3+D3CO2_O6i3 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3CALO2+D3CO2_O6i3 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C106O2+D3CO2_O6i3 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C107O2+D3CO2_O6i3 \rightarrow D3C20H30_O8$	1.2E-12	R4
$D3C108O2+D3CO2_O6i3 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C109O2+D3CO2_O6i3 \rightarrow D3C20H30_O8$	1.2E-12	R4

$D3C920CO3+D3CO2_O6i3 \rightarrow D3C20H30_O9$	1.2E-12	R4
$D3C96O2+D3CO2_O6i3 \rightarrow D3C19H30_O7$	1.2E-12	R4
$D3C89CO3 + D3CO2_O6i3 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3C920O2+D3CO2_O6i3 \rightarrow D3C19H30_O8$	1.2E-12	R4
$D3C811CO3+D3CO2_O6i3 \rightarrow D3C19H28_O9$	1.2E-12	R4
$D3C921O2+D3CO2_O6i3 \rightarrow D3C19H30_O9$	1.2E-12	R4
$D3C922O2+D3CO2_O6i3 \rightarrow D3C19H30_O10$	1.2E-12	R4
$D3C97O2+D3CO2_O6i3 \rightarrow D3C19H30_O8$	1.2E-12	R4
$D3C98O2+D3CO2_O6i3 \rightarrow D3C19H30_O9$	1.2E-12	R4
$D3C89O2+D3CO2_O6i3 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C810O2 + D3CO2_O6i3 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C811O2 + D3CO2_O6i3 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C812O2+D3CO2_O6i3 \rightarrow D3C18H28_O9$	1.2E-12	R4
$D3C813O2+D3CO2_O6i3 \rightarrow D3C18H28_O10$	1.2E-12	R4
$D3C85O2+D3CO2_O6i3 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C86O2+D3CO2_O6i3 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C721CO3 + D3CO2_O6i3 \rightarrow D3C18H26_O9$	1.2E-12	R4
$D3C1O2+D3CO2_C9_O6 \rightarrow D3C19H30_O7$	1.2E-12	R4
$D3C2O2+D3CO2_C9_O6 \rightarrow D3C19H30_O7$	1.2E-12	R4
$D3C96CO3+D3CO2_C9_O6 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3CALO2+D3CO2_C9_O6 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3C106O2+D3CO2_C9_O6 \rightarrow D3C19H28_O9$	1.2E-12	R4
$D3C107O2+D3CO2_C9_O6 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3C108O2+D3CO2_C9_O6 \rightarrow D3C19H28_O9$	1.2E-12	R4
$D3C109O2+D3CO2_C9_O6 \rightarrow D3C19H28_O8$	1.2E-12	R4
$D3C920CO3+D3CO2_C9_O6 \rightarrow D3C19H28_O9$	1.2E-12	R4
$D3C96O2+D3CO2_C9_O6 \rightarrow D3C18H28_O7$	1.2E-12	R4
$D3C89CO3+D3CO2_C9_O6 \rightarrow D3C18H26_O8$	1.2E-12	R4
$D3C920O2+D3CO2_C9_O6 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C811CO3+D3CO2_C9_O6 \rightarrow D3C18H26_O9$	1.2E-12	R4
$D3C921O2+D3CO2_C9_O6 \rightarrow D3C18H28_O9$	1.2E-12	R4
$D3C922O2+D3CO2_C9_O6 \rightarrow D3C18H28_O10$	1.2E-12	R4
$D3C97O2+D3CO2_C9_O6 \rightarrow D3C18H28_O8$	1.2E-12	R4
$D3C98O2+D3CO2_C9_O6 \rightarrow D3C18H28_O9$	1.2E-12	R4
$D3C89O2+D3CO2_C9_O6 \rightarrow D3C17H26_O7$	1.2E-12	R4
$D3C810O2+D3CO2_C9_O6 \rightarrow D3C17H26_O8$	1.2E-12	R4
$D3C811O2+D3CO2_C9_O6 \rightarrow D3C17H26_O8$	1.2E-12	R4
$D3C812O2+D3CO2_C9_O6 \rightarrow D3C17H26_O9$	1.2E-12	R4
$D3C813O2+D3CO2_C9_O6 \rightarrow D3C17H26_O10$	1.2E-12	R4

