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Abstract. It is necessary to accurately determine the optical properties of highly absorbing black carbon (BC)
aerosols to estimate their climate impact. In the past, there has been hesitation about using realistic fractal mor-
phologies when simulating BC optical properties due to the complexity involved in the simulations and the cost
of the computations. In this work, we demonstrate that, by using a benchmark machine learning (ML) algorithm,
it is possible to make fast and highly accurate predictions of the optical properties for BC fractal aggregates.
The mean absolute errors (MAEs) for the optical efficiencies ranged between 0.002 and 0.004, whereas they
ranged between 0.003 and 0.004 for the asymmetry parameter. Unlike the computationally intensive simula-
tions of complex scattering models, the ML-based approach accurately predicts optical properties in a fraction
of a second. Physiochemical properties of BC, such as total particle size (number of primary particles (Npp),
outer volume equivalent radius (ro), mobility diameter (Dm), outer primary particle size (ao), fractal dimension
(Df), wavelength (λ), and fraction of coating (fcoating), were used as input parameters for the developed ML
algorithm. An extensive evaluation procedure was carried out in this study while training the ML algorithms.
The ML-based algorithm compared well with observations from laboratory-generated soot, demonstrating how
realistic morphologies of BC can improve their optical properties. Predictions of optical properties like single-
scattering albedo (ω) and mass absorption cross-section (MAC) were improved compared to the conventional
Mie-based predictions. The results indicate that it is possible to generate optical properties in the visible spec-
trum using BC fractal aggregates with any desired physicochemical properties within the range of the training
dataset, such as size, morphology, or organic coating. Based on these findings, climate models can improve their
radiative forcing estimates using such comprehensive parameterizations for the optical properties of BC based
on their aging stages.
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1 Introduction

Black carbon (BC) aerosols are strong absorbers of solar
radiation formed from incomplete combustion of fossil fu-
els, biofuels, and biomass (Ramanathan and Carmichael,
2008; Bond et al., 2013). In the atmosphere, BC is usually
found together with other types of aerosols, which form a
coating around it (Sun et al., 2022; Sedlacek et al., 2022;
Romshoo et al., 2023a). To understand the impact of BC on
the environment, global climate models require information
about its light-scattering and absorption properties (Jacob-
son, 2001). The most common morphology assumed for such
BC-containing aerosols in light-scattering codes is a spheri-
cal core–shell shape (Bond et al., 2013). The Lorenz–Mie
theory (Mie, 1908) is often used to calculate the optical prop-
erties of such spherical BC particles (Bohren and Huffman,
2008). However, studies have shown significant discrepan-
cies in the results of the Lorenz–Mie theory when compared
with ambient measurements (Romshoo et al., 2024; Adachi
et al., 2010; Wu et al., 2018).

High-resolution transmission electron microscopy (TEM)
images showed that the BC particles have a fractal structure
composed of numerous spherules known as primary particles
(Chakrabarty et al., 2006). This led to an advanced math-
ematical description of BC as fractal aggregates, known as
fractal law (Mishchenko et al., 2002):

Npp = kf

(
Rg

a

)Df

, (1)

where a is the radius of the primary particle, Npp is the num-
ber of primary particles, kf is the fractal prefactor, and Df
is the fractal dimension. Rg is the radius of gyration, which
characterizes the spatial size of the aggregate. The short-
comings of the simplified spherical assumption of BC have
caused the scientific community to develop towards the use
of such realistic fractal aggregate morphology for computing
the optical properties of BC (e.g., Kahnert and Kanngießer,
2020; Romshoo et al., 2021; Kahnert, 2010a; Wu et al., 2018;
Liu and Mishchenko, 2018).

Romshoo et al. (2022) showed that the discrepancy be-
tween modeled and measured optical properties could be
reduced to 10 % when an aggregate morphology is used.
To simulate the optical properties of BC as fractal aggre-
gates, the most commonly used methods are the Rayleigh–
Debye–Gans (RDG) approximation (Sorensen, 2001), the
discrete dipole approximation (DDA) (Purcell and Penny-
packer, 1973), the generalized multi-particle Mie (GMM)
method (Xu and Gustafson, 2001), and the T-matrix method
(Mishchenko et al., 1996). The multi-sphere T-matrix
(MSTM) method has found widespread applications in the
research field because of its high computational speed and
accuracy in comparison to other methods like the DDA (Kah-
nert and Kanngießer, 2020; Yurkin and Kahnert, 2013). Al-
though the MSTM has lower computational costs when com-
pared to other numerical methods, a single simulation can

still take more than 24 h, depending on the properties of the
aggregate.

Consequently, pre-calculated databases have been devel-
oped for aggregate properties to save time in construct-
ing detailed aggregates and time-consuming optical simula-
tions (Liu et al., 2019; Romshoo et al., 2021). Using these
databases as look-up tables mitigates high computational
overhead in large-scale applications. Still, this approach is
limited by the range and step size of parameters chosen dur-
ing the database creation. Previous work has trained ma-
chine learning (ML) models on such databases (Luo et al.,
2018a; Lamb and Gentine, 2023) to overcome those limi-
tations. Once trained, those ML models provide predictions
for BC optical properties in a fraction of a second. Luo et
al. (2018a) trained a support vector regressor on a database
generated using MSTM simulations (Npp from 8 to 3000;
Df from 1.8 to 2.2). However, they did not consider coating
and used pure BC aggregates in their experiments. Their re-
sults also suggest that their model has considerable difficul-
ties when attempting to predict optical properties for physic-
ochemical properties not in the range of the training data.
Lamb and Gentine (2023) predicted optical properties of un-
coated BC fractal aggregate using a graph neural network
(Npp from 8 to 960;Df from 1.8 to 2.3). The input graph con-
tains one node for each primary particle and an edge between
two nodes if the distance between the corresponding primary
particles is less than some threshold. The authors generate
their ground truth database using the MSTM algorithm, but,
like Luo et al. (2018a), they do not consider any coating in
their experiments. The machine learning methods, training
parameters, performance metrics, and other details of Luo et
al. (2018a) and Lamb and Gentine (2023) are compared to
this study in Table B1.

This study demonstrates the use of a machine-learning-
based approach to predict the optical properties of BC ag-
gregates at various aging stages, including coating, which
is highly relevant for atmospheric aerosols. Combining
this ML-based approach with a laboratory dataset showed
that optical properties like single-scattering albedo (ω) and
mass absorption cross-section (MAC) can be predicted more
accurately than with conventional Mie-based methods. A
database of the optical and physicochemical properties of
BC has been built for this study, which is an extension of
the previous work by Romshoo et al. (2021). We trained
two ML methods on this database: kernel ridge regression
(KRR) and artificial neural networks (ANNs). Experiments
show that these models predict the optical properties of BC
aggregates regardless of their size, morphology, or compo-
sition at low computational costs and with high accuracy.
The dataset used to train our ML models is freely available
at Zenodo1. Furthermore, we published our ML models on

1https://zenodo.org/records/7523058 (last access: 23 January
2024)
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GitHub2 together with an easy-to-use wrapper script to al-
low integration into higher-level applications. Our approach
contributes to improving global climate model radiative forc-
ing estimates by parameterizing BC optical properties using
realistic fractal aggregate morphology.

The paper is structured as follows: Sect. 2 provides an
overview of the physical, chemical, and optical properties of
BC used in this study. Section 3 describes the machine learn-
ing techniques, including the data processing, machine learn-
ing algorithms, and evaluation procedures. In Sect. 4, the re-
sults demonstrate that realistic morphologies of BC can be
used to accurately predict optical properties at various stages
of aging. Section 5 discusses how the results compare to
laboratory measurements of BC, discussing the atmospheric
processing in detail. Potential limitations and challenges of
this work are presented in Sect. 6, and we end with the main
conclusions in Sect. 7.

2 Database of physicochemical and optical
properties of black carbon fractal aggregates

The database for the physicochemical and optical properties
of BC fractal aggregates has been designed to consider all
the possible aging stages of BC. The optical properties of
BC fractal aggregates are most sensitive to the change in par-
ticle size as they age (Matsui et al., 2018). The particle size is
reported as dependent parameters of the number of primary
particles (Npp), volume equivalent radii (ri and ro), and mo-
bility diameter (Dm). Furthermore, the chemical composition
and morphology also influence their optical properties. There
are constants related to the particle’s chemical composition,
such as density and refractive index. The optical properties
have been reported as efficiencies and cross-sections. Further
dependent optical properties have also been included. The
mass and volume of the BC particles were used for conver-
sion between various optical parameters. Furthermore, some
parameters, such as the wavelength, were related to the op-
tical model. The database was created using 6192 particles
of varying sizes, morphologies, and coating fractions. There
are 35 features in the database, which are categorized into
15 physicochemical features, 13 optical features, and 7 con-
stants. Sect. 1 contains an overview of all the features of the
database. In Table A1, the upper and lower bounds of the
main features are provided.

