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Abstract. Ammonia (NH3) has major effects on the environment and climate. In situ measurements of NH3
concentrations taken between June 2009 and July 2020 at an urban site in Beijing were analyzed to study its long-
term behavior, responses to meteorological conditions, and influences on the formation of secondary inorganic
aerosols (SIAs). The 11-year average NH3 mixing ratio was 26.9± 19.3 ppb (median 23.5 ppb). The annual
average NH3 mixing ratio increased from 2009 to 2017 by 50 % and then decreased by 49 % from 2017 to 2020.
Notably, the long-term trend for NH3 at the ground level did not align with the trends derived from satellite
observations and emission estimates. The NH3 concentration exhibited a stronger correlation with the daily
variation in water vapor (H2O) concentration than with air temperature. Thermodynamic modeling revealed the
nonlinear response of SIAs to NH3, with increased sensitivity when its concentration was reduced to 40 % of the
initial level. Although reducing NH3 concentrations can improve air quality during winter, controlling acid gas
concentrations has a greater effect than controlling NH3 concentrations on reducing SIA concentrations, until
NH3 and acidic gas concentrations are reduced below 80 % of their current levels. Nevertheless, the increased
mass proportion of ammonium salts in SIAs during the observation period indicates that future control measures
for NH3 concentrations may need to be prioritized in Beijing.

Graphical abstract 1 Introduction

Excessive input of anthropogenic nitrogen into the environ-
ment can directly harm ecosystems and influence climate
change (Charlson et al., 1991; Reay et al., 2008; Shadman
et al., 2016). As the most abundant alkaline trace gas in the
atmosphere (Meng et al., 2017), NH3 interacts with the oxi-
dized products of atmospheric acidic gases to form secondary
aerosols, which considerably affect the radiative balance of
the atmosphere and air quality (Fuzzi et al., 2015). Over the
years, China has been committed to controlling air pollu-
tion and has effectively managed the emissions of primary
pollutants such as sulfur dioxide (SO2) and nitrogen oxide
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(NOx). However, particulate matter 2.5 (PM2.5, particulate
matter with a diameter less than 2.5 µm in size) pollution is
still a severe problem. Existing studies on controlling SO2
and NOx emissions indicate that controlling NH3 emissions
is the most economically effective way to reduce PM2.5 con-
centrations (Gu et al., 2021; Pinder et al., 2008; Xie et al.,
2022). However, the effectiveness of NH3 reduction varies
by region (M. Liu et al., 2019; Karydis et al., 2021), and
there is still a debate regarding the efficacy of NH3 reduc-
tion measures (Guo et al., 2018; Meng et al., 2022; Wei and
Mohamed Tahrin, 2023).

Anthropogenic sources are the primary contributors to at-
mospheric NH3 emissions (Olivier et al., 1998). In China,
agricultural sources dominate, accounting for approximately
80 % of total emissions (Zhou et al., 2015). However, the
contribution of non-agricultural sources in urban areas is
considered significant. Studies indicate that over 30 % of
NH3 emissions observed in urban areas can be attributed to
traffic (Elser et al., 2018; Gu et al., 2022a; Walters et al.,
2022). Nevertheless, some research suggests that biogenic
sources (primarily green spaces) predominate in urban ar-
eas and account for approximately 60 % of emissions (Teng
et al., 2017), while the contribution from traffic sources is
negligible (Yao et al., 2013). The complexity of urban NH3
sources results in intricate variability in its atmospheric char-
acteristics.

Long-term observations are important for analyzing the
environmental impacts and control strategies of atmospheric
NH3. In Europe (Horváth and Sutton, 1998; Sutton et al.,
2001; Horvath et al., 2009; den Bril et al., 2011; Lolkema et
al., 2015; Tang et al., 2018), North America (Butler et al.,
2016; Yao and Zhang, 2019; Yamanouchi et al., 2021), and
Asia (Yamamoto et al., 1995, 1988; Saraswati et al., 2017),
studies have been conducted on NH3 variations over a period
of 5 years or more. In most of these regions, NH3 concentra-
tions have either remained stable or exhibited an increasing
trend. Satellite observations have detected rising global at-
mospheric NH3 concentrations, influenced by reductions in
acidic gas emissions, temperature increases, and the rising
use of chemical fertilizers (Warner et al., 2017). In China, ac-
cording to the monitoring results from the Nationwide Nitro-
gen Deposition Monitoring Network (NNDMN), NH3 con-
centrations at 12 urban sites and 43 rural sites increased by
approximately 80 % from 2011 to 2018 (Wen et al., 2020).
Satellite data analysis by Dong et al. (2023) indicated a sig-
nificant increase (∼ 32 %) in NH3 vertical column densities
in China from 2008 to 2019. In the North China Plain, a
hotspot for global NH3 emissions, Luo et al. (2020) found
a rapid increase in urban NH3 concentration from 2011 to
2018. Wen et al. (2024) found a 26 % decrease in Beijing
NH3 concentrations from August 2005 to August 2020 and a
50 % increase from January 2005 to January 2020. To date,
long-term ground-based observations of atmospheric NH3 at
high temporal resolution are relatively rare in China, and the
contrasting trends between NH3 emissions and satellite- and

in situ-measured concentrations in urban areas have not been
fully explored.