D3C8502+D3C02_09_06 → D3C17126_07 1.2E-12 R4 D3C8502+D3C02_09_06 → D3C17126_09 1.2E-12 R4 D3C721C03+D3C02_0711 → D3C20H32_08 1.6E-12 R4 D3C102+D3C02_0711 → D3C20H32_08 1.6E-12 R4 D3C102+D3C02_0711 → D3C20H30_09 1.6E-12 R4 D3C102-D3C02_0711 → D3C20H30_09 1.6E-12 R4 D3C10602+D3C02_0711 → D3C20H30_09 1.6E-12 R4 D3C10702+D3C02_0711 → D3C20H30_09 1.6E-12 R4 D3C10702+D3C02_0711 → D3C20H30_09 1.6E-12 R4 D3C1092+D3C02_0711 → D3C20H30_09 1.6E-12 R4 D3C1902+D3C02_0711 → D3C19H30_00 1.6E-12 R4 D3C920C03+D3C02_0711 → D3C19H30_00 1.6E-12 R4 D3C9202+D3C02_0711 → D3C19H30_00 1.6E-12 R4 D3C9202+D3C02_0711 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_0711 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_0711 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_0711 → D3C19H30_09 1.6E-12 R4 D3C9202+D3C02_0711 → D3C19H30_09 1.6E-12 R4 D3C9302+D3C02_0711 → D3C19H30_09 1.6E-12			
D3CS602+D3CO2_C9_06 → D3C17H26_08 1.2E-12 R4 D3C102+D3CO2_C9_06 → D3C17H24_09 1.2E-12 R4 D3C102+D3CO2_07i1 → D3C20H32_08 1.6E-12 R4 D3CAUC2+D3CO2_07i1 → D3C20H32_08 1.6E-12 R4 D3CAUC2+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3CAUC2+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C10002+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C10002+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C10002+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C900C3+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C900C3+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C900C3+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C900C3+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9020+D3CO2_07i1 → D3C19H30_010 1.6E-	$D3C85O2+D3CO2_C9_O6 \rightarrow D3C17H26_O7$	1.2E-12	R4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$D3C86O2+D3CO2_C9_O6 \rightarrow D3C17H26_O8$	1.2E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C721CO3+D3CO2_C9_O6 \rightarrow D3C17H24_O9$	1.2E-12	R4
D3C102+D3C02_07i1 \rightarrow D3C20H32_08 1.6E-12 R4 D3C96C03+D3C02_07i1 \rightarrow D3C20H30_09 1.6E-12 R4 D3CAL02+D3C02_07i1 \rightarrow D3C20H30_09 1.6E-12 R4 D3C1002+D3C02_07i1 \rightarrow D3C20H30_09 1.6E-12 R4 D3C1002+D3C02_07i1 \rightarrow D3C20H30_09 1.6E-12 R4 D3C10002+D3C02_07i1 \rightarrow D3C20H30_09 1.6E-12 R4 D3C10002+D3C02_07i1 \rightarrow D3C20H30_09 1.6E-12 R4 D3C90C03+D3C02_07i1 \rightarrow D3C19H30_08 1.6E-12 R4 D3C90C03+D3C02_07i1 \rightarrow D3C19H30_09 1.6E-12 R4 D3C90C03+D3C02_07i1 \rightarrow D3C19H28_010 1.6E-12 R4 D3C90C03+D3C02_07i1 \rightarrow D3C19H28_010 1.6E-12 R4 D3C90202+D3C02_07i1 \rightarrow D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_07i1 \rightarrow D3C19H30_010 1.6E-12 R4 D3C90202+D3C02_07i1 \rightarrow D3C19H30_010 1.6E-12 R4 D3C902+D3C02_07i1 \rightarrow D3C19H30_010 1.6E-12 R4 D3C902+D3C02_07i1 \rightarrow D3C19H32_09 1.6E-12 R4 D3C902+D3C02_07i1 \rightarrow D3C19H32_09 1.6E-12 R4 D3C902+D3C02_07i1 \rightarrow D3C18H28_09 1.6E-12 R4 D3C902+D3C02_07i1 \rightarrow D3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$D3C1O2+D3CO2_O7i1 \rightarrow D3C20H32_O8$	1.6E-12	R4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$D3C2O2+D3CO2_O7i1 \rightarrow D3C20H32_O8$	1.6E-12	R4
D3CALO2+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C10602+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C10702+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C10802+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C920CO3+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C920CO3+D3CO2_07i1 → D3C19H30_08 1.6E-12 R4 D3C920CO3+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C92002+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C92002+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C92002+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9302+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9402+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_010 1.6E-12 R4 D3C81020_07i1 → D3C18H28_09 1.6E-12 <td>$D3C96CO3+D3CO2_O7i1 \rightarrow D3C20H30_O9$</td> <td>1.6E-12</td> <td>R4</td>	$D3C96CO3+D3CO2_O7i1 \rightarrow D3C20H30_O9$	1.6E-12	R4
D3C10602+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C10702+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C10902+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C920C34D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C920C34D3CO2_07i1 → D3C19H30_08 1.6E-12 R4 D3C920C4D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9802+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C902+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8002+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R	$D3CALO2+D3CO2_O7i1 \rightarrow D3C20H30_O9$	1.6E-12	R4
D3C10702+D3CO2_07i1 → D3C20H30_09 1.6E-12 R4 D3C10802+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C920C03+D3CO2_07i1 → D3C20H30_010 1.6E-12 R4 D3C920C03+D3CO2_07i1 → D3C19H30_08 1.6E-12 R4 D3C920C3+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C9202+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C902+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C902+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C802+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4	$D3C106O2+D3CO2_O7i1 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C10802+D3C02_07i1 → D3C20H30_010 1.6E-12 R4 D3C10902+D3C02_07i1 → D3C20H30_09 1.6E-12 R4 D3C9602+D3C02_07i1 → D3C19H30_08 1.6E-12 R4 D3C9602+D3C02_07i1 → D3C19H30_08 1.6E-12 R4 D3C902+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C902+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C9102+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9902+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C902+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C902+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C902+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C80202_07i2 → D3C20H30_09 1.6E-12	$D3C107O2+D3CO2_O7i1 \rightarrow D3C20H30_O9$	1.6E-12	R4
D3C10902+D3C02_07i1 → D3C20H30_09 1.6E-12 R4 D3C920C03+D3C02_07i1 → D3C19H30_08 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_08 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C9102+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_07i1 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C9702+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9902+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C902+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_011 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8020+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C9020_07i2 → D3C20H30_09 1.6E-12	$D3C108O2+D3CO2_O7i1 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C920C03+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9602+D3C02_07i1 → D3C19H30_08 1.6E-12 R4 D3C992002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C92102+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C902+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C9102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_010 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C80202_07i1 → D3C18H28_09 1.6E-12 R4 D3C80202_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4 D3C902_07i2 → D3C20H30_09 1.6E-12 R4 <td>$D3C109O2+D3CO2_O7i1 \rightarrow D3C20H30_O9$</td> <td>1.6E-12</td> <td>R4</td>	$D3C109O2+D3CO2_O7i1 \rightarrow D3C20H30_O9$	1.6E-12	R4
D3C9602+D3C02_07i1 → D3C19H30_08 1.6E-12 R4 D3C89C03+D3C02_07i1 → D3C19H28_09 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C92102+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_07i1 → D3C19H30_011 1.6E-12 R4 D3C9702+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9802+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9802+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9802+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C81002+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_011 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4 D3C902_07i1 → D3C18H28_09 1.6E-12 R4 D3C902_07i2 → D3C20H30_09 1.6E-12 R4 D3C102_07i2 → D3C20H30_09 1.6E-12 R4	$D3C920CO3+D3CO2_O7i1 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C89CO3+D3CO2_07i1 → D3C19H28_09 1.6E-12 R4 D3C920O2+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C91O2+D3CO2_07i1 → D3C19H28_010 1.6E-12 R4 D3C921O2+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C97O2+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C97O2+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C98O2+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C98O2+D3CO2_07i1 → D3C18H28_08 1.6E-12 R4 D3C89O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C81O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C813O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_D3CD2_07i1 → D3C18H28_09 1.6E-12 R4 D3C9C02_07i2 → D3C20H32_08 1.6E-12 R4 D3C102+D3CO2_07i2 → D3C20H32_08 1.6E-12 R4 D3C102+D3CO2_07i2 → D3C20H30_09 1.6E-12 R4 D3C104+D3CO2_07i2 → D3C20H30_09 1.6E-12 R4	$D3C96O2+D3CO2_O7i1 \rightarrow D3C19H30_O8$	1.6E-12	R4
D3C92002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C811C03+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C92102+D3C02_07i1 → D3C19H30_011 1.6E-12 R4 D3C92002+D3C02_07i1 → D3C19H30_09 1.6E-12 R4 D3C9702+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9802+D3C02_07i1 → D3C19H30_010 1.6E-12 R4 D3C9802+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C81002+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_07i1 → D3C18H28_011 1.6E-12 R4 D3C802+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_02_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i1 → D3C18H28_09 1.6E-12 R4 D3C802_07i2 → D3C20H32_08 1.6E-12 R4 D3C102_07i2 → D3C20H32_08 1.6E-12 R4 D3C1062_D3C02_07i2 → D3C20H30_09 1.6E-12 R4	$D3C89CO3+D3CO2_O7i1 \rightarrow D3C19H28_O9$	1.6E-12	R4
D3C811CO3+D3CO2_07i1 → D3C19H28_010 1.6E-12 R4 D3C921O2+D3CO2_07i1 → D3C19H30_011 1.6E-12 R4 D3C922O2+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C97O2+D3CO2_07i1 → D3C19H30_09 1.6E-12 R4 D3C98O2+D3CO2_07i1 → D3C19H30_010 1.6E-12 R4 D3C98O2+D3CO2_07i1 → D3C18H28_08 1.6E-12 R4 D3C810O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C810O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C810O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_010 1.6E-12 R4 D3C8102+D3CO2_07i1 → D3C18H28_011 1.6E-12 R4 D3C85O2+D3CO2_07i1 → D3C18H28_08 1.6E-12 R4 D3C86O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C86O2+D3CO2_07i1 → D3C18H28_09 1.6E-12 R4 D3C102+D3CO2_07i2 → D3C20H32_08 1.6E-12 R4 D3C102+D3CO2_07i2 → D3C20H30_09 1.6E-12 R4 D3C104+D3CO2_07i2 → D3C20H30_09 1.6E-12 R4 D3C10602+D3CO2_07i2 → D3C20H30_09 1.6E-12 R4 D3C10602+D3CO2_07i2 → D3C20H30_09 1.6E-12 <td>$D3C920O2+D3CO2_O7i1 \rightarrow D3C19H30_O9$</td> <td>1.6E-12</td> <td>R4</td>	$D3C920O2+D3CO2_O7i1 \rightarrow D3C19H30_O9$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C811CO3+D3CO2_O7i1 \rightarrow D3C19H28_O10$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C921O2+D3CO2_O7i1 \rightarrow D3C19H30_O10$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C922O2+D3CO2_O7i1 \rightarrow D3C19H30_O11$	1.6E-12	R4
D3C9802+D3C02_07i1 → D3C19H30_0101.6E-12R4D3C8902+D3C02_07i1 → D3C18H28_081.6E-12R4D3C81002+D3C02_07i1 → D3C18H28_091.6E-12R4D3C81102+D3C02_07i1 → D3C18H28_091.6E-12R4D3C81202+D3C02_07i1 → D3C18H28_0101.6E-12R4D3C81302+D3C02_07i1 → D3C18H28_0111.6E-12R4D3C8502+D3C02_07i1 → D3C18H28_081.6E-12R4D3C8602+D3C02_07i1 → D3C18H28_091.6E-12R4D3C8602+D3C02_07i1 → D3C18H28_091.6E-12R4D3C8602+D3C02_07i1 → D3C18H26_0101.6E-12R4D3C102+D3C02_07i2 → D3C20H32_081.6E-12R4D3C102+D3C02_07i2 → D3C20H32_081.6E-12R4D3C96C03+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10602+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10702+D3C02_07i2 → D3C20H30_091.6E-12R4D3C1002+D3C02_07i2 → D3C20H30_091.6E-12R4D3C1002+D3C02_07i2 → D3C20H30_091.6E-12R4D3C1002+D3C02_07i2 → D3C20H30_091.6E-12R4D3C1002+D3C02_07i2 → D3C20H30_091.6E-12R4D3C1002+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C9602+	$D3C97O2+D3CO2_O7i1 \rightarrow D3C19H30_O9$	1.6E-12	R4
D3C8902+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C81002+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81102+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C81202+D3C02_07i1 → D3C18H28_010 1.6E-12 R4 D3C81302+D3C02_07i1 → D3C18H28_011 1.6E-12 R4 D3C8502+D3C02_07i1 → D3C18H28_08 1.6E-12 R4 D3C8502+D3C02_07i1 → D3C18H28_09 1.6E-12 R4 D3C8602+D3C02_07i1 → D3C18H26_010 1.6E-12 R4 D3C721C03+D3C02_07i1 → D3C18H26_010 1.6E-12 R4 D3C102+D3C02_07i2 → D3C20H32_08 1.6E-12 R4 D3C202+D3C02_07i2 → D3C20H32_08 1.6E-12 R4 D3C4L02+D3C02_07i2 → D3C20H30_09 1.6E-12 R4 D3C10602+D3C02_07i2 → D3C20H30_09 1.6E-12 R4 D3C10602+D3C02_07i2 → D3C20H30_09 1.6E-12 R4 D3C10602+D3C02_07i2 → D3C20H30_09 1.6E-12 R4 D3C10702+D3C02_07i2 → D3C20H30_010 1.6E-12 R4 D3C10802+D3C02_07i2 → D3C20H30_010 1.6E-12 R4 D3C10902+D3C02_07i2 → D3C20H30_010 1.6E-12 R4 D3C10902+D3C02_07i2 → D3C20H30_010 1.	$D3C98O2+D3CO2_O7i1 \rightarrow D3C19H30_O10$	1.6E-12	R4
D3C81002+D3C02_O7i1 → D3C18H28_O91.6E-12R4D3C81102+D3C02_O7i1 → D3C18H28_O91.6E-12R4D3C81202+D3C02_O7i1 → D3C18H28_O101.6E-12R4D3C81302+D3C02_O7i1 → D3C18H28_O111.6E-12R4D3C8502+D3C02_O7i1 → D3C18H28_O81.6E-12R4D3C8602+D3C02_O7i1 → D3C18H28_O91.6E-12R4D3C8602+D3C02_O7i1 → D3C18H26_O101.6E-12R4D3C102+D3C02_O7i2 → D3C20H32_O81.6E-12R4D3C202+D3C02_O7i2 → D3C20H32_O81.6E-12R4D3C202+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C106O2+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C106O2+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C106O2+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C106O2+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10702+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10802+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9602+D3C02_O7i2 → D3C19H30_O81.6E-12R4	$D3C89O2+D3CO2_O7i1 \rightarrow D3C18H28_O8$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C810O2+D3CO2_O7i1 \rightarrow D3C18H28_O9$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C811O2+D3CO2_O7i1 \rightarrow D3C18H28_O9$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C812O2+D3CO2_O7i1 \rightarrow D3C18H28_O10$	1.6E-12	R4
D3C8502+D3C02_07i1 → D3C18H28_081.6E-12R4D3C8602+D3C02_07i1 → D3C18H28_091.6E-12R4D3C721C03+D3C02_07i1 → D3C18H26_0101.6E-12R4D3C102+D3C02_07i2 → D3C20H32_081.6E-12R4D3C202+D3C02_07i2 → D3C20H32_081.6E-12R4D3C96C03+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10602+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10602+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10702+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10802+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_091.6E-12R4D3C10902+D3C02_07i2 → D3C20H30_091.6E-12R4D3C920C03+D3C02_07i2 → D3C20H30_091.6E-12R4D3C920C03+D3C02_07i2 → D3C20H30_091.6E-12R4D3C920C03+D3C02_07i2 → D3C20H30_091.6E-12R4D3C920C03+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C920C03+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C920C03+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C920C3+D3C02_07i2 → D3C20H30_0101.6E-12R4D3C9602+D3C02_07i2 → D3C19H30_081.6E-12R4	$D3C813O2+D3CO2_O7i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
D3C8602+D3C02_O7i1 → D3C18H28_O91.6E-12R4D3C721C03+D3C02_O7i1 → D3C18H26_O101.6E-12R4D3C102+D3C02_O7i2 → D3C20H32_O81.6E-12R4D3C202+D3C02_O7i2 → D3C20H32_O81.6E-12R4D3C96C03+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10602+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10602+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10602+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10702+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10802+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C10902+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C920C03+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O91.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9020C3+D3C02_O7i2 → D3C20H30_O101.6E-12R4D3C9020C3+D3C02_O7i2 → D3C19H30_O81.6E-12R4	$D3C85O2+D3CO2_O7i1 \rightarrow D3C18H28_O8$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C86O2+D3CO2_O7i1 \rightarrow D3C18H28_O9$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C721CO3+D3CO2_O7i1 \rightarrow D3C18H26_O10$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccc} D3C2O2+D3CO2_O7i2 \rightarrow D3C20H32_O8 & 1.6E-12 & R4 \\ D3C96CO3+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3CALO2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C106O2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C107O2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C108O2+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C109O2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C109O2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C96O2+D3CO2_O7i2 \rightarrow D3C19H30_O8 & 1.6E-12 & R4 \\ D3C96O2+D3CO2_O7i2 \rightarrow D3C19H30_O8 & 1.6E-12 & R4 \\ \end{array}$	$D3C1O2+D3CO2_O7i2 \rightarrow D3C20H32_O8$	1.6E-12	R4
$\begin{array}{cccc} D3C96CO3+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3CALO2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C106O2+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C107O2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C108O2+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C109O2+D3CO2_O7i2 \rightarrow D3C20H30_O9 & 1.6E-12 & R4 \\ D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C96O2+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C96O2+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C96O2+D3CO2_O7i2 \rightarrow D3C19H30_O8 & 1.6E-12 & R4 \\ \end{array}$	$D3C2O2+D3CO2_O7i2 \rightarrow D3C20H32_O8$	1.6E-12	R4
D3CALO2+D3CO2_O7i2 → D3C20H30_O91.6E-12R4D3C106O2+D3CO2_O7i2 → D3C20H30_O101.6E-12R4D3C107O2+D3CO2_O7i2 → D3C20H30_O91.6E-12R4D3C108O2+D3CO2_O7i2 → D3C20H30_O101.6E-12R4D3C109O2+D3CO2_O7i2 → D3C20H30_O91.6E-12R4D3C920CO3+D3CO2_O7i2 → D3C20H30_O101.6E-12R4D3C920CO3+D3CO2_O7i2 → D3C20H30_O101.6E-12R4D3C920CO3+D3CO2_O7i2 → D3C20H30_O101.6E-12R4D3C920CO3+D3CO2_O7i2 → D3C19H30_O81.6E-12R4	$D3C96CO3+D3CO2_O7i2 \rightarrow D3C20H30_O9$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3CALO2+D3CO2_O7i2 \rightarrow D3C20H30_O9$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C106O2+D3CO2_O7i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C108O2+D3CO2_O7i2 \rightarrow D3C20H30_O101.6E-12R4D3C109O2+D3CO2_O7i2 \rightarrow D3C20H30_O91.6E-12R4D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O101.6E-12R4D3C96O2+D3CO2_O7i2 \rightarrow D3C19H30_O81.6E-12R4	$D3C107O2+D3CO2_O7i2 \rightarrow D3C20H30_O9$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C108O2+D3CO2_O7i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C109O2+D3CO2_O7i2 \rightarrow D3C20H30_O9$	1.6E-12	R4
$D3C96O2+D3CO2_O7i2 \rightarrow D3C19H30_O8$ 1.6E-12 R4	$D3C920CO3+D3CO2_O7i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
	$D3C96O2+D3CO2_O7i2 \rightarrow D3C19H30_O8$	1.6E-12	R4