2.1 Physicochemical features of the database

The BC fractal aggregate’s physicochemical features include
size, mass, volume, morphology, and composition. Figure 2
gives some examples of the various BC aggregate particles
generated in this study. All the relevant properties provided

2https://github.com/jaikrishnap/Machine-learning-for-
prediction-of-BCFAs (last access: 11 July 2024)

in the study are discussed below, and their formulas are given
in Sect. A1.

2.1.1 Size

Primary particle size (a). The primary particle size of a
BC fractal aggregate is sensitive to the emission source or
flame condition. Biomass burning produces black carbon ag-
gregates with comparatively large primary particles, rang-
ing from 15 to 25 nm in radius (Chakrabarty et al., 2006).
Diesel engines produce aggregates whose primary particle
radii range between 10 and 12 nm (Guarieiro et al., 2017).
On the other hand, emissions from aircraft engines consist
of particles with radii as small as 5 nm (Liati et al., 2014).
There has also been research indicating that the size distri-
bution of primary particles is largely polydisperse (Bescond
et al., 2014). Liu et al. (2015) pointed out that, when consid-
ering a monodisperse and a polydisperse distribution of the
radius of the primary particle, their resultant radiative prop-
erties differ. However, Kahnert (2010b) showed that particle
light absorption is insensitive to the radii of primary parti-
cles when they are between 10 and 25 nm. The black carbon
fractal aggregates in this study have a monodisperse distribu-
tion of the radius of the primary particle. BC aggregates were
simulated with the inner diameter of the primary particle (ai)
fixed at 15 nm. In contrast, the outer radius of the primary
particle (ao), consisting of the organics, varied between 15.1
and 30 nm with the fraction of coating (fcoating) following
Eq. (A3) in Appendix A. The ao was 15, 15.1, 15.3, 15.5,
15.8, 16.2, 16.5, 16.9, 17.8, 18.9, 20.4, 22.4, 25.6, and 29
according to the value of the fcoating given in Table A1.

Number of primary particles (Npp). The number of pri-
mary particles determines the overall size of the particle. The
BC fractal aggregates were simulated by varyingNpp by 5 %,
starting from 1 up to 1000.

Volume equivalent radius (r). The volume equivalent ra-
dius is defined as the radius of a sphere having the same vol-
ume as the BC fractal aggregate, described in Eq. (A1) in the
Appendix. The outer volume equivalent radius (ro) was cal-
culated for the whole BC aggregate and for the coating using
ao. The inner volume equivalent radius (ri) was calculated
using ai for the BC aggregate without the coating, i.e., pure
BC.

Mobility diameter (Dm). The mobility diameter is the di-
ameter of a sphere with the same migration velocity in a con-
stant electric field as that of the BC fractal aggregate (Flagan,
2001). Mobility size spectrometers can measure Dm, which
is interesting for ambient and laboratory studies. We derived
Dm for the entire range of Npp using the conversion given by
Sorensen (2011); see Eq. (A2) in Appendix A.

Geometric cross-section (Cgeo). The geometric cross-
section is the area of the cross-section of a volume equivalent
sphere given as Eq. (A4) in Appendix A.
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Figure 1. Overview of the various features of the database for physicochemical and optical properties of black carbon fractal aggregates.
The features are arranged based on the three steps of constructing this database. As the legend at the bottom indicates, the features are further
divided into physicochemical properties, optical properties, and others.

Figure 2. Visualization of the various BC aggregate particles generated in this study. Fresh BC aggregates with no external coating are shown
in panels (a) to (c). Semi-aged BC aggregates with 50 % coating are shown in panels (d) to (f). Aged BC aggregates with 90 % coating are
shown in panels (g) to (i).

Atmos. Chem. Phys., 24, 8821–8846, 2024 https://doi.org/10.5194/acp-24-8821-2024
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2.1.2 Mixing state

Along with BC, a complex mixture of gas-phase organic
compounds is co-emitted during incomplete combustion,
forming a coating around the BC aggregates (Gentner et al.,
2017). As the BC aggregates stay in the atmosphere, they
transform from being hydrophobic to hydrophilic due to wa-
ter deposition attracting other foreign coatings (Bhandari et
al., 2019). The result is that BC particles undergo complex
changes in their morphology throughout atmospheric aging,
transforming from bare to partially coated aggregates and fi-
nally forming compact spherical structures embedded within
external coatings (Coz and Leck, 2011; Corbin et al., 2023).
Therefore, regarding BC as fractal aggregates is necessary to
represent all the different stages during their atmospheric ag-
ing process. The two parameters describing the mixing state
are as follows.

Fractal dimension (Df). The fractal dimension is a param-
eter for morphology that quantifies the folding of BC fractal
aggregates into spherical structures with increasing residence
time. The value of Df increases as an aggregate grows into
a more spherical frame. A Df of 3 is the maximum value
describing a complete sphere, whereas a Df of 1 represents
an early-stage open-chain-like aggregate. In the early stages
of the BC aging cycle, Df is usually between 1.5 and 1.9
(Wentzel et al., 2003). With increasing residence time in the
atmosphere, aggregates become more compact with a fractal
dimension of up to 2.2 (Wang et al., 2017). A humid environ-
ment or foreign coatings may further reshape the BC fractal
aggregates into more compact structures with a fractal di-
mension of up to 2.6 (Bambha et al., 2013). In this study, the
range of fractal dimensions was taken from 1.5 to 2.9 with a
step size of 0.2.

Fraction of coating (fcoating). The fraction of coating is the
percentage of coating volume compared to the total volume
of the BC fractal aggregate. To cover all aging stages, the
coating fraction was taken from 1 % to 90 % in increments
of 5 %. Note that the coating composition was constrained to
non-absorbing organics in this study. fcoating is dependent on
the ao and ai, described by Eq. (A3) in Appendix A.

2.1.3 Others

Volume. Three features in our database describe the volume
of a BC aggregate: (1) the total volume of the particle (Vtotal),
(2) the volume of the BC (VBC), and (3) the volume of the
organic coating (Vcoating).

Mass. Similarly, we include five features related to the
mass of the BC aggregate: (1) the total mass of the parti-
cle (mtotal), (2) the mass of the BC (mBC), (3) the mass of
the coating (mcoating), (4) the mass ratio of total mass to BC

mass
(
mtotal
mBC

)
, and (5) the mass ratio of coating mass to BC

mass
(
mcoating
mBC

)
. We computed those values fixing the density

of BC as ρBC= 1.8 gcm−3 (Park et al., 2004) and the density

of the organic coating as ρOC= 1.1 gcm−3 (Schkolnik et al.,
2007).

Wavelength (λ). The optical properties were calculated in
the visible spectrum, i.e., for λ ∈ {467nm,530nm,660nm}.

2.2 Optical model and the optical features of the
database

The tunable diffusion-limited aggregation (DLA) software
(Wozniak et al., 2012) was used to simulate bare BC frac-
tal aggregates of various physicochemical properties. BC
can exhibit a range of coating thicknesses and fractal di-
mensions at any point in the atmosphere, as evidenced by
images from transmission electron microscopy (TEM) an-
alyzed from different locations (Fu et al., 2012). Detailed
information and images from TEM analysis of BC parti-
cles have been provided in the Supplement. The coating
model used in this study is called the “closed-cell model”;
the results showed good comparability with the realistic
coating model (Kahnert, 2017). The MSTM calculates the
electromagnetic properties of a system that consists of a
set of spheres (Mishchenko et al., 2004; Mackowski and
Mishchenko, 2011). In this study, we use MSTM version 3.0
(Mackowski, 2013) written in Fortran to compute the elec-
tromagnetic properties for fixed and random orientations. For
every BC fractal aggregate, the MSTM algorithm presents an
orientational average of the combined spherical expansions
of each primary particle. The MSTM code is best suited to
calculating the optical properties of coated BC fractal aggre-
gates, since it consists of nested spheres. However, a limiting
condition in the MSTM is that primary particles cannot over-
lap. It was necessary to use this closed-cell coating model
due to the non-overlapping sphere limitation of the MSTM
code. A sophisticated coating model would be a good choice,
but it requires more complex scattering models, such as dis-
crete dipole approximation (DDA), which is computationally
expensive. The optical features of the database are given be-
low.

The real (n) and imaginary (k) parts of the refractive in-
dices for BC and coating (non-absorbing organics) at differ-
ent wavelengths (Kim et al., 2015) used in this study are sum-
marized in Table A2.

Optical efficiencies (Qext/abs/sca). The MSTM directly cal-
culates the extinction efficiency (Qext), absorption efficiency
(Qabs), and scattering efficiency (Qsca) of the BC aggregate.

Optical cross-sections (Cext/abs/sca). The optical cross-
section is the product of efficiency and geometric cross-
section; see Eq. (A5) in Appendix A.

