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Abstract. Through the Bayesian lens of four-dimensional variational (4D-Var) data assimilation, uncertainty in
model parameters is traditionally quantified through the posterior covariance matrix. However, in modern settings
involving high-dimensional and computationally expensive forward models, posterior covariance knowledge
must be relaxed to deterministic or stochastic approximations. In the carbon flux inversion literature, (Chevallier
et al., 2007) proposed a stochastic method capable of approximating posterior variances of linear functionals of
the model parameters that is particularly well suited for large-scale Earth-system 4D-Var data assimilation tasks.
This note formalizes this algorithm and clarifies its properties. We provide a formal statement of the algorithm,
demonstrate why it converges to the desired posterior variance quantity of interest, and provide additional uncer-
tainty quantification allowing incorporation of the Monte Carlo sampling uncertainty into the method’s Bayesian
credible intervals. The methodology is demonstrated using toy simulations and a realistic carbon flux inversion
observing system simulation experiment.

1 Introduction

Uncertainty quantification (UQ) for data assimilation (DA)
tasks is often non-trivial but scientifically paramount to
their understanding and interpretation. Since DA broadly de-
scribes methods combining observations with a computa-
tional model of a physical system, a Bayesian framework is
often sensible for inference for the model parameters, as the
posterior distribution quantifies knowledge resulting from
this combination. As such, Bayesian statistical models are
regularly used as the UQ framework. For example, Bayesian
procedures play a central role in the general idea of optimal
estimation (Rodgers, 2000), the broad field of DA (Kalnay,
2003), and the more specific field of carbon flux estimation
(Deng et al., 2014; Liu et al., 2016). Inference for DA tasks
using this statistical framework is typically challenging due
to high-dimensional settings (e.g., high-resolution spatiotem-
poral grids) and the computer model’s implicit numerical
definition of the physical system of interest, often requiring

supercomputers and long compute times to run the relevant
forward model. Prior and observation error distributions are
often assumed to be Gaussian, yielding a Gaussian poste-
rior distribution under a linear forward model. Although a
Gaussian posterior distribution can be exactly characterized
by its mean vector and covariance matrix, the high dimen-
sionality makes dealing directly with the posterior covariance
matrix intractable and the implicit computationally demand-
ing forward model makes standard traditional Bayesian com-
putational techniques, such as Markov chain Monte Carlo
(MCMC), infeasible. The implicit posterior necessitates the
development of computational methods that implicitly access
it.

The challenge of high-dimensional DA can be confronted
using a variational approach such as four-dimensional vari-
ational (4D-Var) data assimilation (Kalnay, 2003) (math-
ematically equivalent to optimal estimation as detailed in
Rodgers, 2000), which aims to find an optimal model pa-
rameter vector via numerical optimization rather than sam-
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pling from a Markov chain. The 4D-Var approach is the DA
focus of this technical note. The optimal model parameter
vector minimizes a cost function balancing model error with
observations and proximity to prior information about the
unknown state. When the forward model can be run in ad-
joint mode to obtain the cost function gradient, the optimal
state can be iteratively solved using a first-order optimization
method.

CO2 flux inversion is a representative example of a high-
dimensional DA task to which Bayesian modeling is applied,
and 4D-Var is used to compute estimated flux fields (Crowell
et al., 2019; Enting et al., 1995; Gurney et al., 2002). In this
problem, estimates of net surface–atmosphere CO2 fluxes are
inferred from atmospheric CO2 measurements, with fluxes
and atmospheric measurements being related by a chemical
transport model (the computational forward model). How-
ever, the relatively sparse atmospheric CO2 observations un-
derconstrain surface fluxes of CO2, and regularization with
prior information is the Bayesian approach to making the
problem well-posed. These analyses have historically assim-
ilated measurements of atmospheric CO2 from a global net-
work of flask and in situ measurements (Enting et al., 1995),
but more recent work (Byrne et al., 2023; Crowell et al.,
2019; Deng et al., 2014; Houweling et al., 2015) has shifted
to assimilating space-based column-averaged dry-air mole
fractions, denoted XCO2 , as observation availability has ex-
panded since 2009. In these analyses, the prior and error dis-
tributions are typically assumed to be Gaussian and the for-
ward model can be reasonably assumed to be linear in the net
surface–atmosphere fluxes.

When the number of model parameters is low and a for-
ward model run is inexpensive, it is possible to explicitly
construct the posterior covariance matrix. Successful ex-
amples of this approach date back to at least Vasco et al.
(1993) in seismic tomography, where inversion was per-
formed on 12496 model parameters. However, more contem-
porary problems typically have orders of magnitude more
parameters and substantially more expensive forward mod-
els, requiring other approaches to access posterior covariance
matrix information. Once the discretization of the computa-
tional model is set, the dimensionality problem can be han-
dled either by defining an approximate statistical model on
a lower-dimensional problem or by working in some sub-
space of the full-dimensional problem. A recent example of
the first strategy is seen in Zammit-Mangion et al. (2022)
in the WOMBAT inversion system, which lowers the di-
mension of the statistical model via an intelligently chosen
set of basis functions, facilitating MCMC. Alternatively, Pe-
tra et al. (2014) propose, with stochastic Newton MCMC
(SN-MCMC), the potential for MCMC in the full param-
eter space using a low-rank approximation of the posterior
covariance within the proposal distribution of a Metropolis–
Hasting algorithm. Although WOMBAT and SN-MCMC are
both MCMC-based, WOMBAT assumes a linear forward
model, while SN-MCMC does not, allowing it to character-

ize non-Gaussian posteriors. Staying with a linear forward
model assumption, other approaches leverage low-rank pos-
terior covariance approximations. Flath et al. (2011) devel-
oped a low-rank algorithm for approximating the posterior
covariance by computing the leading eigenvalues and eigen-
vectors of a prior-conditioned Hessian matrix of the asso-
ciated objective function (i.e., the log posterior). In a similar
spirit, Kalmikov and Heimbach (2014) provided a derivative-
based algorithm to compute leading Hessian eigenvalues
and eigenvectors and extend the uncertainty quantification to
quantities of interest in global ocean state estimation. The
algorithms in both Flath et al. (2011) and Kalmikov and
Heimbach (2014) rely upon the Lanczos method (Lanczos,
1950) for matrix-free computation of the low-rank approx-
imation. Alternatively, Bousserez and Henze (2018) more
recently proposed a low-rank approximation algorithm de-
pendent upon the randomized singular value decomposition
(SVD) algorithm (Halko et al., 2011). All of the aforemen-
tioned methods can be grouped by their reliance upon some
low-dimensional deterministic approximation.