$D3C89CO3+D3CO2_O7i2 \rightarrow D3C19H28_O9$	1.6E-12	R4
$D3C920O2+D3CO2_O7i2 \rightarrow D3C19H30_O9$	1.6E-12	R4
$D3C811CO3+D3CO2_O7i2 \rightarrow D3C19H28_O10$	1.6E-12	R4
$D3C921O2+D3CO2_O7i2 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C922O2+D3CO2_O7i2 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C97O2+D3CO2_O7i2 \rightarrow D3C19H30_O9$	1.6E-12	R4
$D3C98O2+D3CO2_O7i2 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C89O2+D3CO2_O7i2 \rightarrow D3C18H28_O8$	1.6E-12	R4
$D3C810O2+D3CO2_O7i2 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C811O2+D3CO2_O7i2 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C812O2+D3CO2_O7i2 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C813O2+D3CO2_O7i2 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C85O2+D3CO2_O7i2 \rightarrow D3C18H28_O8$	1.6E-12	R4
$D3C86O2+D3CO2_O7i2 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C721CO3+D3CO2_O7i2 \rightarrow D3C18H26_O10$	1.6E-12	R4
$D3C1O2+D3CO2_O7i3 \rightarrow D3C20H32_O8$	1.6E-12	R4
$D3C2O2+D3CO2_O7i3 \rightarrow D3C20H32_O8$	1.6E-12	R4
$D3C96CO3+D3CO2_O7i3 \rightarrow D3C20H30_O9$	1.6E-12	R4
$D3CALO2+D3CO2_O7i3 \rightarrow D3C20H30_O9$	1.6E-12	R4
$D3C106O2+D3CO2_O7i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3C107O2+D3CO2_O7i3 \rightarrow D3C20H30_O9$	1.6E-12	R4
$D3C108O2+D3CO2_O7i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3C109O2+D3CO2_O7i3 \rightarrow D3C20H30_O9$	1.6E-12	R4
$D3C920CO3+D3CO2_O7i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3C96O2+D3CO2_O7i3 \rightarrow D3C19H30_O8$	1.6E-12	R4
$D3C89CO3+D3CO2_O7i3 \rightarrow D3C19H28_O9$	1.6E-12	R4
$D3C920O2+D3CO2_O7i3 \rightarrow D3C19H30_O9$	1.6E-12	R4
$D3C811CO3+D3CO2_O7i3 \rightarrow D3C19H28_O10$	1.6E-12	R4
$D3C921O2+D3CO2_O7i3 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C922O2+D3CO2_O7i3 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C97O2+D3CO2_O7i3 \rightarrow D3C19H30_O9$	1.6E-12	R4
$D3C98O2+D3CO2_O7i3 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C89O2+D3CO2_O7i3 \rightarrow D3C18H28_O8$	1.6E-12	R4
$D3C810O2+D3CO2_O7i3 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C811O2+D3CO2_O7i3 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C812O2+D3CO2_O7i3 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C813O2+D3CO2_O7i3 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C85O2+D3CO2_O7i3 \rightarrow D3C18H28_O8$	1.6E-12	R4
$D3C86O2+D3CO2_O7i3 \rightarrow D3C18H28_O9$	1.6E-12	R4

1.6E-12	R4
1.6E-12	R4
1.6E-12	R4
	1.6E-12 1.6

$D3C811CO3+D3CO2_O8i1 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C921O2+D3CO2_O8i1 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C922O2+D3CO2_O8i1 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C97O2+D3CO2_O8i1 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C98O2+D3CO2_O8i1 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C89O2+D3CO2_O8i1 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C810O2+D3CO2_O8i1 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C811O2+D3CO2_O8i1 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C812O2+D3CO2_O8i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C813O2+D3CO2_O8i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C85O2+D3CO2_O8i1 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C86O2+D3CO2_O8i1 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C721CO3+D3CO2_O8i1 \rightarrow D3C18H26_O11$	1.6E-12	R4
$D3C1O2+D3CO2_O8i2 \rightarrow D3C20H32_O9$	1.6E-12	R4
$D3C2O2+D3CO2_O8i2 \rightarrow D3C20H32_O9$	1.6E-12	R4
$D3C96CO3+D3CO2_O8i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3CALO2+D3CO2_O8i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3C106O2+D3CO2_O8i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C107O2+D3CO2_O8i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3C108O2+D3CO2_O8i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C109O2+D3CO2_O8i2 \rightarrow D3C20H30_O10$	1.6E-12	R4
$D3C920CO3+D3CO2_O8i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C96O2+D3CO2_O8i2 \rightarrow D3C19H30_O9$	1.6E-12	R4
$D3C89CO3+D3CO2_O8i2 \rightarrow D3C19H28_O10$	1.6E-12	R4
$D3C920O2+D3CO2_O8i2 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C811CO3+D3CO2_O8i2 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C921O2+D3CO2_O8i2 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C922O2+D3CO2_O8i2 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C97O2+D3CO2_O8i2 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C98O2+D3CO2_O8i2 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C89O2+D3CO2_O8i2 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C810O2+D3CO2_O8i2 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C811O2+D3CO2_O8i2 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C812O2+D3CO2_O8i2 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C813O2+D3CO2_O8i2 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C85O2+D3CO2_O8i2 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C86O2+D3CO2_O8i2 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C721CO3+D3CO2_O8i2 \rightarrow D3C18H26_O11$	1.6E-12	R4

