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Abstract. The tropospheric hydroxyl (TOH) radical is a key player in regulating oxidation of various com-
pounds in Earth’s atmosphere. Despite its pivotal role, the spatiotemporal distributions of OH are poorly con-
strained. Past modeling studies suggest that the main drivers of OH, including NO2, tropospheric ozone (TO3),
and H2O(v), have increased TOH globally. However, these findings often offer a global average and may not
include more recent changes in diverse compounds emitted on various spatiotemporal scales. Here, we aim to
deepen our understanding of global TOH trends for more recent years (2005–2019) at 1×1°. To achieve this, we
use satellite observations of HCHO and NO2 to constrain simulated TOH using a technique based on a Bayesian
data fusion method, alongside a machine learning module named the Efficient CH4-CO-OH (ECCOH) configu-
ration, which is integrated into NASA’s Goddard Earth Observing System (GEOS) global model. This innovative
module helps efficiently predict the convoluted response of TOH to its drivers and proxies in a statistical way.
Aura Ozone Monitoring Instrument (OMI) NO2 observations suggest that the simulation has high biases for
biomass burning activities in Africa and eastern Europe, resulting in a regional overestimation of up to 20 %
in TOH. OMI HCHO primarily impacts the oceans, where TOH linearly correlates with this proxy. Five key
parameters, i.e., TO3, H2O(v), NO2, HCHO, and stratospheric ozone, can collectively explain 65 % of the vari-
ance in TOH trends. The overall trend of TOH influenced by NO2 remains positive, but it varies greatly because
of the differences in the signs of anthropogenic emissions. Over the oceans, TOH trends are primarily positive
in the Northern Hemisphere, resulting from the upward trends in HCHO, TO3, and H2O(v). Using the present
framework, we can tap the power of satellites to quickly gain a deeper understanding of simulated TOH trends
and biases.
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1 Introduction

The hydroxyl (OH) radical regulates the lifetimes of a
vast number of key atmospheric compounds, such as sul-
fur dioxide (SO2), nitrogen dioxide (NO2), volatile organic
compounds (VOCs), carbon monoxide (CO), and methane
(CH4). Despite its outsized importance for atmospheric
chemistry and climate, our knowledge of both the abundance
and long-term trends of OH is limited due to its sparse ob-
servations, manifesting in large discrepancies between simu-
lated OH among global models (e.g., Naik et al., 2013; Zhao
et al., 2019; Murray et al., 2021; Fiore et al., 2024). In par-
ticular, these discrepancies can introduce large uncertainties
when it comes to precisely representing methane (Holmes et
al., 2013; Nguyen et al., 2020), a potent greenhouse gas. Con-
sequently, to understand the potential impact of this warming
agent on climate shifts and extreme weather events, it is es-
sential to accurately simulate methane concentration within a
coupled climate model, such as NASA’s Goddard Earth Ob-
serving System (GEOS) model (Molod et al., 2015; Nielsen
et al., 2017), which requires reasonable representation of its
major sink – reaction with OH.

Despite the challenges posed by OH’s short lifespan of
less than 2 s, low-pressure laser-induced fluorescence spec-
troscopy has proven invaluable in measuring OH for over 20
airborne field campaigns (Miller and Brune, 2022). These
datasets have been instrumental in verifying the efficacy of
chemical mechanisms involving varying reaction rate coef-
ficients and aerosol heterogeneous chemistry (Brune et al.,
2020, 2022; Miller and Brune, 2022), understanding urban
air quality (Brune et al., 2022; Souri et al., 2023), and iden-
tifying potential sources of HOx (OH+HO2) that may have
been hampered due to instrument detection limits and/or un-
measured compounds (e.g., Ren et al., 2008). However, while
these observations offer valuable insights, they are limited in
time and space and cannot provide a full picture of tropo-
spheric OH abundance.

There are several approaches that have been employed to
constrain the OH needed for replicating observed values of
a tracer whose primary sink is OH, and its sources are rel-
atively well known. One notable method is methyl chloro-
form (MCF) inversion (Patra et al., 2014; Turner et al., 2017;
Rigby et al., 2017; Naus et al., 2019). However, this method
only provides hemispheric-average OH and is thus insuffi-
cient to resolve the spatial distribution of OH.

A more sophisticated approach to constraining OH is to
incorporate well-characterized satellite observations of fac-
tors known to influence OH, such as NO2, CO, ozone,
and formaldehyde (HCHO), into a chemical transport model
using inverse modeling and/or chemical data assimilation
methods (Sandu and Chai, 2011; Bocquet et al., 2015). This
method offers a crucial advantage in that it accounts for the
interconnectedness of various chemical and physical pro-