Asymmetry parameter (g). The asymmetry parameter is
directly obtained from the MSTM, defined as the intensity-
weighted average of the cosine of the scattering angle
(Eq. A6 in Appendix A).

Single-scattering albedo (ω). The single-scattering albedo
is the ratio of scattering efficiency (Qsca) and extinction effi-
ciency (Qext), given as Eq. (A7) in Appendix A.

https://doi.org/10.5194/acp-24-8821-2024 Atmos. Chem. Phys., 24, 8821–8846, 2024
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Mass absorption cross-section (MAC). The mass absorp-
tion cross-section is calculated from the ratio of absorption
cross-section (Cabs) and mass (m) as detailed in Eq. (A8)
in Appendix A. The three kinds of MAC calculated in this
study are total mass absorption cross-section (MACtotal), BC
mass absorption cross-section (MACBC), and coating mass
absorption cross-section (MACcoating).

3 Machine learning method for predicting optical
properties of BC fractal aggregates

As mentioned in Sect. 1, several high-impact applications,
such as climate modeling (Jacobson, 2001), depend on accu-
rate optical properties for specific BC particles. Hence, we
propose to train an ML model on a pre-computed database
containing physicochemical and corresponding optical prop-
erties of BC fractal aggregates at several life cycle stages.
This model will learn patterns and structures within the data
and should generalize to unseen data values when used in
applications, as evidenced by the success of ML in several
domains (Radford et al., 2021; Ramesh et al., 2022). In this
work, we train kernel ridge regression and a multi-layer per-
ceptron on the database introduced in Sect. 2. The follow-
ing sections detail our data processing routines, models, and
evaluation procedures.

3.1 Data preprocessing

The subset of the database used as input was designed to in-
clude the critical parameters that influence the BC optical
properties. As mentioned in Sect. 2.1, not all physical prop-
erties in the database are independent, as some can be derived
from others using simple formulae. Including all properties
as inputs for the ML model will thus present it with redun-
dant information, increasing its computational overhead and
possibly even harming its performance. The first criterion to
narrow down the input parameters was broadly choosing the
independent physicochemical parameters representing parti-
cle size and mixing state. The fractal dimension (Df) was
used to represent the morphology of the BC fractal particles.
The chemical mixing state is represented by the fraction of
coating (fcoating). The wavelength (λ) is also an input param-
eter. There was an exception in selecting the input parameters
for particle size where we decided to keep four dependent
parameters of outer primary particle size (ao), number of pri-
mary particles (Npp), outer volume equivalent radii (ro), and
mobility diameter (Dm). The reason for including all four
size parameters is that, depending upon the focus of a study,
the user may have more than one parameter representing the
size. In this way, we could provide a more user-friendly pre-
diction script in which the user has a choice to enter one or
more of the four size parameters. Therefore, the subset of the
database’s properties as input for our ML models is λ, Df,
fcoating, ao, Npp, ro, andDm. The range of each input param-
eter used for designing the prediction algorithm is summa-

rized in Table A1. The selection of input parameters needed
while running the prediction script is λ; Df; fcoating; and at
least one among Npp, and ro, and Dm.

Similarly, a BC fractal aggregate’s optical properties are
also not independent. Thus, we make the ML model predict
only the following three properties and compute the rest us-
ing the formulae in Sect. A1: absorption efficiency (Qabs),
scattering efficiency (Qsca), and asymmetry parameter (g).

After feature selection, we transform input features using
the Box–Cox transformation (Box and Cox, 1964), where
we choose the transformation parameter by maximum-
likelihood estimation. We also tried to apply the Box–Cox
transformation to the target features, but, since this did not
improve results, we decided not to use any transformation
on the target features for the experiments that we report
in Sect. 4. To find a suitable regression model, we con-
ducted experiments with multiple ML-based models for re-
gression, including support vector regression (SVR), ridge
regression (RR), kernel ridge regression (KRR), and artifi-
cial neural networks (ANNs). Each model was evaluated us-
ing mean absolute error (MAE) on the sample dataset. The
results showed that kernel ridge regression and neural net-
works demonstrated better performance, especially in cap-
turing the non-linear relationships within the dataset. Hence,
we used KRR and neural networks for further analysis.

3.2 Kernel ridge regression

Given a labeled dataset of N ∈ N points{(
x(1),y(1)) ,(x(2),y(2)) , . . .,(x(N ),y(N ))}

⊂ RD ×RD′ ,
the regression problem consists of finding a func-
tion f : RD→ RD′ such that f

(
x(n))
≈ y(n) for all

n ∈ {1, . . .,N}. Kernel ridge regression (KRR) (Shawe-
Taylor and Cristianini, 2004) learns a function of the form
f (x)d =

∑N
n=1α

∗

ndk
(
x(n),x

)
, where k : RD ×RD→ R is a

positive semi-definite kernel function (Cortes and Vapnik,
1995) and α∗ ∈ RN×D′ is a solution of the following convex
optimization problem:

min
α∈RN×D′

λTr
(
αTKα

)
+‖YT −Kα‖2Fro , (2)

where K ∈ RN×N is the so-called kernel matrix de-
fined by Kij = k

(
x(i),x(j )); λ ∈ R+ is a trade-off pa-

rameter that controls the influence of the regulariza-
tion term, Y=

(
y(1), . . .,y(N ))T

∈ RN×D′ ; and ‖Z‖Fro :=√∑N
n=1

∑D′

d=1|znd|2 denotes the Frobenius norm. Note that
Eq. (2) has a closed-form solution:

α∗ := (K+ λIN )−1Y. (3)

A popular choice for the kernel function is the Gaussian or
radial basis function (RBF) kernel

k
(
x,x′

)
= exp

(
−γ ‖x− x′‖22

)
, (4)

Atmos. Chem. Phys., 24, 8821–8846, 2024 https://doi.org/10.5194/acp-24-8821-2024



B. Romshoo et al.: Optical properties of black carbon aggregates 8827

where γ ∈ R+ is a parameter called bandwidth and ‖x‖2 :=√∑D
d=1‖xd‖

2 denotes the L2-norm.
We use scikit-learn’s KRR implementation3 with the RBF

kernel for our experiments. This method has two hyperpa-
rameters that need tuning: the RBF kernel’s γ ∈ R+ and
λ ∈ R+ (see Eq. 2). We optimize hyperparameters using grid
search; please see Table B2 for the grid and Sect. 3.4 for more
detailed information on our evaluation procedure.

3.3 Artificial neural networks

Artificial neural networks (ANNs) constitute one of the
founding pillars of ML’s success during the last 10 years.
Originally, their design was inspired by the structure of neu-
rons inside the nervous system of several organisms (Rosen-
blatt, 1958). Most designs used in practice nowadays aban-
doned that idea, but the name remains.

In our experiments, we use a feed-forward ANN, some-
times also called a multi-layer perceptron (MLP). It consists
of an arbitrary number (L≥ 2) of layers, of which the first
is called the input layer, the last is called the output layer,
and all layers in between are called hidden layers. Each layer
consists of a certain number of neurons, which are connected
to the neurons in the previous and following layers.

Formally, we can define an MLP as a function f : RD→
RD′ that is composed of L− 1 layer functions, i.e., f (x) :=
f (L−1) (f (L−2) (. . .f (1)(x). . .

))
, where each f (l)

: RD(l)
→

RD(l+1)
represents a connection between two layers. They

are defined as f (l)(x) := σ (l)
(

W(l)x+ b(l)
)

, where W(l)
∈

RD(l+1)
×D(l)

,b(l)
∈ RD(l+1)

are learnable parameters and σ (l)

is a so-called activation function that is applied separately to
each element of its input vector. Common choices for σ (l)

include the rectified linear unit (ReLU) σ (l)(x)=max(x,0)
or the tanh function. We use the same activation function for
each layer except the last, where we always use the identity
function, i.e., σ (L−1)(x) := x. Finally, D(l)

∈ N denotes the
number of neurons in layer l, with D(1)

=D and D(L)
=D′.

The number of hidden layers, the number of neurons in
those hidden layers, and the activation function are usu-
ally chosen by a human before training a neural network.
Together, they define the architecture of the MLP. We can
learn values for the parameters W :=

(
W(1), . . .,W(L−1)) and

b :=
(
b(1), . . .,b(L−1)

)
by minimizing a so-called loss func-

tion L : RD′ ×RD′→ R over a dataset:

min
W,b

1
N

N∑
n=1

L
(
f (x(n)),y(n)

)
. (5)

When solving a regression problem, the most common
choice for L is the squared loss L(ŷ,y) := ‖y−ŷ‖22, but prac-

3https://scikit-learn.org/stable/modules/generated/sklearn.
kernel_ridge.KernelRidge.html (last access: 15 October 2024)

titioners sometimes use other loss functions as well, for ex-
ample, the Huber loss (Huber, 1964):

L(ŷ,y)

=

D′∑
d=1


1
2

(
yd − ŷd

)2 if |yd − ŷd | ≤ δ

δ

(
|yd − ŷd | −

1
2
δ

)
, otherwise,

(6)

where δ ∈ R+ determines the cut-off point between squared
and absolute loss and is usually chosen as δ = 1. The en-
tire procedure of adapting ANN’s parameters using a given
dataset is called training in the ANN literature.