D3C102+D3C02_08i3 → D3C20H32_09 1.6E-12 R4 D3C96C03+D3C02_08i3 → D3C20H32_09 1.6E-12 R4 D3C96C03+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C10602+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C10602+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C10702+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C10802+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C902C03+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C902C03+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C902C03+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C902C3+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C90202_08i3 → D3C19H30_011 1.6E-12 R4 D3C8002+D3C02_08i3 → D3C18H28_010 <t< th=""><th></th><th></th><th></th></t<>			
$\begin{split} & D3C39CO3+D3CO2_O8i3 \to D3C20H30_O10 & 1.6E-12 & R4 \\ & D3C4ACO2+D3CO2_O8i3 \to D3C20H30_O10 & 1.6E-12 & R4 \\ & D3C16002+D3CO2_O8i3 \to D3C20H30_O11 & 1.6E-12 & R4 \\ & D3C16002+D3CO2_O8i3 \to D3C20H30_O10 & 1.6E-12 & R4 \\ & D3C16002+D3CO2_O8i3 \to D3C20H30_O11 & 1.6E-12 & R4 \\ & D3C16002+D3CO2_O8i3 \to D3C20H30_O10 & 1.6E-12 & R4 \\ & D3C2002+D3CO2_O8i3 \to D3C20H30_O11 & 1.6E-12 & R4 \\ & D3C39CO3+D3CO2_O8i3 \to D3C20H30_O10 & 1.6E-12 & R4 \\ & D3C39CO3+D3CO2_O8i3 \to D3C19H30_O10 & 1.6E-12 & R4 \\ & D3C39CO3+D3CO2_O8i3 \to D3C19H30_O10 & 1.6E-12 & R4 \\ & D3C39CO3+D3CO2_O8i3 \to D3C19H30_O10 & 1.6E-12 & R4 \\ & D3C39CO3+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO3+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2+D3CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C19H30_O11 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O11 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C39CO2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O8i3 \to D3C18H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O10 & 1.6E-12 & R4 \\ & D3C40C2_O9B \to D3C19H28_O$	$D3C1O2+D3CO2_O8i3 \rightarrow D3C20H32_O9$	1.6E-12	R4
$\begin{array}{ccccccc} D3C96CO3+D3CO2_O8i3 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3CLO2+D3CO2_O8i3 \rightarrow D3C20H30_O11 & 1.6E-12 & R4 \\ D3C106O2+D3CO2_O8i3 \rightarrow D3C20H30_O11 & 1.6E-12 & R4 \\ D3C109O2+D3CO2_O8i3 \rightarrow D3C20H30_O11 & 1.6E-12 & R4 \\ D3C109O2+D3CO2_O8i3 \rightarrow D3C20H30_O10 & 1.6E-12 & R4 \\ D3C9O2O3+D3CO2_O8i3 \rightarrow D3C20H30_O11 & 1.6E-12 & R4 \\ D3C9O2O3+D3CO2_O8i3 \rightarrow D3C19H30_O11 & 1.6E-12 & R4 \\ D3C9O2O3+D3CO2_O8i3 \rightarrow D3C19H30_O10 & 1.6E-12 & R4 \\ D3C89O2+D3CO2_O8i3 \rightarrow D3C19H30_O10 & 1.6E-12 & R4 \\ D3C89O2O3+D3CO2_O8i3 \rightarrow D3C19H30_O10 & 1.6E-12 & R4 \\ D3C89CO3+D3CO2_O8i3 \rightarrow D3C19H30_O11 & 1.6E-12 & R4 \\ D3C89CO3+D3CO2_O8i3 \rightarrow D3C19H30_O11 & 1.6E-12 & R4 \\ D3C92O2+D3CO2_O8i3 \rightarrow D3C18H28_O10 & 1.6E-12 & R4 \\ D3C89O2+D3CO2_O8i3 \rightarrow D3C18H28_O10 & 1.6E-12 & R4 \\ D3C81O2+D3CO2_O8i3 \rightarrow D3C18H28_O10 & 1.6E-12 & R4 \\ D3C81O2+D3CO2_O8i3 \rightarrow D3C18H28_O11 & 1.6E-12 & R4 \\ D3C81O2+D3CO2_O8i3 \rightarrow D3C18H28_O10 & 1.6E-12 & R4 \\ D3C802+D3CO2_O8i3 \rightarrow D3C18H28_O10 & 1.6E-12 & R4 \\ D3C8O2_D3CO2_O8i3 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C8O2_D3CO2_O9.O8 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C1O2_D3CO2_C9_O8 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C1O2_D3CO2_C9_O8 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C1O02_D3CO2_C9_O8 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C1O02_D3CO2_C9_O8 \rightarrow D3C19H28_O11 & 1.6E-12 & R4 \\ D3C109O2_D3CO2_C9_O8 \rightarrow D3C19H28_O11 & 1.6E-12 & R4 \\ D3C109O2_D3CO2_C9_O8 \rightarrow D3C19H28_O11 & 1.6E-12 & R4 \\ D3C109O2_D3CO2_C9_O8 \rightarrow D3C19H28_O1$	$D3C2O2+D3CO2_O8i3 \rightarrow D3C20H32_O9$	1.6E-12	R4
D3CAL02+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C10602+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C10902+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C10902+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C902C03-D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C902C03+D3C02_08i3 → D3C19H28_010 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H28_010 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H28_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H28_011 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C90202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C90202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C90202-D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C90202-D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C9102-D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010	$D3C96CO3 + D3CO2_O8i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C10602+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C10802+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C0802+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C920C03+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C920C03+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C920C03+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C92002+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C92002+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C902+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C80202-D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C102+D3C02_08i3 → D3C18H28_010 <t< td=""><td>$D3CALO2+D3CO2_O8i3 \rightarrow D3C20H30_O10$</td><td>1.6E-12</td><td>R4</td></t<>	$D3CALO2+D3CO2_O8i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C10702+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C10902+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C9002+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C9002+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C890C3+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C890C3+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C20202_08i3 → D3C18H28_010 1.6E-1	$D3C106O2+D3CO2_O8i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
D3C10802+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C20H30_011 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C19H28_010 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C19H30_012 1.6E-12 R4 D3C92020+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202D4D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202D3C2_08i3 → D3C19H30_011 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H28_010 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H28_010 1.6E-12 R4 D3C8002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C71C03+D3C02_08i3 → D3C19H28_010 1.6	$D3C107O2+D3CO2_O8i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C10902+D3C02_08i3 → D3C20H30_010 1.6E-12 R4 D3C99024+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C9902+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C9902+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C92102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C92102+D3C02_08i3 → D3C19H30_012 1.6E-12 R4 D3C9702+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9020+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C80202+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C602+D3C02_0908 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_0908 → D3C19H28_010 1.6E-1	$D3C108O2+D3CO2_O8i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
D3C920C03+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C9602+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C92002+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9702+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C90202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C9202+D3C02_C9_08 → D3C19H28_010 <td< td=""><td>$D3C109O2+D3CO2_O8i3 \rightarrow D3C20H30_O10$</td><td>1.6E-12</td><td>R4</td></td<>	$D3C109O2+D3CO2_O8i3 \rightarrow D3C20H30_O10$	1.6E-12	R4
D3C9602+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C89C03+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C9102-D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C9702+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9802+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9802+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C902+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C902+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C90202+D3C02_C9_08 → D3C19H28_010 1.	$D3C920CO3+D3CO2_O8i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
D3C89C03+D3C02_08i3 → D3C19H28_010 1.6E-12 R4 D3C92002+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C92102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_012 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8002+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802-D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C19H30_09 1.6E-12 R4 D3C202-D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C4002+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C4002+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C4002+D3C02_C9_08 → D3C19H28_010	$D3C96O2+D3CO2_O8i3 \rightarrow D3C19H30_O9$	1.6E-12	R4
D3C92002+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C811C03+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C92102+D3C02_08i3 → D3C19H30_012 1.6E-12 R4 D3C9202+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9702+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9802+D3C02_08i3 → D3C18H30_011 1.6E-12 R4 D3C9802+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8602+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8602+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C9202+D3C02_09.08 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C4002+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_010	$D3C89CO3+D3CO2_O8i3 \rightarrow D3C19H28_O10$	1.6E-12	R4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C920O2+D3CO2_O8i3 \rightarrow D3C19H30_O10$	1.6E-12	R4
D3C92102+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C92202+D3C02_08i3 → D3C19H30_010 1.6E-12 R4 D3C9702+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8202+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8202-D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C721C03+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C9202+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10702+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 <td>$D3C811CO3+D3CO2_O8i3 \rightarrow D3C19H28_O11$</td> <td>1.6E-12</td> <td>R4</td>	$D3C811CO3+D3CO2_O8i3 \rightarrow D3C19H28_O11$	1.6E-12	R4
D3C92202+D3C02_08i3 → D3C19H30_012 1.6E-12 R4 D3C9702+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C9802+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C802+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8022_08i3 → D3C18H28_011 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C90202+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C104c2+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10702+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011	$D3C921O2+D3CO2_O8i3 \rightarrow D3C19H30_O11$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C922O2+D3CO2_O8i3 \rightarrow D3C19H30_O12$	1.6E-12	R4
D3C9802+D3C02_08i3 → D3C19H30_011 1.6E-12 R4 D3C8902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C81302+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C8502+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8602+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C721C03+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10702+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_010	$D3C97O2+D3CO2_O8i3 \rightarrow D3C19H30_O10$	1.6E-12	R4
D3C8902+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81302+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C8502+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8502+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8602+D3C02_08i3 → D3C18H26_011 1.6E-12 R4 D3C102+D3C02_08i3 → D3C18H26_011 1.6E-12 R4 D3C102+D3C02_09.08 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10702+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C19002+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C92002+D3C02_C9_08 → D3C18H28_010 <td>$D3C98O2+D3CO2_O8i3 \rightarrow D3C19H30_O11$</td> <td>1.6E-12</td> <td>R4</td>	$D3C98O2+D3CO2_O8i3 \rightarrow D3C19H30_O11$	1.6E-12	R4
D3C81002+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C81102+D3C02_08i3 → D3C18H28_011 1.6E-12 R4 D3C81202+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C81302+D3C02_08i3 → D3C18H28_012 1.6E-12 R4 D3C8502+D3C02_08i3 → D3C18H28_09 1.6E-12 R4 D3C8502+D3C02_08i3 → D3C18H28_010 1.6E-12 R4 D3C8602+D3C02_08i3 → D3C18H26_011 1.6E-12 R4 D3C102+D3C02_08i3 → D3C18H26_011 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H30_09 1.6E-12 R4 D3C102+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C602+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C1002+D3C02_C9_08 → D3C19H28_010 1.6E-12 R4 D3C10602+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10702+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10802+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C10902+D3C02_C9_08 → D3C19H28_011 1.6E-12 R4 D3C920023+D3C02_C9_08 → D3C18H28_010 1.6E-12 R4 D3C920023+D3C02_C9_08 → D3C18H28_010	$D3C89O2+D3CO2_O8i3 \rightarrow D3C18H28_O9$	1.6E-12	R4
D3C81102+D3C02_08i3 → D3C18H28_0101.6E-12R4D3C81202+D3C02_08i3 → D3C18H28_0111.6E-12R4D3C81302+D3C02_08i3 → D3C18H28_0121.6E-12R4D3C8502+D3C02_08i3 → D3C18H28_091.6E-12R4D3C8602+D3C02_08i3 → D3C18H28_0101.6E-12R4D3C8602+D3C02_08i3 → D3C18H26_0111.6E-12R4D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C96C03+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C1062+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10802+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C3+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C920C3+D3C02_C9_08 → D3C18H28_011.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_0111.6	$D3C810O2+D3CO2_O8i3 \rightarrow D3C18H28_O10$	1.6E-12	R4
D3C81202+D3C02_08i3 → D3C18H28_0111.6E-12R4D3C81302+D3C02_08i3 → D3C18H28_0121.6E-12R4D3C8502+D3C02_08i3 → D3C18H28_091.6E-12R4D3C8602+D3C02_08i3 → D3C18H28_0101.6E-12R4D3C721C03+D3C02_08i3 → D3C18H26_0111.6E-12R4D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C202+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C96C03+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10802+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_010 <td< td=""><td>$D3C811O2 + D3CO2_O8i3 \rightarrow D3C18H28_O10$</td><td>1.6E-12</td><td>R4</td></td<>	$D3C811O2 + D3CO2_O8i3 \rightarrow D3C18H28_O10$	1.6E-12	R4
D3C813O2+D3CO2_O8i3 → D3C18H28_O121.6E-12R4D3C85O2+D3CO2_O8i3 → D3C18H28_O91.6E-12R4D3C86O2+D3CO2_O8i3 → D3C18H28_O101.6E-12R4D3C721CO3+D3CO2_O8i3 → D3C18H26_O111.6E-12R4D3C1O2+D3CO2_C9_O8 → D3C19H30_O91.6E-12R4D3C2O2+D3CO2_C9_O8 → D3C19H30_O91.6E-12R4D3C96CO3+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C106O2+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C107O2+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C107O2+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C107O2+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C108O2+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C109O2+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C109O2+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C920CO3+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C920CO3+D3CO2_C9_O8 → D3C18H28_O91.6E-12R4D3C920CO3+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C92002+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C92002+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C92002+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C89CO3+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C89CO3+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C91002+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C91002+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C89CO3+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C811CO3+D3CO2_C9_O8 → D3C18H26_O11 </td <td>$D3C812O2+D3CO2_O8i3 \rightarrow D3C18H28_O11$</td> <td>1.6E-12</td> <td>R4</td>	$D3C812O2+D3CO2_O8i3 \rightarrow D3C18H28_O11$	1.6E-12	R4
D3C8502+D3C02_08i3 → D3C18H28_091.6E-12R4D3C8602+D3C02_08i3 → D3C18H28_0101.6E-12R4D3C721CO3+D3C02_08i3 → D3C18H26_0111.6E-12R4D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C202+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C96CO3+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10802+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H26_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H26_0101.6E-12R4D3C89C03+D3C02_C9_08 → D3C18H26_0111.6E-12R4D3C811C03+D3C02_C9_08 → D3C18H26_0111.6E-12R4D3C811C03+D3C02_C9_08 → D3C18H26_0111.6E-12R4D3C811C03+D3C02_C9_08 → D3C18H26_0111.6E-12R4D3C811C03+D3C02_C9_08 → D3C18H26_0111.6E-12R4D3C811C03+D3C02_C9_08 → D3C18H26_0111.6E-12R4D3C81103+D3C02_C9_08 → D3C18H26_01	$D3C813O2+D3CO2_O8i3 \rightarrow D3C18H28_O12$	1.6E-12	R4
D3C8602+D3C02_08i3 → D3C18H28_0101.6E-12R4D3C721C03+D3C02_08i3 → D3C18H26_0111.6E-12R4D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C202+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C96C03+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10802+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C92002+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C91002+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C9102+D3C02_C9_08 → D3C18H28_011<	$D3C85O2+D3CO2_O8i3 \rightarrow D3C18H28_O9$	1.6E-12	R4
$D3C721CO3+D3CO2_O8i3 → D3C18H26_O11 1.6E-12 R4$ $D3C1O2+D3CO2_C9_O8 → D3C19H30_O9 1.6E-12 R4$ $D3C2O2+D3CO2_C9_O8 → D3C19H30_O9 1.6E-12 R4$ $D3C96CO3+D3CO2_C9_O8 → D3C19H28_O10 1.6E-12 R4$ $D3CALO2+D3CO2_C9_O8 → D3C19H28_O10 1.6E-12 R4$ $D3C106O2+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C106O2+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C108O2+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C109O2+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C109O2+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C109O2+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C920CO3+D3CO2_C9_O8 → D3C19H28_O11 1.6E-12 R4$ $D3C920CO3+D3CO2_C9_O8 → D3C18H28_O9 1.6E-12 R4$ $D3C920O2+D3CO2_C9_O8 → D3C18H28_O1 1.6E-12 R4$ $D3C920O2+D3CO2_C9_O8 → D3C18H28_O1 1.6E-12 R4$ $D3C89CO3+D3CO2_C9_O8 → D3C18H28_O1 1.6E-12 R4$	$D3C86O2+D3CO2_O8i3 \rightarrow D3C18H28_O10$	1.6E-12	R4
D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C202+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C96C03+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10802+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C92002+D3C02_C9_08 → D3C18H26_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H26_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H26_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4	$D3C721CO3+D3CO2_O8i3 \rightarrow D3C18H26_O11$	1.6E-12	R4
D3C102+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C202+D3C02_C9_08 → D3C19H30_091.6E-12R4D3C96C03+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3CAL02+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10602+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10702+D3C02_C9_08 → D3C19H28_0101.6E-12R4D3C10802+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C10902+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C19H28_0111.6E-12R4D3C920C03+D3C02_C9_08 → D3C18H28_091.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92002+D3C02_C9_08 → D3C18H28_0101.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4D3C92102+D3C02_C9_08 → D3C18H28_0111.6E-12R4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C1O2+D3CO2_C9_O8 \rightarrow D3C19H30_O9$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3C2O2+D3CO2_C9_O8 \rightarrow D3C19H30_O9$	1.6E-12	R4
D3CALO2+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C106O2+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C107O2+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C108O2+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C109O2+D3CO2_C9_O8 → D3C19H28_O101.6E-12R4D3C920CO3+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C920CO3+D3CO2_C9_O8 → D3C19H28_O111.6E-12R4D3C96O2+D3CO2_C9_O8 → D3C18H28_O91.6E-12R4D3C920O2+D3CO2_C9_O8 → D3C18H28_O101.6E-12R4D3C920O2+D3CO2_C9_O8 → D3C18H26_O101.6E-12R4D3C91O2+D3CO2_C9_O8 → D3C18H28_O111.6E-12R4D3C921O2+D3CO2_C9_O8 → D3C18H28_O111.6E-12R4D3C921O2+D3CO2_C9_O8 → D3C18H28_O111.6E-12R4D3C921O2+D3CO2_C9_O8 → D3C18H26_O111.6E-12R4D3C921O2+D3CO2_C9_O8 → D3C18H26_O111.6E-12R4D3C921O2+D3CO2_C9_O8 → D3C18H28_O111.6E-12R4D3C921O2+D3CO2_C9_O8 → D3C18H28_O111.6E-12R4	$D3C96CO3+D3CO2_C9_O8 \rightarrow D3C19H28_O10$	1.6E-12	R4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D3CALO2+D3CO2_C9_O8 \rightarrow D3C19H28_O10$	1.6E-12	R4
$\begin{array}{cccc} D3C107O2+D3CO2_C9_O8 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C108O2+D3CO2_C9_O8 \rightarrow D3C19H28_O11 & 1.6E-12 & R4 \\ D3C109O2+D3CO2_C9_O8 \rightarrow D3C19H28_O10 & 1.6E-12 & R4 \\ D3C920CO3+D3CO2_C9_O8 \rightarrow D3C19H28_O11 & 1.6E-12 & R4 \\ D3C96O2+D3CO2_C9_O8 \rightarrow D3C18H28_O9 & 1.6E-12 & R4 \\ D3C89CO3+D3CO2_C9_O8 \rightarrow D3C18H26_O10 & 1.6E-12 & R4 \\ D3C920O2+D3CO2_C9_O8 \rightarrow D3C18H26_O10 & 1.6E-12 & R4 \\ D3C920O2+D3CO2_C9_O8 \rightarrow D3C18H26_O10 & 1.6E-12 & R4 \\ D3C920O2+D3CO2_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C920O2+D3CO2_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C921O2+D3CO2_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C921O2+D3CO3_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C921O2+D3CO3_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C921O2+D3CO3_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C921O3+D3CO3_C9_O8 \rightarrow D3C18H28_O11 & 1.6E-12 & R4 \\ D3C921O3+D3C03_C9_O8 \rightarrow $	$D3C106O2+D3CO2_C9_O8 \rightarrow D3C19H28_O11$	1.6E-12	R4
$\begin{array}{cccc} D3C10802+D3C02_C9_08 \rightarrow D3C19H28_011 & 1.6E-12 & R4 \\ D3C10902+D3C02_C9_08 \rightarrow D3C19H28_010 & 1.6E-12 & R4 \\ D3C920CO3+D3C02_C9_08 \rightarrow D3C19H28_011 & 1.6E-12 & R4 \\ D3C9602+D3C02_C9_08 \rightarrow D3C18H28_09 & 1.6E-12 & R4 \\ D3C89CO3+D3C02_C9_08 \rightarrow D3C18H26_010 & 1.6E-12 & R4 \\ D3C92002+D3C02_C9_08 \rightarrow D3C18H28_010 & 1.6E-12 & R4 \\ D3C9102+D3C02_C9_08 \rightarrow D3C18H26_011 & 1.6E-12 & R4 \\ D3C92102+D3C02_C9_08 \rightarrow D3C18H28_011 & 1.6E-12 & R4 \\ D3C92102+D3C03_C9_08 \rightarrow D3C18+D3C18+D3C18+D3C04 & R4 \\ D3C92102+D3C03_C9_08 \rightarrow D3C18+D3C08 & R4 \\ D3C92102+D3C03_C9_08 & R4 \\ D3C921$	$D3C107O2+D3CO2_C9_O8 \rightarrow D3C19H28_O10$	1.6E-12	R4
$\begin{array}{cccc} D3C10902+D3C02_C9_08 \rightarrow D3C19H28_010 & 1.6E-12 & R4 \\ D3C920CO3+D3C02_C9_08 \rightarrow D3C19H28_011 & 1.6E-12 & R4 \\ D3C9602+D3C02_C9_08 \rightarrow D3C18H28_09 & 1.6E-12 & R4 \\ D3C89CO3+D3C02_C9_08 \rightarrow D3C18H26_010 & 1.6E-12 & R4 \\ D3C92002+D3C02_C9_08 \rightarrow D3C18H28_010 & 1.6E-12 & R4 \\ D3C92102+D3C02_C9_08 \rightarrow D3C18H26_011 & 1.6E-12 & R4 \\ D3C92102+D3C02_C9_08 \rightarrow D3C18H26_011 & 1.6E-12 & R4 \\ D3C92102+D3C02_C9_08 \rightarrow D3C18H26_011 & 1.6E-12 & R4 \\ D3C92102+D3C02_C9_08 \rightarrow D3C18H28_011 & 1.6E-12 & R4 \\ \end{array}$	$D3C108O2+D3CO2_C9_O8 \rightarrow D3C19H28_O11$	1.6E-12	R4
$\begin{array}{ccc} D3C920CO3 + D3CO2_C9_O8 \rightarrow D3C19H28_O11 & 1.6E-12 & R4 \\ D3C96O2 + D3CO2_C9_O8 \rightarrow D3C18H28_O9 & 1.6E-12 & R4 \\ D3C89CO3 + D3CO2_C9_O8 \rightarrow D3C18H26_O10 & 1.6E-12 & R4 \\ D3C920O2 + D3CO2_C9_O8 \rightarrow D3C18H28_O10 & 1.6E-12 & R4 \\ D3C811CO3 + D3CO2_C9_O8 \rightarrow D3C18H26_O11 & 1.6E-12 & R4 \\ D3C921O2 + D3CO2_C9_O8 \rightarrow D3C18H28_O11 & 1.6E-12 & R4 \\ \end{array}$	$D3C109O2+D3CO2_C9_O8 \rightarrow D3C19H28_O10$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C920CO3+D3CO2_C9_O8 \rightarrow D3C19H28_O11$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C96O2+D3CO2_C9_O8 \rightarrow D3C18H28_O9$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C89CO3+D3CO2_C9_O8 \rightarrow D3C18H26_O10$	1.6E-12	R4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D3C920O2+D3CO2_C9_O8 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C921O2+D3CO2_C9_O8 \rightarrow D3C18H28_O11$ 1.6E-12 R4	$D3C811CO3+D3CO2_C9_O8 \rightarrow D3C18H26_O11$	1.6E-12	R4
	$D3C921O2+D3CO2_C9_O8 \rightarrow D3C18H28_O11$	1.6E-12	R4