cesses within model increments. For example, adjustments
to NOx levels will impact nitrate and ozone concentrations,
which in turn affect the HO2 uptake through aerosols, OH,
and radiation, reciprocally leading to a more accurate rep-
resentation of NOx . Several studies have used subsets of
satellite observations to improve HOx and ozone chemistry,
with Miyazaki et al. (2020) using a diverse range of obser-
vations, including CO, NO2, O3, and nitric acid (HNO3), to
improve model predictions using a local ensemble Kalman
filter. The incorporation of these observations led to a re-
duction in the asymmetric OH ratio between the North-
ern Hemisphere and Southern Hemisphere, aligning bet-
ter with MCF results (Patra et al., 2014). Similarly, Souri
et al. (2020a) leveraged well-characterized observations of
HCHO and NO2 to improve ozone chemistry over East Asia
using nonlinear analytical Bayesian inversion, observing sig-
nificant changes in OH levels after adjusting biogenic VOCs
in Southeast Asia. While incorporating these observations
into atmospheric models offers a comprehensive way of gain-
ing insights into spatiotemporal OH variability, it is compli-
cated by several layers of complexity, such as unidentified
satellite biases, unresolved scales in satellite observations,
and errors in models including transport, chemical mecha-
nisms, vertical diffusion, and deposition rates. Understand-
ing how these errors could cloud the realistic determination
of OH requires running of constrained models under various
realizations, which is computationally prohibitive.

Researchers have developed OH predictors based on a set
of key parameters, offering reasonable spatial and tempo-
ral coverage without compromising computational efficiency
(Spivakovsky et al., 2000; Duncan et al., 2000; Elshorbany
et al., 2016; Nicely et al., 2018, 2020; Wolfe et al., 2019;
Anderson et al., 2022, 2023; Zhu et al., 2022; Baublitz et
al., 2023). These studies fall into four categories, the first of
which uses box model photochemical simulations to predict
OH levels under a steady-state assumption, using a blend
of pre-modeled fields and various observations influencing
OH (Spivakovsky et al., 2000; Nicely et al., 2018). The sec-
ond group uses proxy observations (e.g., HCHO or water,
H2O) of OH in remote areas (Wolfe et al., 2019; Baublitz
et al., 2023). The third group employs high-order polynomi-
als to establish an empirical relationship between OH and
different parameters, avoiding the need to solve numerous
differential equations in chemical mechanisms (Duncan et
al., 2000; Elshorbany et al., 2016). Finally, the fourth group
leverages powerful machine learning algorithms to encapsu-
late the complexities between OH and its key influencers to
efficiently predict OH using a comprehensive dataset which
is easily exchangeable between models (Nicely et al., 2020;
Anderson et al., 2022; Zhu et al., 2022; Anderson et al.,
2023).

In this work, we demonstrate the potential of a new ap-
proach to constraining simulated OH that uses satellite ob-
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servations to adjust the input parameters to an improved pa-
rameterization of OH (Anderson et al., 2022) within the Effi-
cient CH4-CO-OH (ECCOH) (pronounced “echo”) configu-
ration (Elshorbany et al., 2016) of NASA’s GEOS model. We
use the Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2) reanalysis data (Molod
et al., 2015; Gelaro et al., 2017) to constrain the meteorol-
ogy and adjust two critical OH inputs using the latest Aura
Ozone Monitoring Instrument (OMI) NO2 and HCHO re-
trievals (Lamsal et al., 2021; Nowlan et al., 2023) from 2005
to 2019 worldwide. By conducting a range of experiments,
we determine the extent to which leveraging OMI NO2 and
HCHO observations can enhance current representations of
these two species derived from a global model simulation,
MERRA-2-GMI (hereafter M2GMI) (Strode et al., 2019), so
that we can achieve more accurate portrayals of OH abun-
dance and its long-term trends. Ultimately, we deconvolve
the intricate OH trend maps into five critical parameters using
various modeling experiments, including tropospheric ozone,
stratospheric ozone, NO2, HCHO, and H2O.

Our paper is structured into several sections. In Sect. 2.1
to 2.3, we discuss the model configurations, the Bayesian
data fusion algorithm, and the satellite observations used. In
Sect. 2.4, we outline our modeling experiments, which aim
to uncover the impact of various key OH inputs on its trends
and to assess the effect of OMI adjustments. In Sect. 3.1,
we examine the discrepancies between our prior knowledge
from M2GMI and OMI observations and demonstrate how
the data fusion can mitigate these differences. In Sect. 3.2, we
delve into the effect of OMI adjustments to NO2 and HCHO
on tropospheric OH (TOH) magnitudes across the globe. In
Sect. 3.3, we focus on understanding the long-term effect of
a set of key inputs on OH and how well they can replicate our
most dynamic representation of TOH. In Sect. 4, we summa-
rize the potential of using satellite observations in conjunc-
tion with well-characterized models to identify biases and
long-term trends in TOH and discuss the limitations of our
current analysis and potential paths forward.