Note that, in general, Eq. (5) is not convex and does
not have a closed-form solution. Hence, practitioners use
gradient-based optimization methods, i.e., variants of mini-
batch stochastic gradient descent (SGD) (Bottou et al., 2018),
to find a local minimum of Eq. (5).

For our experiments, we implemented an MLP using
Keras4. Section B3 contains the hyperparameter grid for the
MLP’s architecture and training procedure.

3.4 Evaluation procedure

In the case of kernel ridge regression, regularization is car-
ried out by the regularization constant λ with a chosen op-
timal value of 0.0001. For neural networks, we tested the
dropout technique to prevent overfitting. However, dropout
regularization did not show notable improvements in the
model’s generalization. After preprocessing, we split the
database into a training set and a test set. Models perform
their training procedures and hyperparameter tuning on the
training set only, and we then evaluate the model’s perfor-
mance exclusively on the test set. We consider three different
methods of performing this split – each one intends to mea-
sure another aspect of the model’s performance.

1. Random split. We randomly assign each point in the
database to either the training set or the test set. Note
that we use 30 % of the data for the test set and the rest
for the training set. Using this split, the training test’s
and the test set’s feature distribution should be similar.
Thus, measuring the performance on the test set pro-
duces a general measure of the model’s capability to
learn the underlying patterns in the data.

2. Interpolation split. Here, we choose a feature and a
certain range in the middle of that feature’s range and
choose all data points within that range as the test set. To
achieve high test scores, the model must be capable of
interpolating predictions for data points it has not seen
during training. Table B4 shows the features and ranges
used for the two interpolation splits. The split was tested
forDf using training data ofDf= [1.5,2.1)∪ (2.5,2.9],

4https://keras.io/ (last access: 15 October 2024)
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whereas training data of [0,35)∪ (50,90] were used for
testing fcoating.

3. Extrapolation split. Similarly to the interpolation splits,
we also consider choosing a test set at the boundaries of
certain features. This measures the model’s extrapola-
tion capabilities. Table B5 shows the features and ranges
used for the four different extrapolation splits. The two
splits for testing Df used training data of [1.5,2.5) and
(1.9,2.9]. The other two splits for fcoating used training
data of [0,75) and (15,90].

We use the mean absolute error (MAE) as our primary per-
formance metric: given a dataset D ⊂ RD×RD′ and our pre-
diction model f : RD→ RD′ , we can compute the MAE as
follows:

MAE(f,D)=
1
|D|

∑
(x,y)∈D

‖y− f (x)‖1 , (7)

where ‖z‖1 :=
∑D′

d=1‖zd‖ is the L1-norm.
Regardless of the split strategy, we split the training set

once more into a train and a validation set using the random-
split method during the training phase. Here, we again use
30 % of the data for validation and the remaining 70 % for
training. Our models then train on the train set for all possible
hyperparameter configurations defined in the grid, and we
record the MAE on the validation set for each combination.
Finally, we choose the combination with the lowest MAE and
evaluate the corresponding model’s MAE on the test set.

4 Performance of the machine learning models

The error distributions for the ML methods are presented
in Fig. 3 for different experimental scenarios of the data-
splitting with respect to the parameter fractal dimension. The
median error is close to zero for the random and interpolation
splits, meaning our models do not generally over- or underes-
timate any optical value. The distribution of errors (excluding
outliers) for the random and interpolation splits is relatively
narrow, indicating that most test points have minor errors. In
the extrapolation case, both ML models exhibit bias, such as
overestimation of Qsca by ANN and overestimation of g by
KRR. However, the mean absolute error, even for the extrap-
olation split, is 1.5 % to 8 %, which is still within reasonable
limits. Luo et al. (2018a) showed that their model has consid-
erable difficulties when attempting to predict optical proper-
ties for parameters not in the range of the training data. How-
ever, adding a few data points to extend any parameter range
significantly improved the prediction ability of the ML algo-
rithm. The interpolation and extrapolation results are similar
if training data and test data are split according to the param-
eters of the coating fcoating and particle size Dm. The Ap-
pendix provides a more detailed discussion about the inter-
polation and extrapolation results for parameters of fcoating

andDm in Figs. C1 and C2, respectively. Overall, the narrow
boxplots of the errors in the random split demonstrate the
effectiveness of the ML algorithms in predicting the optical
properties of coated BC fractal aggregates.

The MAEs for our experiments are reported in Table 1.
In the case of the random split, both ML models are pretty
accurate, with the percentage of MAEs ranging from 0.1 %
to 0.4 % when compared to the average feature range. Lamb
and Gentine (2023) reported mean absolute percentage errors
(MAPEs) between 2 % and 9 % for their optical predictions,
whereas Luo et al. (2018a) reported relative errors between
1 % and 5 %. The MAPEs are biased to the magnitude of the
true value in the denominator. The same MAE can result in
a significantly different MAPE depending on the magnitude
of true value they are divided with. In our view, the predic-
tion error should be weighted equally for both points; there-
fore, we chose the MAE as our error metric. Lamb and Gen-
tine (2023) also discussed how the bias of MAPEs resulted
in higher values of nearly 70 % for smaller particles. Error
distributions for the ML methods shown in Fig. 3 are pre-
sented in terms of MAPE in the Supplement. The comparison
of the two ML methods for random split in Table 1 showed
that KRR generally results in a lower MAE for predictions of
Qabs and Qsca. Contrary to this, ANN could predict g with
a lower MAE. In line with expectations, the MAE for the
splits based on interpolation and extrapolation is somewhat
higher. The errors, however, are still regarded as relatively
minor compared to the features’ range. The extrapolation and
interpolation experiments were used to test the performance
of the ML algorithm under various scenarios of data avail-
able for training. The ML models we publish for use in ap-
plications were trained on the entire dataset using the best
parameters from the random-split experiments. As a result,
the errors should be similar to those we report for the ran-
dom split here.

A one-to-one comparison was performed between the esti-
mates and true values to understand better how the ML meth-
ods predict optical properties. Figure 4 compares the esti-
mated and true values for the wavelength of 660 nm when
the training and test data are randomly split. The values of
Q̂abs, Q̂sca, and ĝ obtained from the KRR and ANN meth-
ods are compared to the true values derived from the MSTM
method. The performance of both ML methods was stud-
ied for BC fractal aggregates with three representative mor-
phologies and coating fractions (Df= 1.5 and fcoating= 0 %;
Df= 2.1 and fcoating= 50 %; Df= 2.7 and fcoating= 90 %).
There was reasonable agreement between KRR and ANN for
all sub-cases. Therefore, the machine learning models appear
applicable in a broader context. The model does not over-
fit with different coating fractions and complex morpholo-
gies. The one-to-one comparison results agree with the re-
sults from Lamb and Gentine (2023), which also showed rea-
sonable predictions of Q̂ext, Q̂sca, Q̂abs, and ĝ across the en-
tire range of size parameters.
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Figure 3. Boxplots summarizing the error between the predicted value (Q̂abs, Q̂sca, ĝ) and the true value for three optical properties.
The training data for the interpolation split consist of fractal dimensions in Df = [1.5,2.1)∪ (2.5,2.9], whereas the extrapolation split uses
Df = [1.5,2.5). The lower and upper hinges of the boxplot represent the 25 % and 75 % quantile of the observations, respectively. Note that
the outliers significantly reduced the visualization of the boxplots and were therefore omitted from the figures. However, all the outliers are
considered in the training data and error evaluation.

Table 1. Mean absolute errors of the predicted optical properties for different experiments. The training data for the interpolation split consist
of fractal dimensions in Df = [1.5,2.1)∪ (2.5,2.9], whereas the extrapolation split uses Df = [1.5,2.5).