$D3C922O2+D3CO2_C9_O8 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C97O2+D3CO2_C9_O8 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C98O2+D3CO2_C9_O8 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C89O2+D3CO2_C9_O8 \rightarrow D3C17H26_O9$	1.6E-12	R4
$D3C810O2+D3CO2_C9_O8 \rightarrow D3C17H26_O10$	1.6E-12	R4
$D3C811O2+D3CO2_C9_O8 \rightarrow D3C17H26_O10$	1.6E-12	R4
$D3C812O2+D3CO2_C9_O8 \rightarrow D3C17H26_O11$	1.6E-12	R4
$D3C813O2+D3CO2_C9_O8 \rightarrow D3C17H26_O12$	1.6E-12	R4
$D3C85O2+D3CO2_C9_O8 \rightarrow D3C17H26_O9$	1.6E-12	R4
$D3C86O2+D3CO2_C9_O8 \rightarrow D3C17H26_O10$	1.6E-12	R4
$D3C721CO3+D3CO2_C9_O8 \rightarrow D3C17H24_O11$	1.6E-12	R4
$D3C1O2+D3CO2_O9i1 \rightarrow D3C20H32_O10$	1.6E-12	R4
$D3C2O2+D3CO2_O9i1 \rightarrow D3C20H32_O10$	1.6E-12	R4
$D3C96CO3+D3CO2_O9i1 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3CALO2+D3CO2_O9i1 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C106O2+D3CO2_O9i1 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C107O2+D3CO2_O9i1 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C108O2+D3CO2_O9i1 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C109O2+D3CO2_O9i1 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C920CO3+D3CO2_O9i1 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C96O2+D3CO2_O9i1 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C89CO3+D3CO2_O9i1 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C920O2+D3CO2_O9i1 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C811CO3+D3CO2_O9i1 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C921O2+D3CO2_O9i1 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C922O2+D3CO2_O9i1 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C97O2+D3CO2_O9i1 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C98O2+D3CO2_O9i1 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C89O2+D3CO2_O9i1 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C810O2+D3CO2_O9i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C811O2+D3CO2_O9i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C812O2+D3CO2_O9i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C813O2+D3CO2_O9i1 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C85O2+D3CO2_O9i1 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C86O2+D3CO2_O9i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C721CO3+D3CO2_O9i1 \rightarrow D3C18H26_O12$	1.6E-12	R4
$D3C1O2+D3CO2_O9i2 \rightarrow D3C20H32_O10$	1.6E-12	R4
$D3C2O2+D3CO2_O9i2 \rightarrow D3C20H32_O10$	1.6E-12	R4