In contrast, stochastic approximations of the posterior dis-
tribution rely upon neither pre-inversion dimension reduc-
tions nor low-rank matrix approximations but rather gener-
ate ensembles of inversions using random generators. These
approaches usually share fundamental model (e.g., linearity
of the forward model in the model parameters) and observa-
tion error (e.g., Gaussian errors) assumptions. Although ap-
proaches like particle filtering allow for relaxation of these
assumptions, they have mostly been successful for relatively
low-dimensional problems and are in a nascent stage of
applications to high-dimensional DA tasks (Doucet et al.,
2000; Potthast et al., 2018; Maclean and Vleck, 2021). As
such, there is still a great need for UQ methods for high-
dimensional DA approaches relying upon those common as-
sumptions. In carbon flux inversion, Chevallier et al. (2007)
developed such a method to estimate the posterior variance
of functionals of the flux field (i.e., maps from the flux field
to the reals). The method uses the forward model, specified
prior, and known observation error distributions in a par-
ticularly efficient manner. Broadly, the algorithm creates an
ensemble of prior means and observation errors, sampling
according to their respective distributions. For each ensem-
ble member, it finds the maximum a posteriori (MAP) es-
timator, to which the functional is applied. Finally, it finds
the empirical variance across the ensemble members to es-
timate the posterior variance of the functional. This method
is well-suited for carbon flux estimation and 4D-Var-based
DA UQ more generally for a few key reasons. First, each en-
semble member is computationally independent, making the
method parallelizable and hence offering a substantial com-
putational benefit compared to sequential methods, such as
MCMC. Second, although in general prior misspecification
biases the posterior, the prior mean does not need to be cor-
rectly specified in order for the procedure to produce an unbi-
ased estimator of the posterior variance. Third, the ensemble
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of inversions can flexibly produce UQ estimates for arbitrary
functionals post hoc, as opposed to requiring the specifica-
tion of a functional ahead of the analysis. Finally, since this
method is more generally a Monte Carlo (MC) method for
a Gaussian statistical model, the method’s sampling uncer-
tainty can be analytically characterized and accounted for in
the final UQ estimate. The ability to easily characterize this
uncertainty in the uncertainty stands in contrast to the diffi-
culty in characterizing deterministic error in the aforemen-
tioned low-dimensional approaches.

Although Chevallier et al. (2007) appear to have been the
first to develop this method, which was later applied in Liu
et al. (2016), we are unaware of a formal statement or anal-
ysis of this algorithm. These previous works also did not
quantify the algorithm’s MC uncertainty. As such, the pri-
mary contributions of this paper are a rigorous formal state-
ment of the algorithm, an analysis showing the convergence
of its output to the true posterior quantity of interest, and
uncertainty quantification of the algorithm itself so that the
algorithm’s sampling uncertainty can be accounted for in the
final inference. Since this algorithm originated in the carbon
flux inversion literature, we use carbon flux inversion as a
running application example throughout this technical report.
However, the approach is applicable to any 4D-Var DA im-
plementation subject to the mathematical assumptions and
considerations outlined in Sect. 2.

The rest of this paper is structured as follows. In Sect. 2,
we fully describe the algorithm, present mathematical results
proving its correctness, and derive deflation and inflation fac-
tors to apply to the estimated posterior uncertainty to quan-
tify the MC uncertainty. Proofs of the mathematical results
can be found in Appendix A. In Sect. 3, we provide two
experimental demonstrations: the first is a low-dimensional
problem in which we explicitly know the linear forward
model and the second is a carbon flux observing system sim-
ulation experiment (OSSE) to which we applied this method
to compute credible global monthly flux intervals along with
their MC uncertainty. Finally, we provide some concluding
remarks in Sect. 4. For reference, all mathematical notation
in order of appearance is collected in Table 1.

2 Monte Carlo method exposition, analysis, and
uncertainty quantification

2.1 The Bayesian 4D-Var setup

The following equation describes the relationship between a
parameter vector, c ∈ Rm, that we wish to optimize and an
observation vector, y ∈ Rn:

y = f (c;µ)+ ε, ε ∼N (0,R), (1)

where f (·; ·) is the forward model mapping from parame-
ter space to observation space, µ ∈ Rp is a control vector
of parameters that remain fixed during the optimization, and

R ∈ Rn×n is the observation covariance matrix. To stream-
line notation, we denote henceforth the forward model using
only the parameter vector as input, i.e., f (c). To regularize
the problem and provide uncertainty quantification of the es-
timated parameter vector, c in Eq. (1) is given a Gaussian
prior distribution, yielding the following Bayesian generative
model:

c ∼N (cb,B), (2)
y | c ∼N (f (c),R), (3)

where cb ∈ Rm is the prior mean and B is the prior covariance
matrix. Finding the mode of the posterior c | y defined by
Eqs. (2) and (3) is the objective of 4D-Var data assimilation, a
method simultaneously optimizing the parameter vector over
all time steps, which has been applied to a wide range of ap-
plications in Earth sciences (Deng et al., 2014; Kalmikov and
Heimbach, 2014; Liu et al., 2016). The 4D-Var method can
be regarded as a least-squares optimization with an `2 reg-
ularizer (ridge regression), or, equivalently, as maximum a
posteriori (MAP) estimation in the Bayesian paradigm. This
connection means that the 4D-Var optimization is connected
to the posterior resulting from the prior and likelihood in
Eqs. (2) and (3). From the Bayesian perspective, the 4D-Var
cost function F (c) is the negative log-posterior density of the
scaling factors given the observations:

F (c)=− log(π (c | y))=
1
2

(
c− cb

)>
B−1

(
c− cb

)
+

1
2

(y− f (c))>R−1 (y− f (c))+C, (4)

where C ∈ R is a normalizing constant for the posterior dis-
tribution and π (c | y) denotes the posterior density. Thus,
finding the MAP estimator, i.e., the c that maximizes the pos-
terior density, is equivalent to finding the vector c that min-
imizes the 4D-Var cost function. As such, uncertainty quan-
tification can be handled through the covariance matrix of the
posterior, which we denote as 6=Cov(c |y).

To facilitate exposition, we assume the forward model is
linear, i.e., f (c)= Ac, though we address strategies to apply
the Monte Carlo procedure described in Sect. 2.2 to nonlinear
forward models in Sect. 2.2.1. As such, we assume the linear
Bayesian model,

c ∼N (cb,B), (5)
y | c ∼N (Ac,R), (6)

on which the primary analysis of this technical note is per-
formed. Not only is the linearity assumption helpful to ex-
pose the validity of the Monte Carlo algorithm under con-
sideration, but it is also valid in carbon flux inversion, our
primary application of interest. We discuss the necessary ad-
justments to apply this approach to carbon flux inversion
in Sect. 3.2. Assuming linearity, Gaussian prior, and Gaus-
sian likelihood ensures the equivalence between the poste-
rior mode and expectation, and hence optimizing Eq. (4) is
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Table 1. Mathematical symbols and notation used herein (roughly in order of appearance).

c ∈ Rm Parameter vector y ∈ Rn Observation vector
µ ∈ Rm Control vector f Forward model
ε ∈ Rn Observation noise R Observation noise covariance
A ∈ Rn×m Linear forward model cb ∈ Rm Prior expectation
B ∈ Rm×m Prior covariance π (c | y) Posterior density
Im ∈ Rm×m m×m identity matrix 6 ∈ Rm×m Posterior covariance
α ∈ Rm Posterior expectation δ ∈ Rm Posterior physical quantity expectation
0 ∈ Rm×m Posterior physical quantity covariance (ck,yk) ∈ Rm×Rn kth MC sample
ce ∈ Rm MC Prior mean expectation ye ∈ Rm MC control observation
6
ckMAP
∈ Rm×m MC MAP estimator covariance h ∈ Rm Functional of interest

ϕ ∈ R Mean MC functional value σ̂ 2
ϕ ∈ R+ Empirical functional variance

χ2
M−1 Chi-squared distribution with M − 1 DOF χ2

M−1,α/2 Chi-squared (α/2) quantile
α ∈ (0,1) Frequentist confidence level γ ∈ (0,1) Bayesian credible interval level
L Deflation factor for MC variance R Inflation factor for MC variance
z ∈ Rn Non-biospheric XCO2 component ỹ ∈ Rn XCO2 observations
b2
∈ R+ Prior variance parameter θ = c ·µ Physical quantity of interest (flux vector)

a · b Element-wise multiplication of a and b Aµ ∈ Rn×m Forward model with control flux µ

equivalent to obtaining the posterior expectation. We empha-
size that the matrix A is not explicitly available to us but is
instead implicitly defined by a computational model. Thus,
even though the linear assumption allows explicit analytical
interpretation, we are not able to interact with the matrix in
arbitrary ways in practice.