2 Models, methods, and measurements

2.1 Models

2.1.1 GEOS

The GEOS model (Molod et al., 2015; Nielsen et al., 2017)
simulates global weather with a 1° longitude ×1° latitude
spatial resolution. The model follows 72 hybrid sigma val-
ues ranging from the surface to 0.01 hPa. We employ a cu-
mulus parameterization to consider deep convection (Moor-
thi and Suarez, 1992). Cloud microphysics is determined
by a single-moment parameterization based on Bacmeister
et al. (2006). We activate the “replay” option (Orbe et al.,
2017) to constrain several meteorological variables using
MERRA-2. Sea surface temperatures and ice content are pre-

described from various observations (Nielsen et al., 2017).
Speciated aerosol concentrations and their optical properties
are simulated by the Goddard Chemistry Aerosol Radiation
and Transport (GOCART) model (Chin et al., 2002) within
GEOS. The rapid radiative transfer model for global climate
models (GCMs) (the Radiative Transfer Module for GCM –
RRTMG) resolves the longwave and shortwave radiation im-
posed by the GOCART-simulated aerosols, allowing for the
direct impact of aerosol on meteorology to be taken into con-
sideration (Nielsen et al., 2017). The period of simulation
starts in 2005 and ends in 2020. Ten years before 2005 are
considered for the spin-up of meteorological, CO, and CH4
fields.

2.1.2 ECCOH

A computationally efficient module named ECCOH was de-
veloped to simulate the chemistry of the CH4–CO–OH cycle
in the GEOS-5 model framework (Elshorbany et al., 2016).
CO and CH4 tracers are explicitly simulated. A key com-
ponent of ECCOH is the parameterization of tropospheric
OH, which was developed using a gradient-boosted regres-
sion tree machine learning algorithm (Anderson et al., 2022)
and which is a function of chemical, solar irradiance, and
meteorological variables. The training dataset of chemical
and meteorological variables was a 40-year daily M2GMI
model simulation (Strode et al., 2019), which includes tro-
pospheric chemistry involving 120 species and 400 reactions
with the GMI mechanism (Duncan et al., 2007a, and refer-
ences therein) and which uses MERRA-2 to constrain trans-
port and meteorology at 0.625× 0.5°.

We present the variables used as inputs to the parameter-
ization of OH for this study in Table 1. The daily archived
chemical inputs are from the M2GMI simulation, with sev-
eral variables being constrained with observations. For in-
stance, both NO2 and HCHO fields are corrected whenever
satellite observations are available as described in Sect. 2.2.1.
We chose NO2, an observable compound from satellites and
a reasonable proxy for NOx , which has been shown to affect
OH (e.g., Zhao et al., 2020; Anderson et al., 2022). HCHO is
used as a proxy for VOC oxidation via OH in remote oceanic
regions (Wolfe et al., 2019).

There are also long-term satellite data records of other
OH drivers, including water vapor (e.g., Aqua Atmospheric
Infrared Sounder – AIRS) and the total ozone column
(e.g., Aura OMI), which we could also consider. However,
the GEOS MERRA-2 system already assimilates satellite
datasets of water vapor, and the M2GMI simulation simu-
lates (i.e.,< 4%) the total ozone column well as compared to
the observations (Fig. S1 in the Supplement). The integrated
water vapor columns from MERRA-2 and microwave-based
satellite observations over the ocean also agree well (< 5%),
especially after 2000, after which many satellite observations
were used in the reanalysis data (Fig. 3 in Bosilovich et al.,
2017). Therefore, the application of the “replay” mode con-
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strains various meteorological fields, providing a more real-
istic reconstruction of the OH studied here.

Tropospheric ozone is another critical input to the param-
eterization of OH. Although we will compare M2GMI tro-
pospheric ozone with satellite observations to locate any dif-
ferences, reliable measurements of tropospheric ozone from
satellites are lacking due to the limited sensitivity of the re-
trievals to ozone at low altitudes. Therefore, our study re-
frains from imposing any observational constraint on tropo-
spheric ozone.

Throughout the paper, TOH is determined based on the
methane-reaction-weighted OH suggested by Lawrence et
al. (2001).

Monthly CO emissions

We use a modified version of EDGAR (Emissions Database
for Global Atmospheric Research), v5.0 (Crippa et al., 2019),
which is a comprehensive database that provides estimates of
sector-based CO emissions from human activities (i.e., an-
thropogenic) on a global scale. Previous studies (e.g., Zheng
et al., 2019) suggested a large underestimation of EDGAR
CO emissions for India and China. Accordingly, we scale
up the residential and transportation emissions from China
by a factor of 1.6 and the residential emissions from India
by a factor of 1.2 based on Zheng et al. (2019). The emis-
sions spanned the entirety of the study period, from 2005 to
2020, and were prepared monthly at a spatial resolution of
0.1°×0.1°. The daily biomass burning emissions are CMIP6
emissions, which were derived from the Global Fire Emis-
sions Database version 4 with small fires (GFED4s) (van
Marle et al., 2017). To account for the chemical production
of CO from the oxidation of non-methane VOCs, we adopted
the CO yield estimates from Duncan et al. (2007b) (i.e., mo-
lar yields of 20 % from isoprene, 20 % from monoterpenes,
100 % from methanol, 67 % from acetone, 19 % from an-
thropogenic VOC emissions, and 11 % from biomass burn-
ing VOC sources) and released these CO emissions in the
first vertical level of the model. With regards to the biogenic
VOC emissions used for the above CO production estimates,
we use offline Model of Emissions of Gases and Aerosols
from Nature (MEGAN) calculations using a GEOS-Chem
(v13.2.0) run. CO production from CH4 oxidation is calcu-
lated online for each model box.