$D3C96CO3+D3CO2_O9i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3CALO2+D3CO2_O9i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C106O2+D3CO2_O9i2 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C107O2+D3CO2_O9i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C108O2+D3CO2_O9i2 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C109O2+D3CO2_O9i2 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C920CO3+D3CO2_O9i2 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C96O2+D3CO2_O9i2 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C89CO3 + D3CO2_O9i2 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C920O2+D3CO2_O9i2 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C811CO3+D3CO2_O9i2 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C921O2 + D3CO2_O9i2 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C922O2+D3CO2_O9i2 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C97O2+D3CO2_O9i2 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C98O2+D3CO2_O9i2 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C89O2+D3CO2_O9i2 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C810O2+D3CO2_O9i2 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C811O2 + D3CO2_O9i2 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C812O2+D3CO2_O9i2 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C813O2 + D3CO2_O9i2 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C85O2+D3CO2_O9i2 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C86O2+D3CO2_O9i2 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C721CO3+D3CO2_O9i2 \rightarrow D3C18H26_O12$	1.6E-12	R4
$D3C1O2+D3CO2_O9i3 \rightarrow D3C20H32_O10$	1.6E-12	R4
$D3C2O2+D3CO2_O9i3 \rightarrow D3C20H32_O10$	1.6E-12	R4
$D3C96CO3 + D3CO2_O9i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3CALO2+D3CO2_O9i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C106O2 + D3CO2_O9i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C107O2+D3CO2_O9i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C108O2 + D3CO2_O9i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C109O2+D3CO2_O9i3 \rightarrow D3C20H30_O11$	1.6E-12	R4
$D3C920CO3+D3CO2_O9i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C96O2+D3CO2_O9i3 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C89CO3+D3CO2_O9i3 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C920O2+D3CO2_O9i3 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C811CO3+D3CO2_O9i3 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C921O2+D3CO2_O9i3 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C922O2+D3CO2_O9i3 \rightarrow D3C19H30_O13$	1.6E-12	R4
D3C97O2+D3CO2_O9i3 → D3C19H30_O11	1.6E-12	R4