Assuming linearity of the forward model, the posterior
mean (mode) and covariance of c are analytically tractable.
Hence, c | y ∼N (α,6), where, by Eqs. 4.3 and 4.7 in
Rodgers (2000), the posterior mean and covariance equa-
tions, we have

6 =
(

A>R−1A+B−1
)−1

, (7)

α =6
(

A>R−1y+B−1cb
)
. (8)

Note that α is also the MAP estimator of c. Since the for-
ward model A is only known implicitly via a computer simu-
lator, making direct use of Eqs. (7) and (8) is numerically in-
tractable. Instead, the 4D-Var cost function in Eq. (4) is typi-
cally minimized using the L-BFGS-B algorithm (Byrd et al.,
1995) with the cost function gradient computed numerically
using the adjoint of f (Henze et al., 2007). L-BFGS-B can
often find a reasonable approximation of the posterior mean
and mode α in a handful of iterations. We now describe the
Monte Carlo method, which provides an approach for uncer-
tainty quantification of α despite the analytical intractability
of the posterior covariance 6.

2.2 The Monte Carlo procedure

To execute the Monte Carlo procedure introduced in Cheval-
lier et al. (2007), we generate M ensemble members. For
each k = 1,2, . . .,M , we sample a new prior mean ck inde-

pendently and identically distributed (i.i.d.) and new obser-
vation yk i.i.d. as follows:

ck
i.i.d.
∼ N (ce,B), (9)

yk
i.i.d.
∼ N (ye,R), (10)

where ce is a chosen prior expectation to perturb and ye ∈ Rn
is a chosen control observation to perturb. Chevallier et al.
(2007) operated in a simulation setting where they knew the
true parameter, which we call cclim following their notation.
As such, they set ce = cclim and ye = Acclim. When using
real data, cclim is not known, and so it is sensible to set this
expectation using a physically reasonable value (for exam-
ple, see Sect. 3.2 for how to set these expectations in more re-
cent carbon flux inversion settings). However, as we show be-
low, the choice of the expectations in Eqs. (9) and (10) does
not particularly matter under the linear Gaussian assumption
(see Eq. 12), as long as Cov(B−1ck,A>R−1yk)= 0. There-
fore, each Monte Carlo iteration involves sampling a pair
(ck,yk) ∈ Rm×Rn according to Eqs. (9) and (10).

The MAP estimator from Eq. (8) corresponding to prior
mean ck and observation yk is analytically tractable for each
ensemble member when A is explicitly known:

ckMAP =6
(

A>R−1yk +B−1ck

)
. (11)

Since ckMAP is a linear function of two Gaussian random vari-
ables, it is also Gaussian. Therefore, linear combinations of it
are also Gaussian, which will be a useful fact in the analysis
performed in Sect. 2.3. The covariance matrix of this MAP
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estimator, henceforth denoted as 6ckMAP
, is

6ckMAP
=6 Cov

[
A>R−1yk +B−1ck

]
6>

=6
(

Cov
[
A>R−1yk

]
+Cov

[
B−1ck

])
6

=6
(

Cov
[
A>R−1yk

]
+B−1

)
6

=6
(

A>R−1Cov
[
yk
]

R−1A+B−1
)
6

=6
(

A>R−1A+B−1
)
6 =6, (12)

where the covariance decomposition in line two follows from
Cov(B−1ck,A>R−1yk)= 0 and the final equality follows
from 6−1

=
(
A>R−1A+B−1). Thus, the covariance ma-

trix of the Monte Carlo ensemble MAP estimators is equal
to the desired posterior covariance 6. We also note that us-
ing the expectation choices from Chevallier et al. (2007) of
ce = cclim and ye = Acclim means that E[ckMAP] = cclim.

The above covariance equality is the key fact allowing
this method to work, as it allows us to compute an empir-
ical estimate of the posterior covariance by sampling from
two unconditional distributions and solving the 4D-Var ob-
jective. To the best of our knowledge, proof of this equal-
ity has not appeared in previous literature on this method.
However, there is a similar method used in the spatial statis-
tics literature to sample from conditional random fields as
shown in Chap. 3, Sect. 3.6.2, of Cressie (1993) and Chap. 7,
Sect. 7.3.1, of Chiles and Delfiner (2012). As described in
Chiles and Delfiner (2012), this sampling method is able to
sample from complex conditional random fields if one can
sample from unconditional distributions with the appropri-
ate distributions. This requirement more broadly matches the
covariance equality requirement of this Monte Carlo proce-
dure and suggests a potential connection between these two
sampling procedures.

Since the linear forward model is not explicitly available
in most 4D-Var scenarios, each ensemble member MAP es-
timator ckMAP must be obtained with an iterative optimiza-
tion algorithm minimizing Eq. (4) with ck and yk as the prior
mean and observation vectors. Once these ensemble mem-
bers are obtained, we could in principle estimate the posterior
covariance matrix 6 with the empirical covariance estimator
6̂ based on the Monte Carlo ensemble as follows:

6̂ =
1

M − 1

M∑
k=1

(
ckMAP− c

)(
ckMAP− c

)>
, (13)

where c = 1
M

∑M
k=1c

k
MAP. However, in practice, most data as-

similation applications, like carbon flux inversion, are high
dimensional, making direct interaction with these covariance
matrices difficult. Indeed, accurate estimation of 6 using
Eq. (13) would require an enormously large Monte Carlo en-
semble and would require storing and working with anm×m
matrix, where m∼ 105 or larger. Fortunately, we often care

about the variance of one-dimensional summaries of c, such
as the posterior variance of some linear combination of c,
as opposed to the full posterior covariance matrix. For in-
stance, we might wish to estimate North American carbon
fluxes over a particular month.

Obtaining quantities of the above type is mathematically
implemented using a linear functional of the underlying
high-dimensional parameter. That is, we wish to charac-
terize the posterior of ϕ(c)= h>c, where h ∈ Rm contains
weights necessary to aggregate the desired vector compo-
nents. Hence, building off Eqs. (7) and (8), we obtain the
posterior distribution for the functional of interest:

ϕ(c) | y ∼N
(
h>α,h>6h

)
. (14)

We wish to obtain the posterior variance of this functional.
Define σ 2

ϕ = Var(ϕ(c) | y)= h>6h. We could inefficiently
estimate this using σ̂ 2

ϕ = h
>6̂h, but we wish to avoid work-

ing directly with the full empirical covariance matrix. The
following algebraic steps provide a better alternative:

σ̂ 2
ϕ = h

>

(
1

M − 1

M∑
k=1

(
ckMAP− c

)(
ckMAP− c

)>)
h (15)

=
1

M − 1

M∑
k=1

h>
(
ckMAP− c

)(
ckMAP− c

)>
h (16)

=
1

M − 1

M∑
k=1

[
h>
(
ckMAP− c

)]2
(17)

=
1

M − 1

M∑
k=1

(ϕk −ϕ)2, (18)

where ϕk = h>ckMAP and ϕ = h>c = 1
M

∑M
k=1ϕk . The above

algebra shows that the posterior variance of the functional
can be computed using the functionals of the Monte Carlo
samples without having to form the full empirical covari-
ance matrix. See Algorithm 1 for a succinct exposition of the
above procedure. Notice that the functional does not need to
be specified when creating the Monte Carlo ensemble. As
long as the ensemble {ckMAP}

M
k=1 is stored and made available

to the end users, they may evaluate post hoc the uncertainty
in any functional that is of interest in their specific use case.