Monthly CH4 emissions

In this study, several bottom-up CH4 emissions related to an-
thropogenic, wetland, natural, and biomass burning sources
are used to simulate CH4. The monthly anthropogenic
sources are derived from EDGARv6 (Ferrario et al., 2021).
The biomass burning emissions come from the GFED4s.
Because EDGARv6 accounts for agricultural waste burn-
ing, we exclude this specific source from the GFED4. Fol-
lowing Strode et al. (2020), we use modified monthly nat-

ural emissions from ocean, termite, and mud volcano emis-
sions. Wetland emissions are derived from an improved dy-
namic wetland emission framework at 0.5°× 0.5° based on
the TOPography-based hydrological model (TOPMODEL)
(Zhang et al., 2016, 2023). A climatological sink of CH4
from soil uptake is subtracted from the total CH4 emissions.

2.2 Methods

2.2.1 Bayesian data fusion for NO2 and HCHO fields
using OMI retrievals

To improve the representation of M2GMI NO2 and HCHO
concentrations and their long-term trends, which are used as
input to the parameterization of OH in ECCOH, we scale
their columnar mass using Aura OMI observations of NO2
and HCHO columns (described in Sect. 2.3.1 and 2.3.2)
using an offline version of the optimal interpolation (OI)
method (Parrish and Derber, 1992; Jung et al., 2019) with an
appropriate regularization. If we assume that the error covari-
ances of M2GMI columns and OMI ones follow a Gaussian
distribution with zero means and that their relationships are
linear, we can estimate new columns using Bayes’ theorem
(Rodgers, 2000):

Xa = Xb+ γBHT (γHBHT
+E)−1(Y−HXb), (1)

where Xb is the prior M2GMI column (i.e., the background),
Xa is the posterior M2GMI column (i.e., the analysis), B is
the error covariance matrix of the a priori, E is the sum square
of the error covariance matrix of the observations and the rep-
resentation errors, Y is the observation, and H is the obser-
vational operator which is equivalent to the identity matrix in
our case. The instrument error part of E is populated by the
average sum of the precision error squares the satellite prod-
uct provides. We interpolate both E and Y to the M2GMI
grid box using a mass-conserved linear barycentric interpo-
lation method. In this method, both OMI observations and er-
rors in the Level-2 (L2) granules provided on their irregular
grid have been projected onto a common grid of 0.25×0.25°
using Delaunay triangulation bilinear interpolation. Subse-
quently, we convolve these regridded maps with a box fil-
ter whose kernel size is equivalent to the rounded fraction
of the M2GMI grid box size and the regridded OMI pixel
size based on Souri et al. (2022). This interpolation method
removes the spatial representation error resulting from the
unresolved scales in the M2GMI columns. Nonetheless, we
did not take into account the errors of unresolved processes
in M2GMI to augment to E. The National Meteorological
Center (NMC) approach is a common technique for calcu-
lating B in atmospheric models (Parrish and Derber, 1992;
Souri et al., 2020b). However, due to computing constraints,
rerunning the M2GMI model to create the 24 h prediction
segments needed in the NMC method was not possible. In-
stead, we initialize B by setting it to 50 % errors for NO2
and HCHO, both of which are subject to regularization. γ
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Table 1. The list of inputs used for the parameterization of OH.

Input group Variables Source Temporal resolution

Offline chemi-
cal species

NO2, HCHO, O3, isoprene, acetone,
H2O2, propene, propane, methyl hy-
droperoxide, ethane, C4 and C5 alka-
nes, and stratospheric O3 columns

M2GMI (offline) (Strode et al.,
2019)

Daily averaged

Online chemi-
cal species

CO and CH4 GEOS (online) Daily averaged

Meteorological
fields

T , P , Qv, and cloud fraction GEOS (online) Daily averaged

Optical proper-
ties

Aerosol optical depth, ice crystal cloud
optical depth, and water droplet cloud
optical depth above and below a given
model vertical layer

GEOS (online) Daily averaged

Geographic in-
formation

Latitude and solar zenith angle (SZA) Calculated Fixed for latitude, but
daily for the SZA based
on local noontime

Surface proper-
ties

Surface UV albedo OMI Lambertian equivalent re-
flectance (LER) climatology
(Qin et al., 2019; Fasnacht et
al., 2019)

Monthly (climatology)

is the regularization factor designed to achieve the best fit
(minimum residuals between Y and HXb) while minimizing
the effect of the noise on the observations (minimum vari-
ance in Xa). To this end, we seek an optimal regularization
factor based on finding the “knee point” in the curve of the
incremental regularization factors (ranging from 0.1 to 10)
and the degrees of freedom obtained from the optimization.
The γ value is determined based on the average of all data
points in a month and does not vary from pixel to pixel to
ease the interpretation of the result. We did not account for
the non-diagonal spatial correlations of B, as this requires us
to carry out the NMC method. We use the ratio of Xb/Xa to
uniformly scale the three-dimensional concentrations of the
target gas (i.e., NO2 or HCHO). The error associated with the
constrained M2GMI columns can be obtained using

Sa = (I− γBHT (γHBHT
+E)−1H)× γB. (2)

The averaging kernels (AKs) describe the amount of infor-
mation gained from the observations represented by

AK= I−
Sa

B
, (3)

where I is the identity matrix.
In our research, we have created an open-source Python

package called OI-SAT-GMI (Souri, 2024), which possesses
the ability to download and process OMI level-2 products,
perform air mass factor (AMF) recalculation, and conduct
mass-conserved interpolation while also executing the OI al-
gorithm.