$D3C98O2+D3CO2_O9i3 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C89O2+D3CO2_O9i3 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C810O2+D3CO2_O9i3 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C811O2+D3CO2_O9i3 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C812O2+D3CO2_O9i3 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C813O2+D3CO2_O9i3 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C85O2+D3CO2_O9i3 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C86O2+D3CO2_O9i3 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C721CO3+D3CO2_O9i3 \rightarrow D3C18H26_O12$	1.6E-12	R4
$D3C1O2+D3CO2_C9_O9 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C2O2+D3CO2_C9_O9 \rightarrow D3C19H30_O10$	1.6E-12	R4
$D3C96CO3+D3CO2_C9_O9 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3CALO2+D3CO2_C9_O9 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C106O2+D3CO2_C9_O9 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C107O2+D3CO2_C9_O9 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C108O2+D3CO2_C9_O9 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C109O2+D3CO2_C9_O9 \rightarrow D3C19H28_O11$	1.6E-12	R4
$D3C920CO3+D3CO2_C9_O9 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C96O2+D3CO2_C9_O9 \rightarrow D3C18H28_O10$	1.6E-12	R4
$D3C89CO3+D3CO2_C9_O9 \rightarrow D3C18H26_O11$	1.6E-12	R4
$D3C920O2+D3CO2_C9_O9 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C811CO3+D3CO2_C9_O9 \rightarrow D3C18H26_O12$	1.6E-12	R4
$D3C921O2+D3CO2_C9_O9 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C922O2+D3CO2_C9_O9 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C97O2+D3CO2_C9_O9 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C98O2+D3CO2_C9_O9 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C89O2+D3CO2_C9_O9 \rightarrow D3C17H26_O10$	1.6E-12	R4
$D3C810O2+D3CO2_C9_O9 \rightarrow D3C17H26_O11$	1.6E-12	R4
$D3C811O2+D3CO2_C9_O9 \rightarrow D3C17H26_O11$	1.6E-12	R4
$D3C812O2+D3CO2_C9_O9 \rightarrow D3C17H26_O12$	1.6E-12	R4
$D3C813O2+D3CO2_C9_O9 \rightarrow D3C17H26_O13$	1.6E-12	R4
$D3C85O2+D3CO2_C9_O9 \rightarrow D3C17H26_O10$	1.6E-12	R4
$D3C86O2+D3CO2_C9_O9 \rightarrow D3C17H26_O11$	1.6E-12	R4
$D3C721CO3+D3CO2_C9_O9 \rightarrow D3C17H24_O13$	1.6E-12	R4
$D3C102+D3CO2_O10i1 \rightarrow D3C20H32_O11$	1.6E-12	R4
$D3C2O2+D3CO2_O10i1 \rightarrow D3C20H32_O11$	1.6E-12	R4
$D3C96CO3+D3CO2_O10i1 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3CALO2+D3CO2_O10i1 \rightarrow D3C20H30_O12$	1.6E-12	R4

$D3C106O2+D3CO2_O10i1 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C107O2+D3CO2_O10i1 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C108O2+D3CO2_O10i1 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C109O2+D3CO2_O10i1 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C920CO3+D3CO2_O10i1 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C96O2+D3CO2_O10i1 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C89CO3+D3CO2_O10i1 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C920O2+D3CO2_O10i1 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C811CO3+D3CO2_O10i1 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C921O2+D3CO2_O10i1 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C922O2+D3CO2_O10i1 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C97O2+D3CO2_O10i1 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C98O2+D3CO2_O10i1 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C89O2+D3CO2_O10i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C810O2+D3CO2_O10i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C811O2+D3CO2_O10i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C812O2+D3CO2_O10i1 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C813O2+D3CO2_O10i1 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C85O2+D3CO2_O10i1 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C86O2+D3CO2_O10i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C721CO3+D3CO2_O10i1 \rightarrow D3C18H26_O13$	1.6E-12	R4
$D3C1O2+D3CO2_O10i3 \rightarrow D3C20H32_O11$	1.6E-12	R4
$D3C2O2+D3CO2_O10i3 \rightarrow D3C20H32_O11$	1.6E-12	R4
$D3C96CO3+D3CO2_O10i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3CALO2+D3CO2_O10i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C106O2+D3CO2_O10i3 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C107O2+D3CO2_O10i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C108O2+D3CO2_O10i3 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C109O2+D3CO2_O10i3 \rightarrow D3C20H30_O12$	1.6E-12	R4
$D3C920CO3+D3CO2_O10i3 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C96O2+D3CO2_O10i3 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C89CO3+D3CO2_O10i3 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C920O2+D3CO2_O10i3 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C811CO3+D3CO2_O10i3 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C921O2+D3CO2_O10i3 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C922O2+D3CO2_O10i3 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C97O2+D3CO2_O10i3 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C98O2+D3CO2_O10i3 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C89O2+D3CO2_O10i3 \rightarrow D3C18H28_O11$	1.6E-12	R4

$D3C810O2+D3CO2_O10i3 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C811O2+D3CO2_O10i3 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C812O2+D3CO2_O10i3 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C813O2+D3CO2_O10i3 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C85O2+D3CO2_O10i3 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C86O2+D3CO2_O10i3 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C721CO3+D3CO2_O10i3 \rightarrow D3C18H26_O13$	1.6E-12	R4
$D3C1O2+D3CO2_C9_O10 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C2O2+D3CO2_C9_O10 \rightarrow D3C19H30_O11$	1.6E-12	R4
$D3C96CO3+D3CO2_C9_O10 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3CALO2+D3CO2_C9_O10 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C106O2+D3CO2_C9_O10 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C107O2+D3CO2_C9_O10 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C108O2+D3CO2_C9_O10 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C109O2+D3CO2_C9_O10 \rightarrow D3C19H28_O12$	1.6E-12	R4
$D3C920CO3+D3CO2_C9_O10 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C96O2+D3CO2_C9_O10 \rightarrow D3C18H28_O11$	1.6E-12	R4
$D3C89CO3+D3CO2_C9_O10 \rightarrow D3C18H26_O12$	1.6E-12	R4
$D3C920O2+D3CO2_C9_O10 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C811CO3+D3CO2_C9_O10 \rightarrow D3C18H26_O13$	1.6E-12	R4
$D3C921O2+D3CO2_C9_O10 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C922O2+D3CO2_C9_O10 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C97O2+D3CO2_C9_O10 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C98O2+D3CO2_C9_O10 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C89O2+D3CO2_C9_O10 \rightarrow D3C17H26_O11$	1.6E-12	R4
$D3C810O2+D3CO2_C9_O10 \rightarrow D3C17H26_O12$	1.6E-12	R4
$D3C811O2+D3CO2_C9_O10 \rightarrow D3C17H26_O12$	1.6E-12	R4
$D3C812O2+D3CO2_C9_O10 \rightarrow D3C17H26_O13$	1.6E-12	R4
$D3C813O2+D3CO2_C9_O10 \rightarrow D3C17H26_O14$	1.6E-12	R4
$D3C85O2+D3CO2_C9_O10 \rightarrow D3C17H26_O11$	1.6E-12	R4
$D3C86O2+D3CO2_C9_O10 \rightarrow D3C17H26_O12$	1.6E-12	R4
$D3C721CO3+D3CO2_C9_O10 \rightarrow D3C17H24_O14$	1.6E-12	R4
$D3C1O2+D3CO2_O11i1 \rightarrow D3C20H32_O12$	1.6E-12	R4
$D3C2O2+D3CO2_O11i1 \rightarrow D3C20H32_O12$	1.6E-12	R4
$D3C96CO3+D3CO2_O11i1 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3CALO2+D3CO2_O11i1 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C106O2+D3CO2_O11i1 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C107O2+D3CO2_O11i1 \rightarrow D3C20H30_O13$	1.6E-12	R4