2.2.1 Considerations for when f is nonlinear and other
critical assumptions

Our demonstration of this procedure’s validity relies on sev-
eral assumptions which we restate here to clarify and com-
ment on the procedure’s resilience to their violation. For the
primary applications of interest where the forward model is
not analytically tractable, this approach’s feasibility relies
upon efficient computation of the posterior expectation. Fur-
thermore, proving this algorithm’s validity relies upon the
equivalence between the posterior covariance and the covari-
ance of the ensemble members. We showed this equivalence
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Algorithm 1 Monte Carlo algorithm to estimate posterior un-
certainty in 4D-Var data assimilation

Inputs

– M ∈ N: number of Monte Carlo samples

– R ∈ Rn×n: observation error covariance built from observa-
tion uncertainties

– B ∈ Rm: parameter prior variance

– A ∈ Rn×m: forward model mapping from parameter to obser-
vations space (note, this can be known either explicitly via a
matrix or implicitly via a computer simulator)

– ce ∈ Rm: prior expectation

– ye ∈ Rn: control observation

– h ∈ Rm: vector defining the functional of interest

Steps

1. Let S denote an array of length M that will store the MAP
estimators for each Monte Carlo sample.

2. For k = 1, . . .,M ,

(a) simulate ck ∼N (ce,B);

(b) simulate yk ∼N (ye,R);

(c) find MAP estimator ckMAP (if A is known explicitly, it can
be found using Eq. 11; if A is known implicitly through a
computational model, use a numerical optimizer (e.g., L-
BFGS-B) to optimize the 4D-Var cost function as defined
in Eq. 4);

(d) S[k] ← ckMAP.

3. Estimate posterior functional variance:

(a) Compute the mean Monte Carlo sample functional, ϕ =
1
M

∑M
k=1ϕk , where ϕk = h>ckMAP.

(b) Compute the empirical posterior functional variance,

σ̂ 2
ϕ =

1
M − 1

M∑
k=1

(ϕk −ϕ)2.

by appealing to equations following from the linear forward
model and Gaussian error assumptions. Since relaxing the
Gaussian assumption would completely change the 4D-Var
objective function and this technical note is primarily about
standard 4D-Var, we do not consider this relaxation. How-
ever, linearity is not necessary to use 4D-Var, which is one of
the benefits of using such a variational approach. Although
it is possible that covariance equivalence holds for nonlinear
forward models, the linearity assumption is necessary in our
demonstration, since we require the equivalence between the
posterior expectation and MAP to show the covariance of the
ensemble element.

There are at least two options for posterior covariance-
based uncertainty quantification under a nonlinear forward
model based on linearizing the forward model around a par-

ticular point in the parameter space. Linearizing the forward
model around a point x0 takes the form

f (c)= f (c0)+∇cf (c0) (c− c0) , (19)

where ∇cf (c0) ∈ Rn×m is the Jacobian of the forward model
about c0 and effectively becomes the linear forward model
under linearization. Following the terminology of Rodgers
(2000), linearization is applicable for “nearly linear” and
“moderately nonlinear” problems. Nearly linear problems
are those for which “linearization about some prior state is
adequate to find a solution” (Rodgers, 2000). In this circum-
stance, one can linearize the forward model around a prior
guess, c0, and proceed with 4D-Var and the Monte Carlo
uncertainty quantification procedure as if the forward model
is linear as described above. Moderately nonlinear problems
are those “where linearization is adequate for the error analy-
sis, but not for finding a solution” (Rodgers, 2000). As such,
one can numerically obtain a solution, ĉ, to the 4D-Var ob-
jective including the nonlinear forward model followed by
a linearization around ĉ. One can then perform the Monte
Carlo procedure with the forward model linearized about the
solution to the 4D-Var objective.

2.3 Quantifying the Monte Carlo uncertainty

Although Sect. 2.2 establishes the equality between the
Monte Carlo MAP estimator ensemble member covariance
and the posterior covariance (and therefore between the
equality of the Monte Carlo ensemble member functional
variance and the posterior functional variance), we have not
yet established that the empirical covariance matrix (and
functional variance) converges in terms of probability to the
true posterior covariance matrix (and functional variance).
There are consistency results showing the empirical covari-
ance matrix converging in terms of probability to the true
covariance matrix (see, for instance, Chap. 6 in Wainwright,
2019). However, since this application is primarily concerned
with linear functionals of the form ϕ(c)= h>c as described
in Sect. 2.2, we can appeal directly to the consistency of the
sample variance as shown, for example, in Chap. 5 in Casella
and Berger (2002).

Additionally, using the above algorithm, we would like to
know either the uncertainty in the variance estimate given the
number of Monte Carlo samples or the number of samples
required to obtain a particular level of Monte Carlo uncer-
tainty in the variance. In essence, we would like to quantify
the uncertainty in our uncertainty. To do so, we take a fre-
quentist approach and construct confidence intervals on σ̂ 2

ϕ .
The confidence intervals can be constructed by recognizing
that the ratio of the Monte Carlo functional empirical poste-
rior variance to the true functional posterior variance scaled
by (M − 1) follows a χ2

M−1 distribution.
Since ckMAP is Gaussian, the random variables ϕk =

h>ckMAP (k = 1, . . .,M) are sampled independently and iden-
tically from a Gaussian distribution with some mean and
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variance σ 2
ϕ = h

>6h. By Theorem 5.3.1 of Casella and
Berger (2002), we have the following distributional result:

(M − 1)σ̂ 2
ϕ

σ 2
ϕ

∼ χ2
M−1. (20)

Thus, for α ∈ (0,1), the distribution in Eq. (20) enables the
creation of a 1−α confidence interval for the true posterior
variance, σ 2

ϕ , as a function of the empirical posterior vari-
ance, σ̂ 2

ϕ . Using the exact distribution in Eq. (20), we can
create either one- or two-sided confidence intervals. Focus-
ing on the two-sided case, we have

P

{
χ2
M−1,α/2 ≤

(M − 1)σ̂ 2
ϕ

σ 2
ϕ

≤ χ2
M−1,1−α/2

}
= 1−α, (21)

where χ2
M−1,α/2 is the α/2 quantile of a chi-squared distri-

bution with M − 1 degrees of freedom. Hence, with some
algebraic manipulation we arrive at the confidence interval
of the posterior variance,

P

{
(M − 1)σ̂ 2

ϕ

χ2
M−1,1−α/2

≤ σ 2
ϕ ≤

(M − 1)σ̂ 2
ϕ

χ2
M−1,α/2

}
= 1−α. (22)

Since in practice we would like to characterize uncertainty in
the same units as the flux estimate, we can provide an analo-
gous confidence interval for the posterior standard deviation
by taking square roots of all the terms within the probability
statement in Eq. (22), giving