Optical property Random split Interpolation split Extrapolation split Feature range

KRR ANN KRR ANN KRR ANN

Qabs 0.0022 0.0039 0.0122 0.0287 0.0329 0.0354 0–2
Qsca 0.0019 0.0031 0.0224 0.0466 0.0393 0.0939 0–2
g 0.0044 0.0038 0.0429 0.0289 0.0879 0.0485 0–1

During their lifetime, BC fractal aggregates undergo com-
plex changes in size, composition, and morphology due to
atmospheric processing. Figure 5 shows a visualization of
how the ML predictions compare to the MSTM reference for
different aging scenarios for BC fractal aggregates. It com-
pares the estimated and true values of the optical properties
for the random split. The models trained using a random split
of training data generally show a good agreement with the
ground truth data over the entire range of Dm. Overall, the
KRR predictions are very close to the true values throughout
the entire range of Dm for all nine cases in Fig. 5. The ANN
predictions slightly deviate from the true value for cases with

larger fcoating. For example, in the case of fcoating= 90 % and
Df= 1.5, ANN underestimates the Q̂abs. Lamb and Gentine
(2023) showed comparatively more deviation in the predic-
tions for larger pure BC fractal particles than smaller parti-
cles. In this study, KRR and ANN predictions were consis-
tently good for pure BC fractal particles (first row in Fig. 5),
although we could observe deviations from the true values
for large and aged coated particle predictions (last row in
Fig. 5). Appendix C3 contains plots similar to Fig. 5 for
the interpolation and extrapolation split. In general, errors
increase with increasing aggregate sizes for the interpola-
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Figure 4. Comparison of the predicted optical properties with their true values when the ML models are trained on a random subset of data.
The data points for predicted optical properties correspond to KRR and ANN, as shown by the legend on the top right. The blue line in each
panel of the figure corresponds to the one-to-one line between the x axis and the y axis.

tion and extrapolation splits. The ML models we publish
are based upon random-split experiments, and Fig. 5 shows
how well both the ML methods provide accurate estimates of
the optical properties of BC fractal aggregates at each aging
stage.

Apart from making accurate predictions, our ML models
should also be fast to provide a benefit over time-consuming
simulations. Hence, we recorded the time needed to train on
the entire training dataset and the time to make a single pre-
diction in Table 2. As a result, the prediction time of both
algorithms is less than 1 ms, which is a drastic improvement
compared to the MSTM method, which can take up to 24 h,
depending on the particle. It should be noted that the predic-
tion time for ANN does not depend on the input data. Train-
ing the models takes comparatively longer, but it is usually
done offline. Therefore, it is irrelevant for users using the pre-
trained models we provide for their applications (see section
“Code availability”).

Table 2. Training time for 18 526 samples in the dataset and predic-
tion time per sample in seconds. Values were recorded on a machine
with Intel(R) Core(TM) i7-9750H CPU, 8 GB RAM, and NVIDIA
GeForce GTX 1650 GPU.

ML model Training time (s) Prediction time (s)

KRR 33.3 0.0006
ANN 1770 0.0005

5 Comparison to black carbon laboratory
measurements

Incorporating the fractal morphology of BC in global model
calculations is essential, as the BC radiative forcing can in-
crease up to 61 % compared to a more compact and aged
particle (Romshoo et al., 2021). In the atmosphere, BC frac-
tal aggregates are primarily found in conjunction with other
aerosol types, such as organic carbon. It is therefore more
relevant to predict the optical properties of BC fractal aggre-
gates with organic coatings for atmospheric applications. To
give an example of applying the ML algorithm to real-world

Atmos. Chem. Phys., 24, 8821–8846, 2024 https://doi.org/10.5194/acp-24-8821-2024



B. Romshoo et al.: Optical properties of black carbon aggregates 8831

Figure 5. Absorption efficiency (Qabs) at a wavelength of 660 nm predicted using KRR and ANN for nine representative BC aggregates
with a variety of morphologies (represented by Df) and coatings (represented by fcoating). Both models were trained on a random split of
training data.

atmospheric research, we predicted the optical properties of
laboratory-generated soot for experiments described in Ta-
ble 1 of our previous study (Romshoo et al., 2022).

The ML-based predictions were compared to the averages
of each experimental case, represented by one data point in
Fig. 6. The ML results correspond to KRR, the default al-
gorithm used in the prediction script. The details of the lab-
oratory experiments and instrumentations are given in Ap-
pendix D. Figure 6a compares the single-scattering albedo
(ω̂ML) predicted by the ML algorithm with the measured ω
from the laboratory experiment. The ω̂ML predictions are in
good agreement with the measured results for a range of
forganics going up to 55 %. The uncertainty of nearly 10 %
in the measured SSA (Weber et al., 2022) is well repre-
sented within the 95 % confidence band of the ML-based
predictions. On the contrary, Fig. 6b demonstrates that, if the
conventionally used Mie core–shell theory is used, the pre-
dictions are overestimated by a large margin. The ML pre-
dictions of MAC are also compared to the measured MAC
and the Mie-based predictions, whose results are given in

Fig. D1 of Appendix D. The predictions ˆMACML were found
to be less sensitive to the change in Dmob. Due to a lack
of monodisperse mass measurements, comparing the predic-
tions and measured values is not so straightforward. How-
ever, one can see that the discrepancies in the ML-based
predictions of MAC are comparatively lower than the Mie-
derived MAC values.

The sensitivity in the predicted MAC and SSA as a func-
tion of change in input parameters, such as the Dmob, Df,
fcoating, and a, have been extensively discussed by Romshoo
et al. (2021, 2023b) and Smith and Grainger (2014). The rec-
ommendations given by the above studies have been adapted
for obtaining the results in Figs. 6 and D1 and are discussed
in detail in Appendix D. For future applications, it is recom-
mended that ambient or laboratory datasets with a resolution
of more than 30 min are used to minimize the interference
of instrumental uncertainty due to noisy data. Similarly, for
ambient or laboratory closure studies, it is recommended that
the model output be compared with averaged optical obser-
vations.
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Figure 6. Single-scattering albedo ω of coated BC particles at varying forganics, generated in a laboratory study using different miniCAST
set points (Romshoo et al., 2022). Panel (a) compares the ω̂ML with the measured ω from the laboratory experiment. The colored dots in the
figure show the results from the MSTM-based database used for training the ML algorithm. Panel (b) compares the ω̂Mie with the measured
ω. The ML results correspond to KRR, the default algorithm used in the prediction script. Error bars along the x axis show the uncertainty
in the measured ω. The colored dots are the ω from MSTM simulations. The black line represents a linear regression equation shown in
the upper-left corner, with the coefficient of determination (R2) in the upper-right corner of each panel. The gray area represents the 95 %
confidence level interval for predictions.

Based on the success of the ML-based approach in predict-
ing the optical properties of coated BC particles, it has great
potential for future development to predict the optical prop-
erties of mixtures of BC and other aerosols. Because such a
study would be exhaustive, we initially tested this approach
on BC fractal aggregates and organic coatings to determine
its effectiveness. Further research is necessary to develop an
ML algorithm with features representing different morpho-
logical shapes and other chemical compositions, such as in-
organics. In the long run, the goal should be to develop an
ML algorithm that can be used to integrate all atmospheric
aerosols into global climate models. To develop such a uni-
versal algorithm for all atmospheric aerosols, we must in-
corporate the conventional spherically shaped particles into
the current prediction algorithm to represent the fraction of
aged aerosols. In this study, due to the experimental design
of Romshoo et al. (2022), we could only test the ML-based
prediction algorithm for particles with forganics of less than
65 %. The extension of the current algorithm to include more
parameters also demands closure studies using more datasets
of laboratory and ambient measurements.

6 Limitations and future challenges

The experiments conducted for this study show that our ML
methods predict the optical properties of BC fractal aggre-
gates with high accuracy as long as they are trained on suf-
ficient data. However, the interpolation and extrapolation
experiments show that the performance of both KRR and
ANN significantly deteriorates when entirely removing cer-
tain ranges from the training data. This suggests that our
models possess only limited generalization capabilities. Still,
it should be noted that we train the models for practical use
on the entire physically feasible range of Df and fcoating.

Hence, those models will not have to extrapolate for any rea-
sonable inputs.

Our models treat the wavelength λ as a continuous vari-
able, meaning they should support computing optical prop-
erties at wavelengths that are not part of the training data.
The prediction script can predict the optical properties well
for the range between 467 and 660 and points close to the
upper and lower limit. However, we did not test the models’
generalization capabilities about the wavelength, since omit-
ting just one wavelength from the training data would reduce
the dataset size by one-third. Generating more ground truth
data for other wavelengths requires refractive indices of BC
and organics for that specific wavelength, which are unavail-
able in the literature. Even if they were available, it would be
time-consuming, as MSTM simulations can take a long time
to compute. Nevertheless, examining the models’ generaliza-
tion capabilities on other wavelengths in the future would be
interesting.