The present study examined high-temporal-resolution
NH3 observations at the surface in urban Beijing from 2009
to 2020. Using data from emission inventories, satellite ob-
servations, meteorological elements, concentrations of vari-
ous types of atmospheric pollutants, and particle ion compo-
sition, the present study aimed to obtain the characteristics
of long-term variations in NH3, influencing factors, and the
contributions of NH3 to particle formation in the atmosphere
of Beijing. Analyzing long-term NH3 observations helps to
understand how changes in NH3 concentrations have affected
atmospheric pollution in the past. This knowledge is crucial
for predicting future atmospheric pollution and formulating
effective environmental policies. Furthermore, it provides a
scientific basis and reference for developing future NH3 con-
trol strategies.

2 Materials and methods

2.1 Data

Between June 2009 and July 2020, data on continuous on-
line measurements of NH3 concentrations were collected in
Haidian District, Beijing (39°95′ N, 116°32′ E; Fig. S1 in
the Supplement). From June 2009 to September 2017, data
were collected from an observational site located on the third
floor of a building within the premises of the China Meteo-
rological Administration (CMA). Subsequently, the observa-
tion site was relocated to the 14th floor of the Science and
Technology Building of Minzu University of China (MUC),
which is less than 1 km away from the previous location, lo-
cated just across the road from it. The ground-floor elevations
of both buildings are 56 m above sea level, and the observa-
tion heights above the ground are 10 m on the 3rd floor and
56 m on the 14th floor. Both observation sites are surrounded
mostly by urban roads, office spaces, residential areas, and
parks, and no large-scale industrial sources of NH3 were lo-
cated near the site at the time of study.

Beginning in June 2009, NH3 concentration monitor-
ing was conducted using an EC9842 NOx /NH3 analyzer
(Ecotech, Australia). Starting in April 2015, additional NH3
measurements were simultaneously taken using an NH3 Eco-
nomical Ammonia Analyzer (EAA; Los Gatos Research,
USA). From May 2016 onward, only the NH3 EAA was
used. The EC9842 NOx /NH3 analyzer employs gas-phase
chemiluminescence to continuously analyze NH3, NOx , and
Nx concentrations; its detection limit is less than 2 ppb and
data record time is 1 min. The instrument was subject to
weekly zero and span checks to identify potential analyzer
faults and response drift. Multipoint calibrations were typi-
cally performed every month, and data were corrected on the
basis of the multipoint calibrations. The NH3 EAA features a
low detection limit of less than 0.2 ppb and a maximum drift
of 0.2 ppb within 24 h, with a time resolution of 50 s, and it
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utilizes off-axis integrated cavity output spectroscopy tech-
nology. At the CMA site, the air had been drained into an
air-conditioned room with a 4.5 m long Teflon line, and the
inlet height was 1.8 m above the rooftop (about 12 m above
ground level). At the MUC site, air was introduced from out-
side the sealed window through a borehole, with the air inlet
extending 20–30 cm outside the window. Since the site is on
the 14th floor, the air outside the building flows smoothly.
To maintain data comparability, NH3 standard gases, which
had been traceable to a uniform standard, were used as mea-
surement references. The comparison result of the two instru-
ments can be found in Zhang et al. (2021), in which the two
instruments exhibited a considerable correlation, with a cor-
relation coefficient of 0.949 (n= 5316, p < 0.01) and slope
s of 0.999± 0.005.

During data analysis, minute-level data were converted
into hourly average data. Throughout the observation period,
a total of 40 692 and 46 917 valid hourly average data points
were obtained from the EC9842 and EAA instruments, re-
spectively, resulting in a total of 13 420 datasets being ob-
tained simultaneously through measurements on the two in-
struments. These two sets of results exhibited a significant
correlation (N = 13 420, slope = 1.09, R = 0.95, p < 0.05),
and the parallel observations from the two analyzers were
generally consistent (Fig. S2). The NH3 observation data
were finalized by averaging the synchronized data.

Furthermore, NH3 satellite observation data were ob-
tained through the Metop-A satellite’s Infrared Atmospheric
Sounding Interferometer (IASI) remote sensing product.
These data had a spatial resolution of 12× 12 km2 and
were collected monthly (Van Damme et al., 2017). In the
present study, daytime satellite NH3 data from June 2009 to
April 2020 were used. The average NH3 satellite observation
results for Beijing were calculated using data for the region
spanning 36.5 to 42.5° N in latitude and 113.5 to 118.5° E in
longitude. The trend for satellite observation values obtained
at the grid point at the location of the monitoring station
closely matched the trend for the average observation values
collected for this region (Fig. S3). NH3 emission inventory
data for Beijing (from June 2009 to December 2017) are pre-
sented in Fig. S4, comparing NH3 emissions from Beijing
and its surrounding areas (Huang et al., 2012; Kang et al.,
2016). Meteorological data collected between June 2009 and
February 2012 were obtained from the Beijing Capital In-
ternational Airport station. From March 2012 to April 2020,
meteorological data were sourced from the Haidian Meteo-
rological Station. The temperature and relative humidity data
acquired from the two stations exhibited a high level of cor-
relation (Fig. S5). Absolute humidity was calculated using
the acquired temperature and relative humidity data. Data
for other pollutants such as PM2.5, SO2, and NO2 were ac-
quired from the Wanliu Monitoring Station in Haidian Dis-
trict, Beijing. These monitoring data were collected between
2 April 2014 and 11 July 2020. Figure S6 provides additional
details of these data.