P

{
σ̂ϕ

√
M − 1

χ2
M−1,1−α/2

≤ σϕ ≤ σ̂ϕ

√
M − 1
χ2
M−1,α/2

}
= 1−α. (23)

Equation (23) facilitates the computation of a (1−α)×100 %
frequentist interval estimator of the Bayesian credible inter-
val for the functional of interest ϕ. For each endpoint of the
true Bayesian credible interval, we find a confidence inter-
val such that the probability that both endpoint confidence
intervals simultaneously cover the true credible interval end-
points is 1−α. Let γ ∈ (0,1) and ϕMAP = h

>cMAP be the
functional MAP estimator as described in Sect. 2.1. Because
the posterior is Gaussian and ϕMAP is a linear functional, it
is a one-dimensional Gaussian random variable. Hence, the
Bayesian (1− γ )× 100 % credible interval is computed as
follows:[
ϕ∗,ϕ∗

]
=
[
ϕMAP− z1−γ /2 · σϕ,ϕMAP+ z1−γ /2 · σϕ

]
, (24)

where z1−γ /2 is the 1− γ /2 quantile of a standard Gaus-
sian distribution. Equation (23) allows us to construct the
aforementioned endpoint confidence intervals as follows.
For readability, define L2

:=
M−1

χ2
M−1,1−α/2

and R2
:=

M−1
χ2
M−1,α/2

.

Thus, we have the following,

1−α = P
{
z1−γ /2σ̂ϕL≤ z1−γ /2σϕ ≤ z1−γ /2σ̂ϕR

}
= P{−z1−γ /2σ̂ϕR ≤−z1−γ /2σϕ ≤−z1−γ /2σ̂ϕL and

z1−γ /2σ̂ϕL≤ z1−γ /2σϕ ≤ z1−γ /2σ̂ϕR}

= P{ϕMAP− z1−γ /2σ̂ϕR ≤ ϕMAP− z1−γ /2σϕ

≤ ϕMAP− z1−γ /2σ̂ϕL and
ϕMAP+ z1−γ /2σ̂ϕL≤ ϕMAP+ z1−γ /2σϕ

≤ ϕMAP+ z1−γ /2σ̂ϕR}

= P{ϕMAP− z1−γ /2σ̂ϕR ≤ ϕ
∗
≤ ϕMAP

− z1−γ /2σ̂ϕL and
ϕMAP+ z1−γ /2σ̂ϕL≤ ϕ

∗
≤ ϕMAP

+ z1−γ /2σ̂ϕR}.

More concisely, defining

I :=
[
ϕMAP− z1−γ /2σ̂ϕR,ϕMAP− z1−γ /2σ̂ϕL

]
, (25)

I :=
[
ϕMAP+ z1−γ /2σ̂ϕL,ϕMAP+ z1−γ /2σ̂ϕR

]
, (26)

it follows that

P
{
ϕ∗ ∈ I and ϕ∗ ∈ I

}
= 1−α. (27)

The intervals I and I quantify uncertainty in uncertainty
and provide a rigorous probabilistic characterization of the
Monte Carlo procedure’s uncertainty.

In practice, the original Bayesian credible interval in
Eq. (24) can be modified to account for the Monte
Carlo uncertainty. To obtain an upper bound on the
Bayesian credible interval, we apply an inflation fac-
tor (defined above as R) and thus obtain the interval[
ϕ
u
,ϕu

]
=
[
ϕMAP− z1−γ /2σ̂ϕR,ϕMAP+ z1−γ /2σ̂ϕR

]
such

that P
{[
ϕ
u
,ϕu

]
⊃

[
ϕ∗,ϕ∗

]}
= 1−α/2. This probability is

(1−α/2) instead of (1−α), since the probability in Eq. (21)
evaluated with only the lower bound yields a probability
of (1−α/2). Following the same steps as above, we ob-
tain lower and upper bounds on the lower and upper end-
points of the credible interval of Eq. (24), respectively, hold-
ing with probability of exactly (1−α/2). Similarly, to obtain
a lower bound on the Bayesian credible interval, we apply a
deflation factor (defined above as L) and thus obtain the in-
terval

[
ϕ
l
,ϕl

]
=
[
ϕMAP− z1−γ /2σ̂ϕL,ϕMAP+ z1−γ /2σ̂ϕL

]
such that P

{[
ϕ
l
,ϕl

]
⊂

[
ϕ∗,ϕ∗

]}
= 1−α/2, holding with

equality by the same logic as that used for the inflation factor.
Observing that the aforementioned inflation and deflation

factors monotonically approach 1 as the number of Monte
Carlo samples M gets large, the effect of the Monte Carlo
procedure wanes as the number of samples grows. As shown
in Table 2, the deflation factor monotonically approaches 1
from below as M gets large while the inflation factor mono-
tonically approaches 1 from above as M gets large. As is

https://doi.org/10.5194/acp-24-9419-2024 Atmos. Chem. Phys., 24, 9419–9433, 2024



9426 M. Stanley et al.: Posterior uncertainty estimation via a Monte Carlo procedure specialized for data assimilation

characteristic of DA methods, each Monte Carlo iteration re-
quires a non-trivial amount of computation, which practically
restricts the number of Monte Carlo samples that can be ob-
tained. As such, the inflated interval protects against underes-
timating the uncertainty, while the deflated interval provides
a lower bound or “best-case” scenario for the uncertainty in
the Bayesian procedure.

3 Numerical examples

3.1 Low-dimensional example

We construct a two-dimensional example to provide a nu-
merical demonstration that this MC procedure computes a
consistent estimate of the posterior covariance and is numer-
ically close in practice. Define a linear forward model by

A=
[

1− ε ε

ε 1− ε

]
, (28)

where ε > 0. Let ctrue ∈ R2 be the true value of some physi-
cal parameter, and suppose we set up Eqs. (5) and (6) as

c ∼N (ctrue,b
2I2), (29)

y | c ∼N (Ac,σ 2I2). (30)

We use the values in Table 3 to demonstrate the covariance
agreement between the analytical equations for the posterior
and the Monte Carlo ensemble member in addition to show-
ing their agreement with the empirical covariance computed
from the Monte Carlo ensemble members. We also provide
an empirical demonstration that the empirical covariance ma-
trix converges to the posterior covariance in the Frobenius
norm as the number of ensemble elements M gets large.