In our approach, the adjustments are implemented in the
M2GMI output (i.e., a data fusion approach instead of a data
assimilation one), thereby restricting the full use of improved
NO2 and HCHO representation for more accurate simulation
of other chemical compounds impacted by NO2 and HCHO,
including ozone (e.g., Souri et al., 2020a, 2021). Neverthe-
less, as the accuracy of NO2 concentrations can significantly
impact OH and HCHO is strongly tied to VOC oxidation
through OH in remote ocean areas (Wolfe et al., 2019), the
adjustments are expected to be beneficial in achieving a more
robust representation of OH.

2.2.2 Trend analysis

We determine a linear trend in a time series based on fitting
the following equation accounting for a seasonal cycle and
shorter frequencies in the observations:

y = a0+ a1t +

3∑
i=1

ai+1 cos2πωi (t −ϕi) . (4)

The equation comprises several variables, including y (data
points) on a monthly basis, a0 as the mean, a1 as the linear
trend, and t as time (fractional year). ai+1, ωi , and ϕi are the
amplitude, frequency, and phase, respectively. We consider
three harmonics (ωi = 1,2,3) to account for the seasonal cy-
cle (ω = 1) and higher frequencies. To assess the statistical
significance of a trend, we employ the Mann–Kendall test
and consider a trend to be significant if the linear trend passes
the test at a 95 % confidence level.
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In the context of trend analysis, careful examination of
errors in observations (y) is a critical aspect often over-
looked. However, when the errors of observations are obtain-
able, such as those obtained from satellites or constrained
M2GMI fields, we determine the parameters by applying
a weighted estimation. This estimation is optimized using
the Levenberg–Marquardt algorithm (Marquardt, 1963) us-
ing the SciPy open-source package. Considering the errors
in the observational data deemphasizes more uncertain data,
resulting in a more realistic determination of the linear trend.

2.2.3 OH response calculations

To elucidate the response of OH to different input param-
eterizations, such as NO2, HCHO, and O3, we determine
the semi-normalized sensitivities through a traditional finite-
difference method:

SOHi =
[OH]110 %

i − [OH]90 %
i

0.2
, (5)

where [OH]110 %
i and [OH]90 %

i are OH concentrations from
perturbing input parameters (i) by 1.1 and 0.9 scaling factors
in the ECCOH offline framework (Anderson et al., 2022).
These calculations are solely used to better understand why
OH changes in a particular way relative to the changes in its
drivers. In our online modeling framework, OH is simultane-
ously affected by the dynamic changes in various variables
considered in the parameterization of OH.

It is crucial to acknowledge that ECCOH has established
an implicit relationship between OH and various input pa-
rameters statistically. These perturbations could involve a
range of physiochemical processes that are challenging to
fully decipher. For example, the perturbation of NO2, act-
ing as a surrogate of reactive nitrogen, involves chemical
reactions that include reactive nitrogen like NO+HO2 and
NO2+OH, ozone formation, aerosol HOx uptake, and radi-
ation. However, it may be challenging to determine to what
extent ECCOH has considered these chemical processes.
Therefore, the presented perturbations in this work should
be viewed qualitatively.

2.3 Measurements

2.3.1 OMI MINDS tropospheric NO2 columns

To improve the representation of NO2 fields used as input
to the parameterization of OH, we constrain the archived
monthly fields with the most updated NASA standard tropo-
spheric NO2 product (v4.0; Lamsal et al., 2021) from Aura
OMI. Aura has a local equatorial overpass time of 13:45 LST
(local sidereal time) and nearly daily global coverage. This
new OMI product version is improved in multiple aspects
as compared to the former products, including surface re-
flectance and cloud retrieval (Lamsal et al., 2021).

The validation of OMI tropospheric NO2 columns from
the comparison to integrated aircraft spirals obtained from
diverse air quality campaigns revealed a good level of cor-
relation (r > 0.7) (Choi et al., 2020). However, large mean
biases of approximately 40 % were observed. These biases
come from various sources, including systematic biases in
prognostic data utilized in the retrieval, biases inherent in
the aircraft data, spatial representation errors (Judd et al.,
2020; Souri et al., 2022), and temporal representation errors.
The spatial representation errors are known to cause signif-
icant drift from the unity line in validation studies (Souri
et al., 2022). Notably, Choi et al. (2020) achieved a sub-
stantial reduction in mean biases, decreasing from 40 % to
16 %, through the downscaling of OMI data into a finer-
resolution domain using a regional chemical transport model.
Likewise, Pinardi et al. (2020) reduced the biases between
MAX-DOAS and OMI NO2 observations by considering a
radial dilution factor to account for the mismatch scales be-
tween the satellite footprint and the pointwise observations.
These studies showed that the true statistics describing OMI
biases are unknown, but they tended to be milder than those
derived from directly comparing large pixels with pointwise
measurements. It is important to highlight that discrepancies
between M2GMI and OMI NO2 will surpass the reported bi-
ases, thereby underscoring the product’s reliability over di-
verse geographical regions.