In the present study, offline sampling of PM2.5 was con-
ducted on the rooftop of the School of Pharmacy at Minzu
University in China. Atmospheric samples were collected
twice daily, specifically from 06:00 to 17:00 (all times are
given in local time throughout the paper; daytime sampling)
and from 18:00 to 05:00 on the following day (nighttime
sampling). The sampling periods were from 8 to 21 Septem-
ber 2018 (autumn), 6 to 21 November 2018 (autumn), 1 to
21 January 2019 (winter), 3 to 21 March 2019 (spring), 8
to 15 May 2019 (spring), and 8 to 21 June 2019 (summer).
The collected PM2.5 samples on filters were subsequently
sent to the Chinese Academy of Meteorological Sciences
for chemical analysis of ion components (Na+, SO2−

4 , NH+4 ,
NO−3 , Cl−, Ca2+, K+, and Mg2+), from which 184 datasets
were obtained. Additionally, data from the study by Hu et
al. (2014) that spanned 5 May to 30 November 2009 and
data from the study of Wu et al. (2019) that spanned 15 to
23 December 2016 were used in the present study as refer-
ences for monitoring PM2.5 components within the premises
of the China Meteorological Administration.

2.2 Data analysis methods

2.2.1 Long-term trend analysis

Long-term trends of atmospheric NH3 were obtained using
ensemble empirical mode decomposition (EEMD) (Wu and
Huang, 2009). This method adaptively decomposes a signal
into a series of intrinsic modal functions (IMFs) from high
to low frequencies. It separates oscillation or trend compo-
nents of varying scales from the original signal. EEMD inte-
grates the advantages of wavelet analysis and augments the
empirical mode decomposition (EMD) method by introduc-
ing white noise. This enhancement effectively mitigates the
mode mixing problem inherent in the EMD method. EEMD
demonstrates greater stability in decomposing nonlinear and
non-stationary data series, enabling the accurate extraction
of genuine signal variations (Qian et al., 2011). Currently,
EEMD has been used in studies on air-quality trend analy-
sis (Yao and Zhang, 2016; Fu et al., 2020; Wang et al., 2022;
Wang and Zhang, 2023). In the present study, the EEMD was
performed using the Rlibeemd package of the R program-
ming language (Luukko et al., 2016).

2.2.2 Thermodynamic modeling

The ISORROPIA II model is mainly used to simulate the
physical state and concentration of inorganic components of
the aerosol system at thermodynamic equilibrium. A distinct
advantage of the ISORROPIA II model over other thermo-
dynamic models is the inclusion of the K+, Ca2+, and Mg2+

ions in the calculations, and taking these components into ac-
count significantly improves the accuracy of the model sim-
ulations (Allen et al., 2015). Additionally, the high precision
and computational efficiency of the ISORROPIA II model
have been widely demonstrated (Fountoukis and Nenes,
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2007). To assess the sensitivity of sulfate, nitrate, and am-
monium (SNA) to changes in precursor concentrations, the
present study employed the ISORROPIA II thermodynamic
equilibrium, version 2.3 (http://isorropia.epfl.ch, last access:
8 April 2023). The model was run in “forward+metastable”
mode, taking inputs such as temperature (in kelvins), relative
humidity (up to 1), and concentrations of particulate compo-
nents (SO2−

4 , Cl−+ HCl, NO−3 + HNO3, NH+4 + NH3, Na+,
K+, Ca2+, and Mg2+) expressed in µg m−3 for calculations.

3 Results and discussion

3.1 Long-term variations in NH3

From June 2009 to July 2020, the hourly average mixing ra-
tio of atmospheric NH3 in Beijing was 26.9± 19.3 ppb (me-
dian 23.5 ppb). Table S1 summarizes results from various
NH3 monitoring studies conducted in urban areas. The re-
sults of the present study are basically consistent with the
annual NH3 mixing ratio averages that have been observed
in urban Beijing by other researchers through optical instru-
ments (Gu et al., 2022a, 2022b; Pu et al., 2020; Sun et al.,
2023; Wang et al., 2019). As a densely populated country
with intensive agricultural activities, China contains several
areas that are major global hotspots for atmospheric NH3
concentration (L. Liu et al., 2019; Van Damme et al., 2018).
The monitoring results of the present study indicate that the
overall NH3 mixing ratio in Beijing is lower than that in
Delhi (Saraswati et al., 2019; Singh and Kulshrestha, 2014)
but considerably higher than those in other developed cities
such as New York, Toronto, and Rome (Chatain et al., 2022;
Nguyen et al., 2021; Park et al., 2021; Perrino et al., 2002;
Phan et al., 2013; Zbieranowski and Aherne, 2012; Zhou et
al., 2019). Even within China, the NH3 mixing ratio in Bei-
jing is higher relative to that in Shanghai, which is also a
megacity (i.e., the NH3 mixing ratio in Shanghai is less than
one-third of that in Beijing), and only a few cities in north-
ern China have mixing ratios comparable to that in Beijing
(Cao et al., 2009; Chang et al., 2019; Huang et al., 2021; Pan
et al., 2018). The primary reasons for this phenomenon are
the frequent agricultural activities and the presence of highly
alkaline soils in the North China Plain, where Beijing is lo-
cated (Ju et al., 2009).