Using the settings in Table 3, we obtain the following pos-
terior covariance matrix by Eq. (7):

6 =

[
0.87169811 −0.07169811
−0.07169811 0.87169811

]
. (31)

For the analytical covariance of the MAP estimator, we
obtain the following matrix using Eq. (12):

6ckMAP
=

[
0.87169811 −0.07169811
−0.07169811 0.87169811

]
. (32)

Indeed, these matrices are expected to be the same. Using
simulated ensemble members, we obtain the following em-
pirical covariance matrix using Eq. (13):

6̂ =

[
0.8898093 −0.22511958
−0.22511958 1.03065003

]
. (33)

This empirical covariance matrix is qualitatively close to the
analytical matrices, even for only M = 102. To show how
the empirical covariance computed from the Monte Carlo
ensemble elements converges to the true posterior covari-
ance, we repeat the above implementation of the Monte Carlo

Figure 1. The Monte Carlo procedure is implemented on the
low-dimensional example for a variety of ensemble sizes (M =
100,200, . . .,104) to show that the empirical covariance resulting
from the Monte Carlo procedure quickly gets close, in terms of the
Frobenius norm, to the posterior covariance as the number of en-
semble members gets large. For each ensemble size M , we sample
100 realizations of the Monte Carlo procedure (shown in the gray
dots) and find the average over these 100 realizations to see the ex-
pected behavior at each ensemble size. The orange regression line
results from regressing log10‖6−6̂‖F on log10M , where the slope
estimates the exponential error convergence rate.

procedure for M = 100,200, . . .,104. For each M value, we
compute the Frobenius norm of the difference between the
true posterior covariance and the empirical covariance to
measure the estimation error, i.e., ‖6− 6̂‖F . Since this es-
timation error is itself random, for each setting of M , we
sample 100 realizations of the Monte Carlo procedure to ob-
tain a mean norm difference. The results of this procedure
are presented in Fig. 1 and show that the estimation error
exponentially decreases as the ensemble size gets large. By
regressing log10‖6− 6̂‖F on log10M , we estimate the er-
ror convergence rate to be CM−0.49, where C ≈ 100.22, as
shown by the fitted line in Fig. 1.

3.2 Carbon flux inversion OSSE

We show an example of this Monte Carlo procedure being
used to compute posterior uncertainties for global carbon
fluxes along with the adjusted uncertainties from Sect. 2.3.
We first detail adjustments to the 4D-Var setup and the Monte
Carlo procedure for carbon flux inversion, followed by the
particulars of our simulation study and the Monte Carlo pro-
cedure results.

3.2.1 Applying 4D-Var and the Monte Carlo procedure
to carbon flux inversion

Following along with the mathematical setup of Henze et al.
(2007), the prior and posterior distributions are defined in a
scaling-factor space, and hence the prior and posterior dis-
tributions of the physical quantity of interest are obtained by
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Table 2. Inflation and deflation factors for Monte Carlo (MC) estimated posterior standard deviation with α = 0.05. When M = 100, by
inflating the MC-estimated posterior standard deviation by a factor of 1.1607 (inflating by 16.07%), the extra uncertainty resulting from
the MC procedure is accounted for with 97.5% confidence. Similarly, when M = 100, deflating the MC-estimated posterior standard devi-
ation by a factor of 0.8785 provides a lower bound on the true underlying Bayesian uncertainty with 97.5% confidence. When considered
simultaneously, the inflation and deflation factors bracket the true uncertainty with 95% confidence.

No. Monte Carlo samples, M Deflation: L=
√

M−1
χ2
M−1,1−α/2

Inflation: R =
√

M−1
χ2
M−1,α/2

10 0.6987 1.7549
100 0.8785 1.1607
1000 0.9580 1.0458
10 000 0.9863 1.0141
100 000 0.9956 1.0044
1 000 000 0.9986 1.0014

Table 3. Parameter settings for the low-dimensional example.

Parameter Value Description

ctrue
[
1 2

]> True parameter vector
ce ctrue Expectation of the distribution in Eq. (9)
ye Actrue Expectation of the distribution in Eq. (10)
b2 4 The prior variance for each element in the parameter vector
σ 2 1 Observation error variance
m,n 2 Parameter and observation dimensions, respectively
M 102 The number of MC ensemble members
ε 0.05 Parameter of the matrix A defined in Eq. (28)

multiplying each respective scaling factor by a control quan-
tity. In carbon flux estimation, the control quantity is a con-
trol flux, typically an ansatz CO2 flux between the Earth’s
surface and the atmosphere. Note that if the prior distribution
mean in scaling-factor space is unity, then the control flux is
also the prior mean in the physical quantity of interest space.
Mathematically, let c ∈ Rm denote a scaling-factor vector;
ỹ ∈ Rn be the observation vector; µ ∈ Rm be the control
physical quantity; and θ = c·µ ∈ Rm be the physical quantity
implied by c and µ, where · denotes element-wise multipli-
cation. We substitute these elements into the original mathe-
matical model stated in Eq. (1). The observation vector ỹ is
a sequence of XCO2 observations produced by a remote sens-
ing satellite, e.g., GOSAT or OCO-2 (O’Dell et al., 2012).
The forward model, f , is a composition of an atmospheric
transport model mapping scaling factors to atmospheric CO2
concentrations with a remote sensing observation operator
mapping CO2 concentrations to XCO2 scalar values. The at-
mospheric transport model is known to be affine in its scal-
ing factors due to the physics of CO2 atmospheric transport.
The exact mapping from atmospheric CO2 concentrations to
XCO2 is nonlinear, but in line with Liu et al. (2016), we use
an affine approximation involving the known GOSAT aver-
aging kernel. As such, the affine composed function f is of
the form f (c;µ)= A(c·µ)+z, where A ∈ Rn×m is the linear
forward model matrix, c·µ denotes the component-wise mul-

tiplication of µ by the scaling factors c, and z is comprised
of the non-biospheric CO2 contribution to the observations
along with the prior mean of the XCO2 retrieval algorithm.
As such, we define y = ỹ− z, giving the linear model

y = A(c ·µ)+ ε, ε ∼N (0,R), (34)

to which the previous analysis can nearly be applied. These
definitions lead to the following Bayesian generative model:

c ∼N
(
cb,B

)
, (35)

y | c ∼N (A(c ·µ),R), (36)

where cb ∈ Rm is the scaling factor prior mean and B is the
prior covariance matrix.

In this study, the prior covariance B is parameterized with
a single real value, B := b2Im, where b ∈ R+. This is in line
with several published studies (Deng et al., 2014; Liu et al.,
2016) and implies that all prior spatiotemporal indices are
statistically independent. Similarly, the noise covariance R is
assumed to be a diagonal matrix where each diagonal ele-
ment is simply the variance of the corresponding XCO2 ob-
servation. As such, each diagonal element depends on the un-
certainty in its corresponding XCO2 retrieval, and the obser-
vations are assumed statistically independent given the scal-
ing factors.

https://doi.org/10.5194/acp-24-9419-2024 Atmos. Chem. Phys., 24, 9419–9433, 2024



9428 M. Stanley et al.: Posterior uncertainty estimation via a Monte Carlo procedure specialized for data assimilation

The uncertainty quantification objective is then to find the
posterior uncertainty in a linear functional, defined by vector
h ∈ Rm, of the physical quantity, h>θ = h> (c ·µ), given the
observations. As shown in Algorithm 1, we can obtain an es-
timate of this uncertainty without computing the entire poste-
rior covariance matrix as long as the covariance of the Monte
Carlo ensemble elements is equal to the posterior covariance.
We show this equivalence in the following argument.