The long-term trends of tropospheric NO2 columns have
undergone extensive comparative analyses with in situ ob-
servations (Lamsal et al., 2015; Pinardi et al., 2020), regu-
latory inputs, and assessments of human and biomass burn-
ing activities (Duncan et al., 2016; Choi and Souri, 2015a,
b; Krotkov et al., 2016; Jin and Holloway, 2015; Souri et al.,
2017; Reuter et al., 2014; de Foy et al., 2016; Hickman et al.,
2021).

We prefer level-2 products over level-3 products to en-
able the recalculation of AMFs with time-varying shape fac-
tors derived from the M2GMI simulation. We removed low-
quality pixels using the main quality flag, cloud fraction
> 30%, terrain reflectivity > 20%, and those pixels affected
by the “row anomaly” complication. The data product, which
has a spatial resolution ranging from ∼ 13km× 24km (at
nadir) to ∼ 24km× 160km (at extremities of the scanline),
was then regridded to the M2GMI grid (0.625°×0.5°) using a
mass-conserved linear barycentric interpolation method. The
AMF recalculation was performed with

VCDnew =
VCDoldAMFold

AMFnew
, (6)

where VCDold and AMFold are the default states of tropo-
spheric vertical columns and air mass factors. AMFnew is
determined by summing the product of scattering weights
and the M2GMI partial columns from the surface to the
tropopause level prescribed in the OMI level-2 data.
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2.3.2 OMI Smithsonian Astrophysical Observatory
(SAO) total HCHO columns

For the same reason as OMI NO2, we use OMI SAO to-
tal columns based on an algorithm framework newly devel-
oped by Nowlan et al. (2023). The new retrieval represents
a major step forward in surface albedo treatment including
the bidirectional reflectance distribution function for land
(BRDF) from the MODIS product (MCD43C1 Version 6.1)
extended to the UV wavelengths using a principal compo-
nent algorithm. Since there are no MODIS BRDF data avail-
able over water, the algorithm uses the Cox–Munk slope dis-
tribution to estimate the surface reflectance of water bodies
(Cox and Munk, 1954). An important issue with the long-
term record of OMI HCHO measurements is the artificial in-
creasing trend brought on by sensor degradation (Choi and
Souri, 2015a, b; Gonzalez Abad et al., 2015). The algorithm
uses an earthshine spectrum over the Pacific Ocean with a
latitudinal and solar-zenith-dependent correction factor de-
scribed in Nowlan et al. (2023) to mitigate this artifact.

The new SAO algorithm has been validated with Ozone
Mapping and Profiler Suite (OMPS) data radiance with re-
spect to Fourier transform infrared (FTIR) spectroscopy in
situ measurements in 2012–2020, showing a relative bias of
30 % based on monthly averaged data (Kwon et al., 2023).
While the validation results based on the OMI radiance have
not been released yet, it is likely that the biases will stay in
roughly the same range of errors as monthly gridded OMI
data on the M2GMI grid, which is comparable to the OMPS
footprint (50 km).

Once again, we used Eq. (6) to recalculate OMI HCHO
total columns with dynamical shape profiles produced dur-
ing the M2GMI simulation. We remove unwanted pixels us-
ing the following criteria: the main quality flag, the cloud
fraction > 40%, and the flag for pixels affected by the row
anomaly. We then regridded the data to the M2GMI grid us-
ing the same approach used for OMI NO2.

2.4 Experiments

We perform a series of experiments to investigate the sensi-
tivity of OH to geophysical variables known to influence or
be tied to OH. Table 2 lists all the sensitivity experiments
along with their purposes and differences from an analysis
(i.e., constrained) experiment. The pillar of all the experi-
ments is the analysis experiment (Sanalysis), which uses (i)
chemical variables from a full-chemistry simulation as in-
put to the parameterization of OH in ECCOH (Sect. 2.1.2;
Table 1), (ii) transport and metrological fields constrained
by MERRA-2 data (Sect. 2.1.1), (iii) long-term estimates
of monthly CO and CH4 emissions, (iv) optical depths of
clouds and aerosols along with the observed climatology of
OMI UV surface albedo, and (v) NO2 and HCHO fields con-
strained by the Bayesian data fusion method (Sect. 2.2.1).

To examine the importance of having NO2 and HCHO
fields constrained by OMI data, we design three experiments
imitating Sanalysis but withholding the OI scaling factors
one at a time. We then subtract these model outputs from
those of Sanalysis and name them SOMInitro, SOMIform,
and SOMInitroform.