Due to significant data gaps from January 2013 to
June 2013 and from May 2017 to August 2017, the period
from 2009 to 2020 was divided into three segments for lin-
ear regression analysis (Fig. S7). From June 2009 to January
2013, the observed hourly average atmospheric NH3 mix-
ing ratio showed a decreasing trend (R =−0.23, p < 0.05,
slope=−0.01); from June 2013 to May 2017, the NH3 mix-
ing ratio increased (R = 0.04, p < 0.05, slope= 0.22× 10–
2); and from September 2017 to July 2020, the NH3 concen-
tration exhibited a decreasing trend again (R =−0.03, p <
0.05, slope=−1.42× 10−3). Similarly to in situ observa-
tions, the satellite observations of NH3 concentration showed

a decreasing trend from June 2009 to January 2013 (R =
−0.19, p < 0.05, slope = −3.88× 10−4) and an increas-
ing trend from June 2013 to May 2017 (R = 0.12, p < 0.05,
slope= 3.65× 10−4) but differed from in situ atmospheric
NH3 trends as it continued to rise from September 2017 to
July 2020 (R = 0.23, p < 0.05, slope= 1.17× 10−3).

To further analyze the long-term trends of the atmospheric
NH3 concentration, the present study referred to the findings
of Vu et al. (2019) and used meteorological factors to con-
struct a random forest model for imputing missing values.
The computed time series for the atmospheric NH3 concen-
tration is presented in Fig. S8. The complete dataset obtained
through EEMD was used to characterize the changes in at-
mospheric NH3 concentrations in Beijing (Fig. 1). The NH3
mixing ratio initially exhibited a slight decrease but started to
increase in 2012 and peaked in 2017, subsequently declining.
From 2009 to 2017, the NH3 mixing ratio increased by 50 %,
but by 2020, the NH3 mixing ratio had decreased by 49 %
from its peak in 2017. A comparison of monthly average
NH3 concentrations obtained from satellite observations re-
vealed that prior to 2018, the trend for the surface NH3 mix-
ing ratio was similar to that observed by satellites, exhibit-
ing a decline followed by an increase in atmospheric NH3
concentrations. However, starting in 2018, these two trends
diverged, with satellite observations indicating a continued
increase in NH3 concentrations, while the surface NH3 mix-
ing ratio exhibited a decreasing trend. The monitoring results
of this study were compared with NH3 monthly concentra-
tions observed by NNDMN in Beijing from April 2011 to
December 2015 (Xu et al., 2019) and from January 2005 to
August 2020 (Wen et al., 2024) (Fig. S9). From April 2011 to
December 2015, both the NH3 mixing ratio observed in this
study (R = 0.27, p < 0.05) and the satellite-observed con-
centrations (R = 0.28, p < 0.05) exhibited increasing trends,
while the NNDMN station did not show a significant trend
(R = 0.16, p > 0.05). The NNDMN station observations
from January 2009 to August 2020 were significantly corre-
lated with this study’s observations (RAug = 0.66, p < 0.05;
RJan = 0.65, p < 0.05), but neither the present study’s ob-
servations nor the NNDMN observations were significantly
correlated with satellite-observed NH3 concentrations. Satel-
lite observations showed a strong correlation between NH3
concentrations in the Beijing urban area and the Beijing–
Tianjin–Hebei region (Fig. S3). However, measurements by
Zhang et al. (2020) at five stations in Beijing indicated that
four stations had lower NH3 concentrations in 2017 (winter)
than in 2020 (winter + spring), while one station had higher
concentrations in 2017 than in 2020, indicating variability
in observation results even within the same city. Due to the
short atmospheric lifetime, low transport altitude, high dry
deposition rate, limited transport distance, and abundance of
atmospheric NH3, its complex temporal and spatial charac-
teristics contribute to the complexity of NH3 variations (As-
man and van Jaarsveld, 1992; Nair and Yu, 2020). Satellite
observations are limited by the observation height and spa-
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tial resolution, which may mask variations in local surface
NH3 concentrations. Additionally, differences between the
present study’s observations and satellite observations may
also be due to changes in the monitoring location and obser-
vation height in September 2017. However, tower observa-
tions conducted by the Institute of Atmospheric Physics, Chi-
nese Academy of Sciences (6.7 km from the present study’s
site), in the urban area showed only slight variations within a
300 m altitude range (Wang et al., 2019; Zhang et al., 2019).
Therefore, the change in observation altitude may have had
a limited impact on the change in NH3 mixing ratio trends
after 2017.

3.2 Influences on variation characteristics of NH3

NH3 emissions directly affect the variations in atmospheric
NH3 concentrations. The emission inventory data (Fig. 1) in-
dicate that NH3 emissions in Beijing remained stable from
2009 to 2014, peaking in 2012. After 2014, NH3 emissions
in Beijing rapidly decreased, declining by 25 % from 2014
to 2017. However, during this period of declining emis-
sions, the NH3 mixing ratio in Beijing exhibited an increas-
ing trend. Similar phenomena have been reported by stud-
ies conducted outside of China. For instance, in Scotland,
NH3 emissions decreased by approximately 15 % from 1990
to 2003, whereas atmospheric NH3 concentrations increased
(Friedman and Schwartz, 2011). In Hungary, NH3 emissions
were estimated to have decreased by 50 % from 1983 to
1993; however, NH3 concentrations exhibited a slight up-
ward trend during this monitoring period (Horvath et al.,
2009). A possible reason for these differences between NH3
emissions and concentrations could be the significant reduc-
tion in the concentrations of SO2 and NOx , which reduced
the amount of atmospheric NH3 neutralized by acid gases
(Fu et al., 2017; Lachatre et al., 2019; Liu et al., 2018; Yu et
al., 2018). Over the past 2 decades, Beijing has implemented
a series of strict measures to control air pollution and has
achieved considerable success (United Nations Environment
Programme, 2019). The concentrations of SO2, NO2, CO,
PM10, and PM2.5 in Beijing all exhibited decreasing trends;
in particular, the concentration of SO2 decreased by 88 %
from 2009 to 2020 (Fig. 2).