For ease of notation, we rewrite Eq. (36) using a shorthand
notation for the · operation (see Appendix A), i.e., A(c ·µ)=
Aµc, so that

y | c ∼N (Aµc,R). (37)

Hence, applying Eqs. (7) and (8) and accounting for the con-
trol flux we have

6 =

(
1
b2 Im+A>µR−1Aµ

)−1

=

((
A>R−1A

)
·µµ>+

1
b2 Im

)−1

, (38)

α =6

(
A>µR−1y+

1
b2 c

b

)
=6

((
A>R−1y

)
·µ+

1
b2 c

b

)
, (39)

where Eq. (38) follows from Corollary 4 and Eq. (39) follows
from Lemma 5 in Appendix A. These covariance and ex-
pectation equations define the Gaussian posterior for c. The
posterior distribution for the physical quantity, θ = c ·µ, is
θ | y ∼N (δ,0), where

δ = E[θ | y] = E[c ·µ | y] = E[c | y] ·µ= α ·µ, (40)

0 = Cov[θ | y] = Cov[c ·µ | y] = Cov[c | y] ·µµ>

=6 ·µµ> (41)

and we have used Lemmas 1 and 2 from Appendix A.
The argument used in Eq. (12) to establish the equiva-

lence between the posterior covariance and the Monte Carlo
ensemble element covariance also holds under the scaling-
factor and control flux setup in carbon flux inversion. One
simply needs to apply the lemmas in the Appendix to account
for the component-wise relationship between the scaling fac-
tors and the control flux to establish covariance equality in
the scaling-factor space. This equality further extends to the
physical quantity space, i.e., carbon flux space. The estimator
of the physical quantity corresponding to ckMAP is

θk = c
k
MAP ·µ. (42)

Using the result from Lemma 2 in Appendix A, the covari-
ance matrix Cov[θk] of this estimator is

Cov[θk] = Cov[ckMAP ·µ] = Cov[ckMAP] ·µµ
>

=6 ·µµ> = 0. (43)

Hence, the covariance matrix of the Monte Carlo physical
quantity ensemble element is equal to the posterior covari-
ance matrix of that physical quantity. Because of this equal-
ity, the empirical variance of the functional ensemble can be
used to estimate the posterior variance of the functional of in-
terest defined by h, as shown in Step 3 of Algorithm 1. Note
that because the validity of Algorithm 1 is based upon the co-
variance equivalence and not the functional of interest, once
a Monte Carlo ensemble has been obtained, one can obtain
posterior uncertainties for any collection of desired function-
als without having to generate a new Monte Carlo ensem-
ble. This feature is particularly appealing in an application
like carbon flux inversion, since scientists are usually inter-
ested in estimating posterior uncertainties for many regions
(each of which can be encoded by a functional), which would
be computationally cumbersome if each functional required
a new Monte Carlo ensemble. It also enables the obtaining
of uncertainties in new functionals that become the subject
of scientific interest only after the generation of the Monte
Carlo ensemble.

3.2.2 OSSE setup and Monte Carlo procedure results

We follow the flux inversion setup used by Byrne et al. (2019)
(see Sect. 2.3 of that study). This setup uses the GEOS-Chem
Adjoint model (Henze et al., 2007) to estimate scaling factors
on a 4°×5° surface grid from January 2010 up to and includ-
ing August. For each spatial point, there is one scaling-factor
parameter for each month, totalingm= 72×46×8= 26492
scaling-factor parameters. This model is linear in terms of re-
alistic fluxes (e.g., not including abnormally large negative
fluxes) and hence amenable to this uncertainty quantifica-
tion procedure. The OSSE defines ground-truth fluxes from
the Joint UK Land Environment Simulator (JULES) (Clark
et al., 2011; Harper et al., 2018) and uses net ecosystem ex-
change (NEE) fluxes from NOAA’s CarbonTracker version
CT2016 (Peters et al., 2007, with updates documented at
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/, last ac-
cess: 19 August 2024) as the control fluxes. The satellite
XCO2 observations for the assimilation are generated from
the JULES fluxes by running a forward GEOS-Chem simula-
tion and sampling the model with the GOSAT observational
coverage and observation operator (O’Dell et al., 2012).

The prior uncertainty, as described in Eq. (5), is set to
b = 1.5 (where B= b2IM ). To perform the Monte Carlo pro-
cedure, we drawM = 60 ensemble members, as described in
Sect. 2.2. The XCO2 observation uncertainty 6 (a diagonal
matrix, as the observations are assumed to be independent)
comes directly from the GOSAT data product and varies be-
tween observations. For each ensemble member k, the output
of the GEOS-Chem Adjoint optimization provides monthly
scaling-factor MAP estimators ckMAP according to the ensem-
ble member inputs as described by Eq. (11). Each ensemble
MAP estimator is then multiplied by the control flux to ob-
tain a MAP estimator in flux space.
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Figure 2. (a) Estimated posterior (1− γ )× 100%= 95% credible intervals around the monthly global flux functionals show markedly
improved uncertainty over the prior during boreal summer months. The three interval types shown are the unchanged MC-estimated intervals
(red), the inflated MC-estimated intervals (gray), and the deflated MC-estimated intervals (orange). As described in Sect. 2.3, for each
month, the true upper and lower credible interval endpoints are contained within the inflated and deflated endpoints with probability 1−α =
0.95. Note that σ̂ is a shorthand notation for the empirical functional standard deviation as defined in Step 3 of Algorithm 1; µ is the
globally averaged control flux to which the prior uncertainty, b, is applied for each month; and R and L are the inflation and deflation
factors, respectively, as defined in Table 2. We observe that with even as few as M = 60 ensemble members, at the monthly/global scale,
the magnitude of the Monte Carlo sampling uncertainty is small in comparison to the posterior uncertainty. (b) The percent reduction in
uncertainty from prior to posterior for the monthly global fluxes is most significant during the boreal summer. The light-blue curve shows
the percent reduction estimated with the unchanged MC-estimated posterior standard deviation, while the magenta curve shows the percent
reduction estimated with the inflated MC-estimated posterior standard deviation. The true reduction is larger than the reduction shown by the
latter curve with 97.5 % confidence.

The functionals of interest ϕ are monthly global fluxes.
The flux values on the 3 h 4°× 5° spatial–temporal grid are
mapped to a global monthly flux using a weighted average
with weights proportional to the surface area of each grid cell
and uniform time weighting. The global flux posterior vari-
ance is computed for each month by finding the empirical
variance of the Monte Carlo global flux members, as shown
in Eq. (18). To get a sense of how the DA is reducing prior
uncertainty, for each month, we compute a percent (%) un-
certainty reduction as follows:

% uncertainty reduction= 1−
σposterior

σprior
. (44)

Since we obtain an estimate of the posterior standard devia-
tion through the Monte Carlo procedure, we do not precisely
know Eq. (44), and thus we consider the reduction in terms
of both the raw Monte Carlo point estimate of the posterior
standard deviation and its inflated version (i.e., R as defined
in Sect. 2.3).

The left side of Fig. 2 shows the time series of global mean
functionals and their credible intervals.

The posterior flux is shown to have reduced error against
the true flux, especially during the boreal summer months.
Similarly, the Monte Carlo posterior uncertainty estimate
shows considerable reduction relative to the prior. The un-
certainty estimates with inflated endpoints increase the pos-
terior uncertainty by 22%, while the deflated endpoints de-
crease the posterior uncertainty by 15%, resulting in cred-

ible interval endpoint bounds that capture the true credible
interval endpoints with 95% probability. The right side of
Fig. 2 further emphasizes the prior-to-posterior uncertainty
reduction that we mathematically expect. However, we no-
tice that the inflated uncertainty is only reduced during bo-
real summer months. In January, February, March, and April,
the inflated Monte Carlo estimated posterior uncertainty is
actually larger than the prior uncertainty. There is a logical
explanation for this: since most of the landmass generating
NEE fluxes is in the Northern Hemisphere and GOSAT re-
quires sunlight to measure XCO2 , the satellite observations
impose much weaker constraints on the fluxes during boreal
winter. Furthermore, since the prior uncertainty is defined as
a percentage, the prior is more concentrated during the boreal
winter months when the absolute magnitude of the Carbon-
Tracker fluxes is smaller. As a result of these two effects, the
actual posterior uncertainty during the winter months is only
slightly smaller than the prior uncertainty. Since we obtain
a noisy Monte Carlo estimate of this uncertainty from us-
ing 60 ensemble members, the inflated value accounting for
the Monte Carlo uncertainty in the posterior uncertainty is
slightly larger than the prior uncertainty.