In this study, the ML-based prediction algorithm is devel-
oped using training data of Npp up to 1000, which corre-
sponded to particles with maximum Dmob of 1561 nm de-
pending on the fcoating. This range of particle sizes was cho-
sen while designing the database, considering the realistic
size of BC-containing particles in the atmosphere. TEM anal-
ysis has shown a high probability that the BC-containing
particles less than 1500 nm will be fractal (Adachi et al.,
2016; Wang et al., 2017). The ML algorithm developed in
this study, which is based on a close-shell coating model,
is suitable for such particles smaller than 1500 nm. However,
when aerosol particles grow larger, the mass of BC decreases
significantly compared to the mass of coating (Adachi et al.,
2016). For such cases of aged BC, using the conventional
core–shell-based spherical morphology is appropriate. This
is why we limited our training data range for particle size to
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1561 nm. However, as demonstrated by Luo et al. (2018a),
adding a few points in the training data significantly im-
proves the extrapolation efficiency of machine learning mod-
els. Furthermore, some studies show that the optical prop-
erties are not sensitive to the change in the primary particle
size a. Therefore, we fixed the ai to 15 nm and changed ao
from 15.1 to 29 depending on the fcoating. Similarly to the
parameters related to a particle size such as Npp, ro, andDm,
adding a few data points to the ai or ao can help optimize the
extrapolation ability of the ML-based prediction algorithm.
Although future studies can extend the model’s extrapolation
ability, the particle size range of the current prediction al-
gorithm covers the physically feasible cases for BC fractal
aggregates.

Both KRR and ANN provide only a single-point predic-
tion for each input. In particular, their estimate does not
quantify any uncertainty in the prediction. Bayesian ML
methods such as Gaussian process regression (Rasmussen
and Williams, 2005) can provide information about the un-
certainty of a prediction via credible intervals as they return
an entire probability distribution instead of a single-point es-
timate. Thus, it would be interesting to examine Bayesian
ML for the prediction of BC fractal aggregates’ optical prop-
erties. This method could be further developed for reporting
the predictions for an ensemble of BC-containing aerosols
with various physicochemical properties. However, apply-
ing them directly to our problem is not trivial, since the as-
sumptions made by their statistical model (e.g., target vari-
ables follow a multivariate Gaussian distribution) are often
violated in practice. Therefore, we leave the application of
Bayesian ML to the BC aerosol problem to future work.

Atmospheric BC can exhibit a wide range of morpholo-
gies showing diversity at different locations (Sedlacek et al.,
2022). It was observed that aged transported soot can re-
tain its fractal morphology 500 to 1000 km downwind of
emission sources (Sun et al., 2020). The current state of
the art for representing atmospheric soot particles focuses
on spherical morphology (Aquila et al., 2011; Stier et al.,
2005; Bauer et al., 2008). The model provided in this study
was designed to simulate the optical properties for the entire
BC life cycle, capturing the transition between fresh frac-
tal and aged spherical particles. Furthermore, the calibra-
tion of light-absorption measurement devices is mostly done
with fresh soot. We can link to atmospheric-relevant absorp-
tion by simulating mass absorption cross-sections and light-
absorption enhancement factors. The coating model used in
this study is called the “closed-cell model”, and the results
showed good comparability with the realistic coating model
(Kahnert, 2017). A more sophisticated coating model would
be a good choice, but it requires more complex scattering
models such as discrete dipole approximation (DDA), which
is computationally expensive. With the DDA method, gen-
erating elaborate datasets for training ML algorithms is not
feasible. We provide a method that predicts the optical prop-
erties of a wide range of ambient soot particles with high

accuracy. Therefore, the results of this study are valuable for
the simulation of realistic scenarios, despite the model limita-
tions. There is scope for future studies to extend such an ML-
based approach using other morphological models of BC and
coating positions.

7 Conclusions

The present study demonstrated that the predictions of BC
optical properties can be improved by incorporating their re-
alistic morphologies. Unlike the computationally intensive
simulations of complex scattering models, the ML-based ap-
proach accurately predicts optical properties in fractions of
a second. In conjunction with a laboratory dataset, it was
shown that optical properties like single-scattering albedo ω
and mass absorption cross-section (MAC) can be predicted
with greater accuracy than with a Mie-based approach. Us-
ing an extensive database for the physicochemical and optical
properties of BC fractal aggregates, we trained two ML mod-
els – KRR and ANN – that can be used to predict the optical
properties of coated BC aggregates at all aging stages. In par-
ticular, we could accurately predict the optical properties in
the visible spectrum for BC fractal aggregates of any desired
size, shape, and fraction of organic coating. Thus, this work
illustrates the use of this realistic approach in real-world at-
mospheric research applications.

We summarize the key conclusions of the study as follows.

– Active investigation area. BC is a highly relevant and
active field of research, as it affects the climate system
and human health. Global climate models require infor-
mation about the optical properties of BC to simulate
their radiative forcing. BC research will benefit from us-
ing this ML algorithm to generate the optical properties
of BC based on more realistic fractal aggregates.

– Broader application. The ML algorithm can predict the
optical properties absorption efficiency, scattering effi-
ciency, and asymmetry parameter for a wide range of
BC fractal aggregates with physiochemical properties
specified by particle size, morphology, and coating frac-
tion. Previous studies did not consider the critical pa-
rameter of coating fraction in their ML models. There-
fore, even though we discuss the results in terms of the
number of primary particles (Npp), the user is addition-
ally able to specify the particle size in terms of volume
equivalent diameter (Rv) or mobility diameter (Dm) de-
pending on the numerical or in situ-based nature of the
study. We tested the use of the ML algorithm for pre-
dicting the scattering properties of laboratory-generated
soot particles and found that it was well in agreement
with the measured values.

– User-friendly. We published a simple Python script that
allows users to predict optical properties for BC frac-
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tal aggregates using our pre-trained models at GitHub5.
The user must specify the physicochemical properties of
a BC fractal aggregate as a .csv file, from which the pre-
diction script generates the corresponding optical prop-
erties using either KRR or ANN.

– Low computational and energy costs. Our ML models
have a low computational cost, taking fractions of a sec-
ond to provide the predictions on a run-of-the-mill desk-
top PC. The same optical properties could take more
than 24 h to be generated when using a T-matrix opti-
cal model. Using such ML algorithms will thus reduce
the energy expenditures associated with running optical
models on supercomputers.

– Citability and reproducibility. The dataset used for de-
veloping the ML algorithm is available for download at
Zenodo (Romshoo et al., 2023b). Furthermore, the base-
line experiments can be reproduced with the code that
is openly available on GitHub6.

In summary, we demonstrated the feasibility of incorporat-
ing the realistic morphology of BC to improve the predictions
of optical properties using a first-of-its-kind machine learn-
ing approach. This ML-based approach constitutes a signifi-
cant step forward in BC aerosol research in two ways: firstly,
it is the first attempt to provide optical properties of coated
BC fractal aggregates at different stages of atmospheric ag-
ing using realistic representations. Secondly, this approach
significantly reduces the heavy computational costs of using
previous complex scattering models. Previous studies of BC
avoid using complex scattering theories because of the high
computational costs and prefer the more simplistic Mie the-
ory. This research will be further developed in the future with
the final goal of accurately predicting the optical properties
of any mixture of atmospheric aerosols. We will investigate
if the spherical core–shell model can be combined with the
fractal aggregate-based ML model to distribute the weigh-
tage of light-absorption predictions for an ensemble of atmo-
spheric BC aerosols with variable aging stages.

Appendix A: Details about the physiochemical and
optical properties of BC fractal aggregates

A1 Formulae

The volume equivalent radius (r) is defined as the radius of a
sphere having the same volume as the BC fractal aggregate,
given as

r = a 3
√
Npp , (A1)

5https://github.com/jaikrishnap/Machine-learning-for-
prediction-of-BCFAs (last access: 11 July 2024)

6https://github.com/jaikrishnap/Optical-properties-of-black-
carbon-aggregates (last access: 11 July 2024)

where Npp is the number of primary particles and a is the
radius of a single primary particle. The outer volume equiv-
alent radius (ro) was calculated for the whole BC aggregate
and for the coating using ao. The inner volume equivalent ra-
dius (ri) was calculated using ai for the BC aggregate without
the coating, i.e., pure BC.

The mobility diameter of a sphere (Dm) was defined by
Sorensen (2001) as

Dm = 2ao

(
10−2x+0.92

)
Nx

pp , (A2)

whereNpp is the number of primary particles; ao is the radius
of a primary particle with coating; and x is the mobility mass
scaling exponent given by x = 0.51Kn0.043, 0.46<x < 0.56.
Kn is the Knudsen number, which is the ratio of the molec-
ular free path to the agglomerate mobility radius. The error
estimated in the mobility mass scaling exponent (x) is±0.02.