To discuss the influence of chemical loss on the annual
increase in NH3 concentrations, the present study referred
to research by Yao and Zhang (2019), assuming that NH+4
is uniformly distributed in the urban area of Beijing and
that changes in NH+4 concentrations directly affect atmo-
spheric NH3 concentrations on a 1 : 1 basis. By calculat-
ing the change in NH+4 concentration relative to the base-
line year, we adjust the atmospheric NH3 concentrations. The
present study set 2009 as the baseline year, using the annual
average NH+4 concentration observed by Cheng (2021) in the
urban area of Beijing to calculate the adjusted NH3 concen-
trations from 2009 to 2017. The calculations show (Fig. S10)
that, overall, the original NH3 concentration in 2017 was

50 % higher than in 2009 and the adjusted NH3 concentration
was 46 % higher. Therefore, changes in chemical losses have
a limited impact on the increased trend of NH3 concentra-
tions, and the discrepancy between NH3 concentrations and
emission trends may be due to imperfections in the emission
inventory.

Various meteorological factors can influence the atmo-
spheric NH3 concentration. Among the factors identified,
temperature has been reported to be positively correlated
with NH3 concentration. An increase in temperature can in-
crease soil NH3 emissions, leading to the equilibrium shift of
particulate NH4NO3 toward gaseous NH3, which increases
NH3 concentration (Behera et al., 2013; Li et al., 2014). Dur-
ing the observation period, the temperature in Beijing fol-
lowed the seasonal sequence of summer (being the warmest)
followed by spring, autumn, and winter, and the rankings of
NH3 mixing ratios across the seasons were consistent with
the trend. Other studies conducted in temperate regions of
the Northern Hemisphere have reported similar findings (Liu
et al., 2021; Shon et al., 2012; Wang et al., 2018). The inter-
annual trends for temperature and NH3 mixing ratios across
multiple seasons (Fig. 3) revealed that temperature remained
stable in summer and autumn over the years; when calcu-
lated in kelvins, the average seasonal temperatures exhibited
interannual variation coefficients of 0.42 % in spring, 0.15 %
in summer, 0.17 % in autumn, and 0.51 % in winter. For the
two seasons of summer and autumn, no significant correla-
tion was identified between the annual average NH3 mixing
ratio and the variations in temperature over the years. Af-
ter 2014, the annual average temperature in spring remained
stable, whereas the NH3 mixing ratio gradually decreased,
possibly because of a reduction in agricultural activities. A
weak positive correlation was identified between the annual
average NH3 mixing ratio and temperature only in winter,
and the significant increase in winter temperature from 2013
to 2014 could have led to the high NH3 mixing ratios in the
winter of 2014.

Our investigation examined the correlations among daily
temperature, absolute humidity, and diurnal fluctuations in
atmospheric NH3 concentrations throughout an observation
period of 4058 d (screening criteria for effective dates: p <
0.05 and ≥ 18 effective hours per day; the p values were
adjusted using the Benjamini–Hochberg method; Benjamini
and Hochberg, 1995). We observed that temperature exhib-
ited both positive (45 %) and negative (55 %) correlations
with the NH3 mixing ratio, with these two categories each ac-
counting for nearly half of the valid observation days. How-
ever, on most days (i.e., 93 % of the valid observation days),
absolute humidity was positively correlated with the NH3
mixing ratio (Fig. S11). Overall, the average daily varia-
tions in NH3 mixing ratios in Beijing in spring, summer, and
autumn indicated a significant negative correlation with the
temperature (Rspring =−0.93, Rsummer =−0.72, Rautumn =

−0.76, p < 0.01). The NH3 mixing ratio was positively cor-
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Figure 1. Monthly averages of surface observations and satellite inversions of NH3 concentrations and total NH3 emissions in Beijing from
June 2009 to July 2020 (fine light line) and trends pertaining to changes (thick solid line).

Figure 2. Annual average concentrations of atmospheric NH3
and five other air pollutants in Beijing. The measurement unit is
mg m−3 for CO concentration and µg m−3 for all other pollutants
(air pollutant data were retrieved from the Beijing Environmen-
tal Bulletin website: http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/
sthjlyzwg/1718880/1718881/1718882/, last access: 8 April 2023).