$D3C108O2+D3CO2_O11i1 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C109O2+D3CO2_O11i1 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C920CO3+D3CO2_O11i1 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C96O2+D3CO2_O11i1 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C89CO3+D3CO2_O11i1 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C920O2+D3CO2_O11i1 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C811CO3+D3CO2_O11i1 \rightarrow D3C19H28_O14$	1.6E-12	R4
$D3C921O2+D3CO2_O11i1 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C922O2+D3CO2_O11i1 \rightarrow D3C19H30_O15$	1.6E-12	R4
$D3C97O2+D3CO2_O11i1 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C98O2+D3CO2_O11i1 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C89O2+D3CO2_O11i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C810O2+D3CO2_O11i1 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C811O2+D3CO2_O11i1 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C812O2+D3CO2_O11i1 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C813O2+D3CO2_O11i1 \rightarrow D3C18H28_O15$	1.6E-12	R4
$D3C85O2+D3CO2_O11i1 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C86O2+D3CO2_O11i1 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C721CO3+D3CO2_O11i1 \rightarrow D3C18H26_O14$	1.6E-12	R4
$D3C1O2+D3CO2_O11i2 \rightarrow D3C20H32_O12$	1.6E-12	R4
$D3C2O2+D3CO2_O11i2 \rightarrow D3C20H32_O12$	1.6E-12	R4
$D3C96CO3+D3CO2_O11i2 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3CALO2+D3CO2_O11i2 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C106O2+D3CO2_O11i2 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C107O2+D3CO2_O11i2 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C108O2+D3CO2_O11i2 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C109O2+D3CO2_O11i2 \rightarrow D3C20H30_O13$	1.6E-12	R4
$D3C920CO3+D3CO2_O11i2 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C96O2+D3CO2_O11i2 \rightarrow D3C19H30_O12$	1.6E-12	R4
$D3C89CO3+D3CO2_O11i2 \rightarrow D3C19H28_O13$	1.6E-12	R4
$D3C920O2+D3CO2_O11i2 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C811CO3+D3CO2_O11i2 \rightarrow D3C19H28_O14$	1.6E-12	R4
$D3C921O2+D3CO2_O11i2 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C922O2+D3CO2_O11i2 \rightarrow D3C19H30_O15$	1.6E-12	R4
$D3C97O2+D3CO2_O11i2 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C98O2+D3CO2_O11i2 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C89O2+D3CO2_O11i2 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C81002+D3C02_O11i2 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C811O2+D3CO2_O11i2 \rightarrow D3C18H28_O13$	1.6E-12	R4

$D3C812O2+D3CO2_O11i2 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C813O2+D3CO2_O11i2 \rightarrow D3C18H28_O15$	1.6E-12	R4
$D3C85O2+D3CO2_O11i2 \rightarrow D3C18H28_O12$	1.6E-12	R4
$D3C86O2+D3CO2_O11i2 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C721CO3+D3CO2_O11i2 \rightarrow D3C18H26_O14$	1.6E-12	R4
$D3C1O2+D3CO2_O12 \rightarrow D3C20H32_O13$	1.6E-12	R4
$D3C2O2+D3CO2_O12 \rightarrow D3C20H32_O13$	1.6E-12	R4
$D3C96CO3 + D3CO2_O12 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3CALO2+D3CO2_O12 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C106O2+D3CO2_O12 \rightarrow D3C20H30_O15$	1.6E-12	R4
$D3C107O2+D3CO2_O12 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C108O2+D3CO2_O12 \rightarrow D3C20H30_O15$	1.6E-12	R4
$D3C109O2+D3CO2_O12 \rightarrow D3C20H30_O14$	1.6E-12	R4
$D3C920CO3+D3CO2_O12 \rightarrow D3C20H30_O15$	1.6E-12	R4
$D3C96O2+D3CO2_O12 \rightarrow D3C19H30_O13$	1.6E-12	R4
$D3C89CO3+D3CO2_O12 \rightarrow D3C19H28_O14$	1.6E-12	R4
$D3C920O2+D3CO2_O12 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C811CO3+D3CO2_O12 \rightarrow D3C19H28_O15$	1.6E-12	R4
$D3C921O2+D3CO2_O12 \rightarrow D3C19H30_O15$	1.6E-12	R4
$D3C922O2+D3CO2_O12 \rightarrow D3C19H30_O16$	1.6E-12	R4
$D3C97O2+D3CO2_O12 \rightarrow D3C19H30_O14$	1.6E-12	R4
$D3C98O2+D3CO2_O12 \rightarrow D3C19H30_O15$	1.6E-12	R4
$D3C89O2+D3CO2_O12 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C810O2+D3CO2_O12 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C811O2+D3CO2_O12 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C812O2+D3CO2_O12 \rightarrow D3C18H28_O15$	1.6E-12	R4
$D3C813O2+D3CO2_O12 \rightarrow D3C18H28_O16$	1.6E-12	R4
$D3C85O2+D3CO2_O12 \rightarrow D3C18H28_O13$	1.6E-12	R4
$D3C86O2+D3CO2_O12 \rightarrow D3C18H28_O14$	1.6E-12	R4
$D3C721CO3+D3CO2_O12 \rightarrow D3C18H26_O15$	1.6E-12	R4

References

- Chen, H., Ren, Y., Cazaunau, M., Daële, V., Hu, Y., Chen, J., and Mellouki, A.: Rate coefficients for the reaction of ozone with 2- and 3carene, Chemical Physics Letters, 621, 71-77, 10.1016/j.cplett.2014.12.056, 2015.
- DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Analytical Chemistry, 78, 8281-8289, 10.1021/ac061249n, 2006.
- Dillon, T. J., Dulitz, K., Groß, C. B. M., and Crowley, J. N.: Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene, Atmospheric Chemistry and Physics, 17, 15137-15150, 10.5194/acp-17-15137-2017, 2017.

Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., and Lee, B.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476-479, 2014.

- Eiguren-Fernandez, A., Lewis, G. S., Spielman, S. R., and Hering, S. V.: Time-resolved characterization of particle associated polycyclic aromatic hydrocarbons using a newly-developed sequential spot sampler with automated extraction and analysis, Atmospheric Environment, 96, 125-134, <u>https://doi.org/10.1016/j.atmosenv.2014.07.031</u>, 2014.
- Eiguren Fernandez, A., Lewis, G. S., and Hering, S. V.: Design and Laboratory Evaluation of a Sequential Spot Sampler for Time-Resolved Measurement of Airborne Particle Composition, Aerosol Science and Technology, 48, 655-663, 10.1080/02786826.2014.911409, 2014.
- Hantschke, L., Novelli, A., Bohn, B., Cho, C., Reimer, D., Rohrer, F., Tillmann, R., Glowania, M., Hofzumahaus, A., Kiendler-Scharr, A.,
 Wahner, A., and Fuchs, H.: Atmospheric photooxidation and ozonolysis of Δ3-carene and 3-caronaldehyde: rate constants and product yields, Atmospheric Chemistry and Physics, 21, 12665-12685, 10.5194/acp-21-12665-2021, 2021.
 Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Petäjä, T., Mauldin, R. L., Kulmala, M., and Worsnop, D. R.:

Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF, Atmospheric Chemistry and Physics, 12, 4117-4125, 10.5194/acp-12-4117-2012, 2012.

265 Jokinen, T., Sipila, M., Richters, S., Kerminen, V. M., Paasonen, P., Stratmann, F., Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt, T.: Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere, Angewandte Chemie International Edition, 53, 14596-14600, 10.1002/anie.201408566, 2014.

Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R., Sulzer, P., and Märk, T. D.: A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), International Journal of Mass Spectrometry, 286, 122-128, 10.1016/j.ijms.2009.07.005, 2009.

- Kristensen, K., Jensen, L., Glasius, M., and Bilde, M.: The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene, Environmental Science: Processes & Impacts, 19, 1220-1234, 2017.
 Li, L., Thomsen, D., Wu, C., Priestley, M., Iversen, E. M., Tygesen Skonager, J., Luo, Y., Ehn, M., Roldin, P., Pedersen, H. B., Bilde, M., Glasius, M., and Hallquist, M.: Gas-to-Particle Partitioning of Products from Ozonolysis of Δ3-Carene and the Effect of Temperature and
- 275 Relative Humidity, The Journal of Physical Chemistry A, 128, 918-928, 10.1021/acs.jpca.3c07316, 2024. Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmospheric Measurement Techniques, 7, 983-1001, 10.5194/amt-7-983-2014, 2014.
- Peräkylä, O., Riva, M., Heikkinen, L., Quéléver, L., Roldin, P., and Ehn, M.: Experimental investigation into the volatilities of highly
 oxygenated organic molecules (HOMs), Atmospheric Chemistry and Physics, 20, 649-669, 10.5194/acp-20-649-2020, 2020.
 Ouéléver, L. L. J., Kristensen, K., Normann Jensen, L., Rosati, B., Teiwes, R., Daellenbach, K. R., Peräkylä, O., Roldin, P., Bossi, R.,
- Pedersen, H. B., Glasius, M., Bilde, M., and Ehn, M.: Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis, Atmospheric Chemistry and Physics, 19, 7609-7625, 10.5194/acp-19-7609-2019, 2019.
- Riva, M., Rantala, P., Krechmer, J. E., Peräkylä, O., Zhang, Y., Heikkinen, L., Garmash, O., Yan, C., Kulmala, M., Worsnop, D., and Ehn,
 M.: Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species,
 Atmospheric Measurement Techniques, 12, 2403-2421, 10.5194/amt-12-2403-2019, 2019.
 Thomsen, D., Iversen, E. M., Skønager, J. T., Luo, Y., Li, L., Roldin, P., Priestley, M., Pedersen, H. B., Hallquist, M., and Ehn, M.: The
 effect of temperature and relative humidity on secondary organic aerosol formation from ozonolysis of Δ3-carene, Environmental Science:
- Atmospheres, 4, 88-103, 2024.
 Tuovinen, S., Kontkanen, J., Cai, R., and Kulmala, M.: Condensation sink of atmospheric vapors: the effect of vapor properties and the resulting uncertainties, Environmental Science: Atmospheres, 1, 543-557, 2021.

Wang, L., Liu, Y., and Wang, L.: Ozonolysis of 3-carene in the atmosphere. Formation mechanism of hydroxyl radical and secondary ozonides, Physical Chemistry Chemical Physics, 21, 8081-8091, 10.1039/c8cp07195k, 2019.