4 Conclusions

For Bayesian uncertainty quantification in which the forward
model is only available as a simulator, the carbon flux estima-
tion community has proposed a useful Monte Carlo method
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to compute posterior uncertainties. This method is especially
well suited to DA tasks, since it is parallelizable, works with
computationally intensive physical simulators, and allows
for flexible post hoc uncertainty quantification on any de-
sired functional of the model parameters. In this technical
note, we analytically established the mathematical correct-
ness of this procedure in the case of a linear forward model
and Gaussian prior and error distributions and provided ad-
ditional uncertainty quantification to account for the Monte
Carlo sampling variability in the final estimated credible in-
terval. We also provided two numerical examples. In the first,
we demonstrated the agreement between the analytical equa-
tions and empirical results for an explicitly known linear for-
ward model. In the second, we showed that this procedure
applies to a large-scale DA problem in the form of a carbon
flux inversion OSSE, and we reasoned that the uncertainty
quantification results are mathematically and practically sen-
sible.

Future investigations of this method could be based on an
exploration of how many ensemble members must be sam-
pled before the Monte Carlo uncertainty is sufficiently small
in comparison to the posterior uncertainty. It is also not im-
mediately clear if this procedure would work with DA al-
gorithms other than 4D-Var and under a relaxation of the
Gaussian assumptions as our demonstration relied upon ex-
plicitly showing the equivalence between the posterior and
ensemble member covariances. As noted in Sect. 2.2, given
this algorithm’s similarity to the conditional sampling proce-
dure in the spatial statistics literature, there might be ways
to relax the linear and Gaussian assumptions so that this al-
gorithm can work in more general DA scenarios. Such an
approach would need to demonstrate the covariance equiva-
lence in some way. Finally, the validity of this procedure has
been shown for quantifying the uncertainty in the model pa-
rameters, but there are also other sources of uncertainty in
DA problems, such as uncertainty about the forward model
or auxiliary inputs to the forward model. Since these uncer-
tainty sources are typically quantified by looking at ensem-
bles of models or model inputs, perhaps there is a way to use
a Monte Carlo procedure like this one to account for such
systematic uncertainties as well.

Appendix A: Supporting algebraic results

There are a few key properties of the element-wise multipli-
cation operation that must be stated in order to support the
derivation of the equations presented in this paper.

For the following, let x ∈ Rm be a random vector such that
E[x] = µ and Cov[x] = 6 and let xi denote the ith element
of x. Additionally, suppose a ∈ Rm and A ∈ Rn×m.

Lemma 1. E[x · a] = E[x] · a
The proof is as follows. By definition, we have

E[x · a] = [E[xiai]]i = [aiE[xi]]i = E[x] · a . (A1)

Lemma 2. Cov[x · a] = Cov[x] · aa>
The proof is as follows. There are two terms that need
to be computed: (1) Var[xiai] and (2) Cov[xiai,xjaj ].
Term (1) is straightforward by properties of variance;
namely, Var[xiai] = a2

i Var[xi]. Term (2) simply requires the
definition of covariance; i.e.,

Cov[xiai,xjaj ]= E
[(
xiai −E[xiai]

)(
xjaj −E[xjaj ]

)]
= aiajCov[xi,xj ]. (A2)

Hence, it follows that Cov[x · a] = Cov[x] · aa>.
Lemma 3. Let µ ∈ Rm and let Aµ be such that the ith

row of Aµ is equal to [Aijµj ]i . Then the following equation
holds:

A>µAµ = A>A ·µµ>. (A3)

The proof is as follows. To prove Eq. (A3), first note that
µµ> =

[
µiµj

]
ij

. Let i ∈ [m] and j ∈ [n]. By definition, we
have[
A>µAµ

]
ij
=

m∑
l=1

AliAljµiµj = µiµj

m∑
l=1

AliAlj .

Hence, we can see that

[
A>µAµ

]
ij
=

[
m∑
l=1

AliAlj

]
ij

·
[
µiµj

]
ij
,

and we have the desired result.
Corollary 4. Let M ∈ Rn×n be a positive-definite matrix,

and let Aµ be defined as in Lemma 3. It follows that

A>µMAµ = A>MA ·µµ>. (A4)

The proof is as follows. Since M is positive-definite, it has a
lower triangular Cholesky decomposition, M= LL>. For all
values of i ∈ [m] and j ∈ [n], we have the following equiva-
lence:[
L>Aµ

]
ij
=

n∑
l=1

AljLliµj =

[(
L>A

)
µ

]
ij

. (A5)

Therefore, L>Aµ =
(
L>A

)
µ

. Thus, Lemma 3 implies

A>µMAµ =
(

L>Aµ
)>(

L>Aµ
)

=

(
L>A

)>
µ

(
L>A

)
µ

=

(
L>A

)>(
L>A

)
·µµ>, (A6)

and the result follows, since
(
L>A

)> (L>A
)
= A>MA.
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Lemma 5. Let Aµ ∈ Rn×m be defined as in the above, M ∈
Rn×n, and y ∈ Rn. Then

A>µMy = A>My ·µ. (A7)

The proof is as follows. It is sufficient to show the case when
M= In, as otherwise we can simply define a new vector ỹ =
My. By matrix multiplication, for all values of j ∈ [m],

[
A>µy

]
j
=

n∑
i=1

Aijyiµj =
[
A>y ·µ

]
j
. (A8)

Lemma 6. Let Aµ ∈ Rn×m be defined as in the above. Then

A(a ·µ)= Aµa . (A9)

The proof is as follows. This property follows simply from
the definition of Aµ and matrix multiplication.

Corollary 7. Define A ∈ Rn×m as above, let α,β ∈ R, and
let a,b,µ ∈ Rm. Then A(a ·µ) is linear in a.
The proof is as follows. By Lemma 6, we have

A ((αa+βb) ·µ)= Aµ (αa+βb)

= αA(a ·µ)+βA(b ·µ). (A10)

Code availability. GEOS-Chem is publicly available at http://
wiki.seas.harvard.edu/geos-chem (Bey et al., 2001), while GEOS-
Chem Adjoint requires joining the mailing list and requesting ac-
cess via a GIT account as detailed here: https://wiki.seas.harvard.
edu/geos-chem/index.php/Quick_Start_Guide (Henze et al., 2007).
For GEOS-Chem, we use version 8.01.01. The code repository can
be found here: https://github.com/geoschem/geos-chem (Bey et al.,
2001). For GEOS-Chem Adjoint, we use version v35j.

Data availability. CarbonTracker data are publicly accessible
at https://gml.noaa.gov/ccgg/carbontracker/ (Peters et al., 2007).
JULES fluxes were provided by Anna Harper at the University of
Exeter. ACOS GOSAT files are publicly available at https://co2.jpl.
nasa.gov/ (Jet Propulsion Laboratory, 2019) or https://data2.gosat.
nies.go.jp (National Institute for Environmental Studies, 2019).
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