Figure 3. Interannual variations in the mean NH3 mixing ratio and
mean temperature in Beijing for each season.

related with absolute humidity (Rspring = 0.80, Rsummer =

0.50, Rautumn = 0.67, Rwinter = 0.49, p < 0.01).
Several studies have suggested that temperature plays a

pivotal role in driving diurnal variations in atmospheric NH3
concentrations (Clarisse et al., 2021; Langford et al., 1992).
However, the present study shows that NH3 concentrations
are significantly influenced by temperature across seasonal
changes (Fig. 3); in terms of diurnal patterns, the days show-
ing positive and negative correlations between NH3 concen-
trations and temperature each constitute nearly half of the
effective observation days (Fig. S11). The mean diurnal vari-
ations in different seasons typically exhibit lower concen-
trations during the day and are higher at night in spring,
summer, and autumn (Fig. S12). This difference suggests
that correlations observed on a seasonal (climatic scale) tend
to obscure lower-frequency data relationships, with daily
variations in NH3 concentrations being more influenced by
the transition from day to night (meteorological or weather
scale). This highlights the complex factors affecting NH3
concentrations in the urban areas of Beijing and underscores
the importance of high temporal resolution in observations.
Several studies have noted a reduction in NH3 concentrations
during daylight hours (Buijsman et al., 1998; Sharma et al.,
2014; Gu et al., 2022b; Lan et al., 2021). Increased temper-
atures during the day promote the volatilization of NH3, but
lower daytime concentrations may result from higher wind
speeds and more favorable mixing conditions, whereas at
night, NH3 tends to accumulate within a shallower bound-
ary layer (Buijsman et al., 1998). The diurnal variation in the
boundary layer height in Beijing exhibits a single-peak pat-
tern, rising rapidly from 06:00 to 08:00, reaching its peak
between 14:00 and 15:00, then declining sharply, and sta-
bilizing after 18:00 to 20:00 (Fig. S12). During the day-
time, NH3 concentrations are influenced by a combination
of temperature (which promotes emissions) and changes in
the boundary layer height (which causes dilution), with the
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valley value of NH3 concentrations lagging behind the peak
times of boundary layer height and temperature. Moreover,
during spring, summer, and autumn, the continuous decline
in NH3 concentrations during the daytime indicates that ver-
tical mixing transport has a limited impact on atmospheric
NH3 in the urban areas of Beijing. In winter, the evapora-
tion of dew or frost in the early morning leads to a rapid
increase in H2O and NH3 concentrations (Wentworth et al.,
2016), while the effects of afternoon temperature and vertical
mixing dilution are comparable, keeping NH3 concentrations
relatively stable.

Several studies have reported a high correlation between
the NH3 mixing ratio and humidity. Previous research has
shown that NH3 can be significantly affected only by sharp
changes in humidity, and a new balance requires tens of min-
utes to be re-established. Averaging minute-level data over
1 h can smooth the effects caused by variations in humidity.
Notably, parallel observations in urban and suburban Beijing
found that a positive correlation between daily NH3 and H2O
concentration variations was only significant in urban areas
(Lan et al., 2021). Gu et al. (2022b) reported that daily varia-
tions in NH3 concentrations in urban Beijing, as measured by
the Picarro ammonia analyzer and ChemComb, were consis-
tent. These results suggest that atmospheric NH3 cannot be
explained solely by the influence of H2O effects on the in-
struments. Additionally, Sun et al. (2023) discovered a pos-
itive correlation between atmospheric NH3 concentrations
and relative humidity (RH) in Beijing and a negative correla-
tion in Shanghai. In rural northern China, He et al. (2020)
also observed a strong correlation between NH3 and RH,
which they attributed to dew evaporation. At present, the re-
lationship between the NH3 mixing ratio and the water vapor
concentration requires further clarification.

In summary, the results suggest that temperature plays a
pivotal role in driving the seasonal variations in atmospheric
NH3 concentrations throughout a given year. However, in the
long term, the influence of temperature and other meteoro-
logical factors may be masked. Regarding diurnal variations,
our analysis revealed that a single-day increase in tempera-
ture did not consistently lead to a direct elevation in atmo-
spheric NH3 mixing ratios on most days. Conversely, atmo-
spheric water vapor mixing ratios exhibited a consistently
positive correlation with NH3 mixing ratios throughout the
day. Notably, the day-to-day variations in meteorological fac-
tors remained consistent across the years, whereas the vari-
ation in diurnal NH3 differed across different years and sea-
sons (Fig. S13). Therefore, the conclusion is that diurnal fluc-
tuations in the atmospheric NH3 concentration are not solely
determined by meteorological factors. In recent years, schol-
ars have been increasingly studying the contribution of traffic
sources to urban NH3 concentrations. Gu et al. (2022b) con-
firmed that vehicle exhaust emissions during winter in Bei-
jing lead to the occurrence of morning peaks in NH3 concen-
trations. Nonetheless, our results indicated that atmospheric
NH3 concentrations did not consistently peak in the morning

throughout the observation period, even when high concen-
trations of traffic emissions were present. Furthermore, the
morning peaks for atmospheric NH3 concentrations tended
to occur earlier relative to those for CO, which are influenced
by traffic emissions (Fig. S13).