The relationship between the outer radius of the primary
particle (ao), the inner radius of the primary particle (ai), and
the fraction of organics (forganics) is given as

a3
o =

(
1− forganics

)
ai

3. (A3)

The geometric cross-section (Cgeo) is the area of the cross-
section of the volume equivalent sphere, given as

Cgeo = πr
2
o . (A4)

The optical cross-sections (Cext/abs/sca) are defined as
the product of efficiency (Qext/abs/sca) and geometric cross-
section (Cgeo) as

Cext/abs/sca =Qext/abs/scaCgeo. (A5)

The asymmetry parameter (or asymmetry factor) g is defined
as the average cosine of the scattering angle theta θ :

g = 〈cosθ〉. (A6)

The single-scattering albedo (ω) is derived from the ratio
of the scattering efficiency (Qsca) to the extinction efficiency
(Qext) as

ω =
Qsca

Qext
. (A7)

The total mass absorption cross-section (MACTotal), BC
mass absorption cross-section (MACBC), and coating mass
absorption cross-section (MACCoating) were calculated from
the ratio of (Cabs) with total mass (mTotal), BC mass (mBC),
and coating mass (mCoating), respectively, as

MACtotal/BC/coating =
Cabs

mtotal/BC/coating
. (A8)
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A2 Range of features and constants

Table A1. Features from the database of physicochemical and optical properties of black carbon fractal aggregates. For independent features,
the list of values is provided. The features for which the range has provided correspond to dependent features.

Parameter Values/range

Wavelength (λ) 467, 530, 660

Fractal dimension (Df) 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.9

Fraction of coating (fcoating) 0, 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90

Primary particle size (ao) 15.1–29

Number of primary particles (Npp) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 29, 31, 34, 36, 39, 42,
45, 50, 55, 60, 65, 70, 75, 85, 95, 105, 115, 125, 140, 155, 170, 185, 200,

225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1000

Outer volume equivalent radius (ro) 12–290

Inner volume equivalent radius (ri) 12–150

Mobility diameter (Dm) 17–1561

Extinction cross-section (Cext) 0.043–3.02

Absorption cross-section (Cabs) 0.041–1.75

Scattering cross-section (Csca) 0.00038–1.82

Asymmetry parameter (g) 0.00036–0.91

Single-scattering albedo (SSA) 0.00030–0.776

Mass absorption cross-section (MAC) 3.89–24.5

Table A2. Refractive indices (both real and imaginary parts) of BC
and organics at various wavelengths in the visible range (Kim et al.,
2015).

Parameter Wavelength (nm)

467 530 660

nBC 1.92 1.96 2.00
kBC 0.67 0.65 0.63
ncoating 1.59 1.47 1.47
kcoating 0.11 0.04 0.00
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Appendix B: Details about the machine learning
methods

Table B1. Previous machine learning studies.

Feature Lamb and Gentine (2023) Luo et al. (2018) This study

Machine learning method Graph neural network (GNN) Support vector model (SVM) Kernel ridge regression (KRR),
Artificial neural network (ANN)

Particle generation Cluster–cluster algorithm Tunable diffusion-limited algorithm Tunable diffusion-limited algorithm

Wavelength 450, 650 nm 500–3000 nm 467, 530, 660 nm

Outer primary particle size (ao) 7–104 nm 40 nm 30–60 nm

Number of primary particles (Npp) 8–960 8–3000 1–1000

Fractal dimension (Df) 1.8–2.3 1.8–2.2 1.5–2.9

Fraction of organics (forganics) 0 % 0 % 0 %–90 %

Predictors Qext, Qsca, Qabs, g Qext, Qsca, Qabs, g Qext, Qsca, Qabs, g, MACBC, SSA

Performance metrics Mean absolute percentage error (MAPE) Relative error Mean absolute error (MAE)

Comparison to measurements No No Yes

Table B2. Hyperparameter values for the kernel ridge regression (KRR) experiments along with the optimal value for each parameter.

Parameter Values Optimal value

RBF kernel bandwidth (γ ) 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 0.75, 1 0.5
Regularization coefficient (λ) 0.0001, 0.001, 0.01, 0.05, 0.5, 0.75, 1 0.0001

Table B3. Hyperparameter values for the multi-layer perceptron (MLP) experiments along with the optimal value for each parameter.

Parameter Values Optimal value

Number of layers (L) 3, 4, . . ., 12 6

Number of neurons (D(l)) 1, 8, 16, 32, 64, 128, 256, 512, 1024 256

Activation function (σ (l)) id, ReLU, Sigmoid1, tanh, ELU (Clevert et al., 2016), Leaky ReLU (Maas et al., 2013) ReLU

Optimizer SGD, Adam (Kingma and Ba, 2015), RMSProp2 Adam

Learning rate 0.001, 0.005, 0.075, 0.01, 0.05, 0.075, 0.1 0.001

Loss function (L) MSE, MAE, Huber, LogCosh3 MSE

1 https://keras.io/api/layers/activations/#sigmoid-function (last access: 11 July 2024).
2 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (last access: 11 July 2024).
3 https://keras.io/api/losses/regression_losses/#logcosh-class (last access: 11 July 2024).

Table B4. Training range and test range of the features during the
interpolation split.

Feature Range Test range Training range

Df [1.5,2.9] [2.1,2.5] [1.5,2.1)∪ (2.5,2.9]
fcoating [0,90] [35,50] [0,35)∪ (50,90]

Table B5. Training range and test range of the features during the
extrapolation split.

Feature Range Test range Training range

Df [1.5,2.9] [2.5,2.9] [1.5,2.5)
Df [1.5,2.9] [1.5,1.9] (1.9,2.9]
fcoating [0,90] [75,90] [0,75)
fcoating [0,90] [0,15] (15,90]
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Table B6. Maximum errors of different splits for their test sets.

Optical property Random split Interpolation split Extrapolation split Feature range

KRR ANN KRR ANN KRR ANN

Qabs 0.17 0.34 0.38 0.34 0.23 0.21 0–2
Qsca 0.14 0.17 0.32 0.44 0.55 1.42 0–2
g 0.14 0.22 0.46 0.44 0.42 0.32 0–1

Appendix C: Additional figures

C1 Error boxplots

Figure C1. Error between the predicted and true values for three optical properties. The residuals are shown when models are trained on
data with different ranges of fractions of coating (fcoating). The residuals for both KRR and ANN predictions are presented in each panel.
The lower and upper hinges of the boxplot represent the 25 % and 75 % quantile of the observations, respectively. Note that the outliers
significantly reduced the visualization of the boxplots and were therefore omitted from the figures. However, all the outliers are considered
in the training data and error evaluation.
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Figure C1 shows the residuals for the machine learning
methods for the three splits related to the feature fcoating:
random, extrapolation (training data fcoating = [0,75)), and
interpolation (training data fcoating = [0,35)∪(50,90]. When
the training and testing data are randomly split, we see that
residual errors are concentrated near zero for all intervals of
fcoating similar to Fig. 3. The errors from KRR and ANN are
comparable in the random split. For the case of interpola-
tion split, the errors from both the ANN and KRR models
are comparatively higher for all the three optical properties,
i.e., Qabs, Qabs, and g. It was noted in the errors from the
interpolation split that KRR performs better in predicting the
Qabs, whereas ANN performs better in g predictions. The
errors in the Qabs, Qabs, and g from the extrapolation split
were the highest. The error is largest for the predictions when
fcoating= 90, which is the case farthest away from the train-
ing data during an extrapolation split. The relative perfor-
mance of ANN and KRR are comparable to those observed
in the interpolation split.

Figure C2. Error between the predicted value (Q̂abs, Q̂sca, ĝ) and the true value for three optical properties for various cases of mobility
diameter (Dmob). The lower and upper hinges of the boxplot represent the 25 % and 75 % quantile of the observations, respectively. Note
that the outliers significantly reduced the visualization of the boxplots and were therefore omitted from the figures. However, all the outliers
are considered in the training data and error evaluation.

Atmos. Chem. Phys., 24, 8821–8846, 2024 https://doi.org/10.5194/acp-24-8821-2024
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C2 Point-wise comparison of predicted and true values

Figure C3. Comparison of the predicted optical properties with their true values for the interpolation split when the ML models are trained on
data with boundary fractal dimensions (Df= 1.5, 1.7, 1.9, 2.7, 2.9) and when they are tested on data with inner fractal dimensions (Df= 2.1,
2.3, 2.5).

Figures C3 and C4 compare the machine learning predic-
tions to their true values for the cases where the data were
excluded while training the ML model. In Fig. C3, ML pre-
dictions were made after removing the intermediate values
of the Df feature (i.e., 2.1, 2.3, 2.5) from the training data.
It was observed that the predictions Q̂abs fitted well with the
true values, especially for the KRR method. However, the
predictions Q̂sca fluctuate from the true value Qsca as they
approach maximum values above 1. For the predictions ĝ,
the ML methods ANN and KRR perform slightly differently.
In the case of extrapolation split, as shown in Fig. C4, the
predictions deviated from their true values for Df = 2.7,2.9,
since the ML models did not see the data. However, we can
see that, for Df = 2.5 (first row), all the predictions are in
better agreement with their true values, since it was present
in the training data. The predictions Q̂abs and Q̂sca showed

reasonable agreement in the case of Df= 2.7. The predic-
tions Q̂sca for the unseen Df features were observed to be
smaller than their true values. The predictions Q̂abs, Q̂sca,
and ĝ are most inconsistent with their true values when
Df= 2.9, which is the case farthest away from the training
data. Therefore, it is demonstrated that there is comparatively
higher uncertainty for predicting optical properties for fea-
tures out of the range of the training data. Furthermore, the
performance of KRR and ANN varied for different optical
properties in such cases of interpolation and extrapolation
split. The interpolation split performed better for predicting
the optical properties out of the range of the training data.
Therefore, adding more data in the training set for boundary
values to let them interpolate would result in better predic-
tions.
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Figure C4. Comparison of the predicted optical properties with their true values for extrapolation split when the ML models are trained
on data with smaller fractal dimensions (Df= 1.5, 1.7, 1.9, 2.1, 2.3) and when they are tested on data with boundary fractal dimensions
(Df= 2.5, 2.7, 2.9).