The other experiments are intended to systematically iso-
late the chemical effect of a specific driver or proxy of OH
trends. Due to the significant impact of NO2, tropospheric
ozone, the stratospheric ozone column, and water vapor on
the primary or secondary pathways of OH loss or produc-
tion (Naik et al., 2013; Murray et al., 2013; Strode et al.,
2015; Nicely et al., 2018; Zhao et al., 2020; Anderson et al.,
2021), we include four experiments (SOHwv, SOHnitro, SO-
Htropozone, and SOHstratozone) to single out each effect on
OH trends. Additionally, we include HCHO (SOHform), a
robust proxy for VOC oxidation via OH in remote ocean re-
gions (Wolfe et al., 2019), to understand how those chemical
pathways have changed over time. In these experiments, we
set the target driver constant to the monthly values in the first
year of simulation and subsequently subtract these model
outputs from Sanalysis. Amongst the various OH drivers or
proxies studied here, water vapor is simulated online based
on the GEOS simulation; to conduct SOHwv, which aims to
isolate the water vapor effect on OH without affecting the
meteorology, we set water vapor fields fed to the parameteri-
zation of OH to the offline MERRA-2 based on the monthly
varying 2005 simulations. Simultaneously, GEOS is allowed
to simulate water vapor online to address the meteorology.
This ensures that the meteorology remains consistent across
both SOHwv and Sanalysis.

Using ambient gas concentrations in the ECCOH model
poses a challenge in distinguishing the respective factors
contributing to their variations. For instance, it is difficult
to discern the distinct influences of lightning-produced NO2
versus anthropogenic NO2 on the abundance of OH. How-
ever, an advantageous feature of our approach is that various
observational sources constrain the data fields used with the
Bayesian data fusion method or MERRA-2 data.

3 Results and discussion

3.1 Spatial distributions and trend analysis of several
inputs to the parameterization of OH

We begin our analysis with an examination of the long-term
trends and magnitudes of two key inputs (HCHO and NO2)
to the parameterization of OH. Some other key parameters
such as total ozone columns, tropospheric ozone columns,
and water vapor are also shown in Figs. S1–S3 and S7–S8
and Sect. S1 in the Supplement.
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Table 2. The experiments designed to assess the effect of various OH drivers or proxies and OMI constraints on TOH trends and magnitudes.

Model scenario Term Difference from the analysis run Purpose

Analysis (constrained) Sanalysis – The “best effort” to simulate the evo-
lution of the CH4–CO–OH cycle from
2005 to 2019

Analysis – defaulting to
NO2 M2GMI

SOMInitro Uses archived M2GMI monthly
averaged NO2 concentration fields.

Isolate the importance of constraining
M2GMI NO2 concentration fields with
OMI observations.

Analysis – defaulting to
HCHO M2GMI

SOMIform Uses archived M2GMI monthly
averaged HCHO concentration fields.

Isolate the importance of constraining
M2GMI HCHO concentration fields
with OMI observations.

Analysis – defaulting
to NO2 and HCHO
M2GMI

SOMInitroform Uses archived M2GMI monthly
averaged NO2 and HCHO concentra-
tion fields.

Isolate the importance of constraining
M2GMI NO2 and HCHO concentration
fields with OMI observations.

Analysis – fixed H2O
vapor

SOHwv The dynamical water vapor fields fed to
the parameterization of OH are fixed to
the monthly varying 2005.

Isolate the impact of the long-term trend
of water vapor on OH.

Analysis – fixed tropo-
spheric ozone

SOHtropozone M2GMI ozone fields are set to
the monthly varying 2005.

Isolate the impact of the long-term trend
of the tropospheric ozone burden on
OH.

Analysis – fixed NO2 SOHnitro M2GMI NO2 fields are set to
the monthly varying 2005.

Isolate the impact of the long-term trend
of NO2 on OH.

Analysis – fixed HCHO SOHform M2GMI HCHO fields are set to
the monthly varying 2005.

Understand the long-term trend of
HCHO strongly tied to VOC oxidation
via OH in remote regions.

Analysis – fixed strato-
spheric ozone column

SOHstratozone The M2GMI stratospheric ozone field
fed to the parameterization of OH is set
to the monthly varying 2005.

Isolate the impact of the long-term trend
of stratospheric ozone columns on OH.

“–” denotes the subtraction operator.

3.1.1 Tropospheric NO2 columns

We performed two sets of comparisons. The first compari-
son involves examining the differences in the tropospheric
NO2 columns in M2GMI relative to those of OMI before
and after applying the OI correction. The second compar-
ison focuses on the global two-dimensional maps of long-
term linear trends of OMI and M2GMI prior to and after the
Bayesian data fusion correction synched under the satellite
viewing condition.

Figure 1 demonstrates the absolute difference in the
M2GMI tropospheric NO2 columns with respect to those of
OMI before (a priori) and after (a posteriori) the data fu-
sion application along with AKs in 2005–2019. Inland re-
gions show positive biases over several regions, including
central Africa (box A), the US Midwest (box B), and Europe
(box C). The same tendency was observed in Anderson et
al. (2021). The largest contributors to NO2 in box A and box
C are biomass burning activities (Jaeglé et al., 2005; Giglio

et al., 2013), suggesting that either the emission factors or the
total burned dry mass were possibly too high in these regions.