Studies have comprehensively explored the influence of
wind direction and wind speed on the pollutant mixing ra-
tios in Beijing, and they have reported that southerly (S)
winds transport a high concentration of pollutants to Beijing,
leading to the accumulation of NH3 in the city. Conversely,
the winds from the north by west (NW) facilitate the dis-
persion and dilution of atmospheric NH3 in Beijing (Lin et
al., 2011; Meng et al., 2017). Figure S14 presents the wind
rose diagrams for atmospheric NH3 concentrations in var-
ious seasons and at various wind speeds. Under near-calm
wind conditions (wind speed (ws) ≤ 1.5 m s−1), the prevail-
ing winds across all seasons were predominantly in the north-
east and east-northeast directions, and NH3 mixing ratios did
not vary significantly because of the wind direction, indi-
cating that local emissions had the most pronounced effect
on atmospheric NH3 concentrations. At low wind speeds
(1.6 m s−1

≤ws≤ 3.3 m s−1), the predominant wind direc-
tion varied across seasons, with southwesterly winds prevail-
ing in spring and summer and northerly winds dominating in
autumn and winter. At higher wind speeds (ws> 3.4 m s−1),
the predominant wind direction was NW in spring, autumn,
and winter but southerly in summer. In general, changes in
the prevailing wind direction did not significantly influence
NH3 mixing ratios across various wind sectors. However, in
specific wind sectors, such as the west by south (WS) sector
in spring, the east by south (ES) sector in summer and au-
tumn, and the south by east (SE) sector in winter, higher wind
speeds tended to lead to lower NH3 mixing ratios (Fig. S15).
Notably, the decline in NH3 mixing ratios was more pro-
nounced in wind sectors affected by NW winds, indicating
that strong winds, particularly those from the NW direction,
had a significant cleansing effect on NH3 in Beijing. Con-
versely, southerly winds, and sometimes specific wind direc-
tions, contributed to NH3 accumulation.

3.3 Influence of NH3 on secondary inorganic aerosol
formation

The present study investigated the role of atmospheric NH3
in the formation of secondary inorganic aerosols (SIAs) in
Beijing by analyzing the relationship between NH3 and SNA
concentrations during the observation period. According to
the study of Wei et al. (2023) conducted between 2013 and
2020, the SNA concentrations in Beijing exhibited a signif-
icant downward trend. However, the proportion of SNA in
PM2.5 (mass concentration) did not change substantially dur-
ing this period. Table S2 lists the proportions of various SNA
components in PM2.5 (mass concentration) recorded in urban
areas of Beijing for the years 2009, 2016, 2018, and 2019. In
the summer and autumn of 2009, SO2−

4 accounted for more
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Figure 4. Correlation between gaseous NH3 and fine particulate
ion NH+4 .

than 50 % of SNA content, considerably exceeding the con-
centrations of NO−3 and NH+4 . However, by 2016, except for
the summer season when SO2−

4 was still the predominant
component, NO−3 became the dominant component of the
SNA mass concentration. Over time, the proportion of NH+4
in the SNA mass concentration increased across multiple sea-
sons. Wen et al. (2024) and Cheng (2021) have also observed
this phenomenon in urban Beijing. These findings indicate
the necessity of controlling NH3 and NOx concentrations to
mitigate future PM2.5 pollution.

Figure 4 depicts the relationship of NH+4 in fine particu-
lates to atmospheric NH3. Overall, a positive correlation was
identified between NH+4 and NH3, indicating that variations
in the concentration of the precursor gas NH3 influenced the
formation of NH+4 . An increase in the NH3 concentration led
to a higher concentration of NH+4 in fine particulate matter,
and this effect was most pronounced in winter, during which
the correlation between NH+4 and NH3 was the strongest
(R2
= 0.68, p < 0.01) and the average molar concentration

ratio of NH+4 to NH3 was the highest. The seasonal differ-
ences in the response of aerosol NH+4 to atmospheric NH3
may mainly be caused by variations in meteorological condi-
tions, in addition to those in precursor gases of SNA. For
example, low temperature and high humidity promote the
conversion of gaseous NH3 to particulate NH+4 (Wang et al.,
2015). Thus, winter meteorological conditions may increase
the formation of NH+4 in fine particulate matter, exacerbating
fine particulate pollution and haze formation.

To gain further insights, the ISORROPIA II thermody-
namic equilibrium model was employed to simulate and an-
alyze the sensitivity of SNA in PM2.5 to changes in precur-
sor concentrations in each season. Concentrations of SO2−

4
+ H2SO4 (TS), HNO3 + NO−3 (TN), and NH3 + NH+4 (TA)
were increased or reduced by up to 20 %, and the changes

in simulated concentrations relative to the baseline (with-
out perturbation) were calculated. The simulation results re-
vealed a strong correlation between the simulated and ob-
served NH3 concentrations (Rspring = 0.89, Rsummer = 1.00,
Rautumn = 0.97, Rwinter = 0.98, p < 0.01), indicating the re-
liability of the above observation-based results. The simu-
lation results (Table S3) indicated that NH+4 was the com-
ponent least sensitive to changes in the TA concentration
in spring, autumn, and winter, suggesting that atmospheric
NH3 was not the limiting reactant for the generation of
(NH4)2SO4 and NH4NO3 in these seasons during the ob-
servation period. The responses of NH+4 to changes in TA
and TN concentrations were less apparent in summer because
NH+4 was mainly bound to SO2−

4 rather than to NO−3 during
this hot season, in which the high temperature was unfavor-
able for the generation and retention of NH4NO3. Further-
more, the increase in TS had an over-proportional or nearly
(winter) proportional perturbation effect on NH+4 , indicating
the presence of sufficient NH3 in the atmosphere of Beijing
throughout the year. Su et al. (2021) have also suggested that
the acidic components in the atmosphere in Beijing were suf-
ficiently neutralized. Therefore, a relatively small reduction
(20 %) in NH3 abundance seems not to be able to signifi-
cantly lower the SNA levels in Beijing.