C3 Line plots showing performance as aggregate size
changes

Figure C5 compares the machine learning predictions to their
true values for interpolation split. The predictions for the case
Df= 2.3 (middle row) showed the highest deviations from
the true values, since it is the farthest point in the training data
for the interpolation split. From the Q̂abs results, the KRR
predictions were reasonable for the entire size range. The
predictions for Q̂sca were also reasonable for KRR. However,
after the particle size increased to larger than 500 nm, the
prediction of Q̂sca using KRR was underpredicted. The pre-
diction of Q̂sca using ANN showed a size-dependent behav-
ior, under-predicting the results for certain particle sizes, af-
ter which there is an over-prediction. Similar size-dependent
behavior was observed in the predictions ĝ from ANN and
KRR. The ĝ predictions showed deviations from their true

values as the particle size increased. In the case of interpo-
lation split, the overfitting or underfitting is generally more
pronounced in the larger particle size (> 500 nm). The ex-
planation for this could be the lower resolution of the train-
ing data for particle size> 500 nm, which was a limitation of
large computation time for larger particles and more coating
fraction.

Similarly, Fig. C6 shows the machine learning predictions
compared to the true values for the extrapolation split. To
study the performance of KRR and ANN, the results for
Df= 2.9 are interesting, since they are the farthest from the
training data. The deviations of the Q̂abs are more from the
true values in the case of KRR, which showed better per-
formance in the interpolation split. However, the results for
Df= 2.5 and Df= 2.7 show reasonable results, since they
are closer to the training dataset. The predictions Q̂sca were
lower than the true values for ANN, especially as the parti-
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Figure C5. Optical properties of BC fractal aggregates predicted using machine learning methods KRR and ANN for the interpolation split
when models are trained on data with boundary fractal dimensions (Df= 1.5, 1.7, 1.9, 2.7, 2.9) and when they are tested to see if it fits for the
intermediate values of fractal dimensions (Df= 2.1, 2.3, 2.5). The three columns show the predicted values of absorption efficiency (Qabs),
scattering efficiency (Qsca), and asymmetry parameter (g). Each row corresponds to the predictions for the intermediate values of fractal
dimensions (Df= 2.1, 2.3, 2.5).

cle size increased. The prediction ĝ was larger than its true
value in the case of the extrapolation split. However, the per-
formance of predicting ĝ from KRR showed an interesting
size dependence over particle size unique to this split. When
particle sizes were smaller, ĝ was higher than the true value,
decreased, and returned to higher levels once a certain thresh-
old was reached. In general, for the results when the fcoating
is 90, which is the upper limit of the feature, the results for
Q̂abs, Q̂sca, and ĝ showed an expected higher deviation from
their true values for both the interpolation split and the ex-
trapolation split.
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Figure C6. Optical properties of BC fractal aggregates predicted using machine learning methods KRR and ANN for the extrapolation split
when models are trained on data with smaller fractal dimensions (Df= 1.5, 1.7, 1.9, 2.1, 2.3) and when they are tested on data with higher
fractal dimensions (Df= 2.5, 2.7, 2.9). The three columns show the predicted values of absorption efficiency (Qabs), scattering efficiency
(Qsca), and asymmetry parameter(g). Each row corresponds to the predictions for the higher fractal dimensions that are left out (Df= 2.5,
2.7, 2.9).

Appendix D: Laboratory measurements of black
carbon

The data from the laboratory experiments by Romshoo et al.
(2022) are compared to the ML-based prediction model in
Figs. 6 and D1. A mobility particle size spectrometer (MPSS;
designed by the Leibniz Institute for Tropospheric Research
(TROPOS)) measured the particle number size distribution
of the black carbon particles. A cavity-attenuated phase-shift
extinction monitor (CAPS PMex 630, Aerodyne Res. Inc.,
USA) measured the light extinction coefficient, σext, at a λ
of 630 nm. The particle light-scattering coefficient σsca was
measured using a nephelometer (Aurora 4000, Ecotech, Mel-
bourne, Australia) at a λ of 635 nm. A multi-angle absorp-
tion photometer (MAAP; Model 5012, Thermo Scientific,
Franklin, MA) measured the particle light-scattering co-
efficient, σabs, at a λ of 637 nm. The aerosol mass con-
centration for selected experiments was determined using
the tapered element oscillating microbalance (1405 TEOM,
Thermo Scientific, Franklin, MA). Aerosols were collected

on quartz fiber filters and were analyzed by an EC–OC ana-
lyzer (Sunset Laboratory Inc., Hillsborough, USA).

The input parameters used while running the prediction
script are λ, Df, fcoating, and Dm. The parameter of Dm was
chosen for particle size due to the MPSS measurements avail-
able in the experiment. A Df value of 1.7 was taken, as it
represents laboratory-generated soot (Wentzel et al., 2003).
The default ai value of 15 nm was used. Numerical studies
have also investigated the sensitivity to input parameters like
a,Df, and fcoating to modeled optical properties (Romshoo et
al., 2022; Luo et al., 2018b; Smith and Grainger, 2014). For
example, Romshoo et al. (2022) recommended Df from 1.7
to 1.9 and a between 10 and 14 nm for laboratory-generated
soot. The values of fcoating for each experiment were derived
from the EC–OC analysis results of the quartz fiber filters.
The mean of the number size distribution measured by the
MPSS was used as the input value for Dm. There were 11
sub-cases of the laboratory experiment for which the means
of Dm and fcoating were taken as input. The input parameters
for the Mie core–shell theory were λ, fcoating, and Dm.

Atmos. Chem. Phys., 24, 8821–8846, 2024 https://doi.org/10.5194/acp-24-8821-2024
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Figure D1. Mass absorption cross-section (MAC) for coated BC particles generated in a laboratory study at differentDmob (Romshoo et al.,
2022). Panel (a) compares the ˆMACML with the measured MAC from the laboratory experiment. Panel (b) compares the ˆMACMie with the
measured MAC. The number of points used in this figure is less than in Fig. 6, as some of the data were excluded due to the uncertainties
associated with the tapered element oscillating microbalance (TEOM) instrument.

The output parameters compared to the observations were
SSA and MAC. The observational SSA was calculated from
the ratio of σsca and σext. The observational MAC was calcu-
lated from the σabs and mass using Eq. (A8). The predicted
SSA is compared to all 11 experimental cases for which the
observational SSA was available (Table 1 in Romshoo et al.,
2022). The uncertainty in the measured SSA is nearly 10 %
(Weber et al., 2022). The uncertainties in the SSA are in-
cluded in the 95 % confidence band of the ML-based predic-
tions. The predicted MAC is compared to the 6 experimental
cases of coated soot for which the observational MAC was
available (last six rows in Table 1 in Romshoo et al., 2022).

Code availability. A Python script that predicts the opti-
cal properties of BC fractal aggregates using the trained
ML-based models is available in a GitHub repository at
https://doi.org/10.5281/zenodo.8060206 (Romshoo et al., 2023d).
To run the prediction script, the physiochemical properties need to
be provided as a .csv file that contains the fractal dimension Df,
the fraction of coating fcoating, and the wavelength (λ) at which
the optical properties should be calculated. Depending on the rele-
vance, users may specify the particle size by giving the values of one
among the number of primary particles (Npp), the mobility diameter
(Dm), or the outer volume equivalent radii (ro). If the input parame-
ters are obtained from instrumental measurements, taking hourly or
half-hourly averages is recommended to cancel the effect of noisy
input parameters. The prediction script will generate a .csv file with
the corresponding optical properties for the provided physiochemi-
cal properties. Please check the README file inside the repository
for more detailed information on using the script.

Data availability. The dataset of simulated physiochemical and
optical properties that we describe in Sect. 2 is available at
https://doi.org/10.5281/zenodo.7523058 (Romshoo et al., 2023b).
In case they want to reproduce any of the results in this work, read-
ers may find the entire source code that we used to perform the
ML-based experiments and generate figures included in this work at
https://doi.org/10.5281/zenodo.8071901 (Romshoo et al., 2023c).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-8821-2024-supplement.
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