When NH3 was abundant, the sensitivity of SNA content
to changes in TA within the ±20 % range was low (within
±2 %, Table S3). Under such conditions, changes in TS and
TN concentrations had much larger perturbation effects on
SNA concentrations. However, the winter SNA concentra-
tions mostly responded linearly to changes in TS and TN
concentrations but nonlinearly to changes in the TA ones
(Fig. 5). If the TA concentrations, which were more pro-
nounced in 2019, were reduced by 60 %, the rate of decrease
in SNA content would have accelerated considerably. By
contrast, the effect of changes in the TS concentration de-
creased after its reduction of over 40 %. In a previous study
based on nationwide measurements and simulation, Meng
et al. (2022) suggested that SNA content in China can be
more effectively controlled by reducing the concentrations of
acidic gases (SO2 and NOx) in the atmosphere than by reduc-
ing the concentration of NH3 by the same percentage. Addi-
tionally, Zheng et al. (2022) discovered that the joint control
of SO2 and NOx emissions is still the preferred method for
reducing SNA concentrations in central China, except when
acidic gas emissions are well controlled and the environmen-
tal chemical balance tends to favor the effective control of
NH3. Therefore, under the current atmospheric conditions,
controlling acidic gas emissions is still a priority for reduc-
ing the PM2.5 concentration in Beijing. Nevertheless, the cost
of emissions reduction also increases with the progress of
controlling SO2 and NOx emissions. Although they provide
similar abatement benefits, the cost of reducing NH3 is only
10% of that required to reduce NOx (Gu et al., 2021). Thus,
reducing NH3 emissions should be prioritized as a means of
improving future air quality in Beijing.
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Figure 5. ISORROPIA predictions of the percentage reduction in
SNA mass concentration based on winter observations (charts dis-
play the percentage reduction in SNA plotted against the percentage
reduction in TS, TN, and TA concentrations).

4 Conclusions

Over the 11 years analyzed, the NH3 concentration in urban
Beijing initially increased by 50 % in the first 8 years but
subsequently decreased by 49 % in the following 3 years. In
particular, the annual average concentration of NH3 in 2020
was 24 % lower than that in 2009. The trend for NH3 mix-
ing ratios did not align with those for annual NH3 emissions
and the increasing trend indicated by satellite-based NH3
monitoring data. These discrepancies highlight the complex-
ity of NH3 sources and removal processes in urban areas,
which implies there are further challenges in performing at-
mospheric NH3-related modeling and implementing future
emission reduction strategies.

The long-term trend in NH3 in urban Beijing was not sig-
nificantly influenced by meteorological factors such as tem-
perature. However, the seasonal variations in NH3 mixing
ratios were strongly influenced by temperature, with higher
temperatures corresponding to higher NH3 mixing ratios dur-
ing warmer seasons. Regarding daily variations, NH3 mixing
ratios exhibited both positive and negative correlations with
temperature but consistently exhibited a positive correlation
with absolute humidity on most days. Across the observation
years, the daily variations in NH3 concentrations did not ex-
hibit a consistent pattern across different seasons. In some
cases, the patterns were even entirely opposite. By contrast,
various meteorological factors and the daily variation pat-
terns of other common air pollutants were mostly consistent
across different years and seasons. Consequently, the factors
influencing atmospheric NH3 concentrations appeared to be
more complex compared with those influencing other com-
mon air pollutants.

The concentrations of various PM2.5 ion components in
Beijing for the years 2009, 2016, 2018, and 2019 indicate
that, apart from during the summer season, the SNA content
in Beijing was mainly dominated by sulfate (nearly 50 %).
Furthermore, the proportion of ammonium in SNA content
increased over time. An analysis of the neutralization levels
of major acidic gases and a modeling analysis of perturba-
tion indicated that an excessive concentration of NH3 was

maintained throughout the year in Beijing. The findings of
the present study suggest that, even though the concentra-
tions of SO2 and NOx in Beijing have decreased substantially
over the past 2 decades, SIA formation is more sensitive to
acid gases than to NH3. Therefore, reducing acidic gas emis-
sions is still a primary focus for controlling fine-particulate-
matter pollution in Beijing. Given that the trends in urban
atmospheric NH3 concentrations do not align with emissions
trends, clarifying the relationship between them and identi-
fying the sources of NH3 in Beijing will play a crucial role
in effectively reducing atmospheric NH3 concentrations in
the city.

In the present study, atmospheric NH3 concentrations in
urban Beijing were continuously monitored over a long pe-
riod with high temporal resolution. However, it should be
noted that there are potential limitations of surface monitor-
ing in representing urban or regional trends due to the uneven
distribution of atmospheric NH3 sources and the lack of ver-
tical information. Similarly, with monitoring at a single site,
it is necessary to verify whether the response measures are
broadly applicable across the entire Beijing urban area. This
will require further observational research on atmospheric
NH3 in urban Beijing in the future. In addition, existing stud-
ies have demonstrated that emission inventories have under-
estimated atmospheric NH3 emissions in the Beijing urban
area (Xu et al., 2023), and the assessment results have varied
across emission inventories (Chen et al., 2023). Additionally,
given the limited research years of current emission invento-
ries, the observed differences between long-term trends in
monitored NH3 concentrations and NH3 emissions require
continued attention in the future.
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