M2GMI overestimates NO2 concentrations in non-urban
areas in box B which tend to be more severe during sum-
mertime. Although soil NOx emissions could be the first ex-
planation for this phenomenon, accounting for about 30 % of
tropospheric NO2 columns in the region according to Vinken
et al. (2014), the soil NOx parameterization used in M2GMI
relies on Yienger and Levy (1995) and is known to have a low
bias (Jaeglé et al., 2005; Hudman et al., 2012; Vinken et al.,
2014; Souri et al., 2016). Therefore, there may be other un-
certainties in the model concerning the chemistry (e.g., Canty
et al., 2015) or area anthropogenic NOx emissions (Hassler
et al., 2016) causing the bias.

Large portions of metropolitan areas in the Middle East,
Europe, and the US show an underestimation of NO2 in
M2GMI. Moreover, OMI observations reveal large positive
biases over the North China Plain (NCP), a region exhibit-
ing exceptionally high NO2 levels (e.g., Duncan et al., 2016;
Krotkov et al., 2016; Souri et al., 2017). This is primarily be-
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cause the recent aggressive emission mitigation in China is
not accounted for in the bottom-up emission inventory used
in the model. We observe several regions over China and the
Yellow Sea underestimating NO2 with respect to OMI ob-
servations; this does not improve considerably after the ad-
justments. This tendency is a result of the use of a fractional
error for populating the error covariance matrix a priori, mak-
ing the prior error too low. Although we used a regularization
factor to battle this problem, it did not vary from region to re-
gion. A regionally adaptive regularization factor could be a
possible remedy for this problem, but at the cost of overcom-
plicating the interpretation of the results.

As expected, the Bayesian fusion greatly mitigates the re-
gional biases, with notable reductions observed over central
Africa, China, the US, the Amazon, and Europe. The regional
biases (> 80%) greatly exceed the reported biases associated
with the OMI tropospheric NO2 product (< 40%), suggest-
ing that the adjustments should be considered an improve-
ment. Nonetheless, it is important to acquire an abundance of
long-term records from surface spectrometers such as MAX-
DOAS and Pandora to comprehensively evaluate the degree
of enhancement of M2GMI constrained by OMI within the
troposphere, which is currently unavailable for the period of
2005–2019 to the best of our knowledge. The reduction in
the biases over remote areas in the tropics is less noteworthy
due to large errors in the observations. In other words, it is
difficult to have high confidence in the degree of efficiency
the model can have in simulating NO2 over pristine areas by
comparing it to OMI. This notion is manifested mathemati-
cally in low AKs in remote areas, showing that the rich infor-
mation from OMI tropospheric NO2 gravitates more towards
polluted regions. This finding assumes that the regularized
covariance matrix of the prior error does not vary substan-
tially between the land and ocean and that it is isotropic.

Figure 2 illustrates the linear trends of tropospheric NO2
between 2005 and 2019 observed by OMI and simulated by
M2GMI before and after using the OI algorithm. The errors
in OMI observations and the constrained M2GMI are con-
sidered while calculating the trends. Focusing on the trends
of OMI, we observe a consistent picture compared to for-
mer studies (Duncan et al., 2016; Choi and Souri, 2015a, b;
Krotkov et al., 2016; Jin and Holloway, 2015; Souri et al.,
2017). High-income countries, such as the US, those located
in western Europe, and Russia (its major cities), have under-
gone a significant reduction in NO2 concentrations due to
the implementation of emission mitigation regulations. Ad-
ditionally, low- and medium-income countries, such as those
in the Middle East, northern Africa, and India, have seen up-
ward trends in NO2. Various signs of trends are observed
in East Asia. Due to recent effective regulations in China
(Zhang et al., 2012), we observe downward trends in the
NCP region (Reuter et al., 2014; de Foy et al., 2016; Souri
et al., 2017). The downward trend predominantly starting in
2011–2012 counteracts the upward trend in prior years, re-
sulting in statistically insignificant linear trends. Both Japan

Figure 1. The global maps of the M2GMI tropospheric NO2 an-
nual difference with respect to those of OMI before (a) and af-
ter (b) applying the Bayesian data fusion correction factors in 2005–
2019. The mean of the averaging kernels describing the information
gained from OMI is shown in panel (c). Grids at high latitudes were
removed from the figure due to the too low sample numbers pro-
vided by OMI.

and South Korea show downward trends during the period of
2005–2019 (Duncan et al., 2016; Souri et al., 2017).

Encouragingly, the prior model simulation of the tropo-
spheric NO2 trend is consistent with OMI over most of
the polluted regions, except for China, where the bottom-
up emission inventories used in M2GMI fail to reflect re-
cent mitigation efforts in the NCP region. The posterior esti-
mation has a higher degree of agreement compared to OMI
(Sect. S2 in the Supplement). An encouraging observation
arising from the comparison of the M2GMI prior and poste-
rior NO2 trends is the achievement of a higher spatial vari-
ance (information) in low- and medium-income countries
(e.g., India and Iran). This finding suggests that the emission
inventories used in M2GMI lacked adequate spatial informa-
tion, even at the model spatial resolution.

3.1.2 Total HCHO columns

We validate the simulated HCHO concentrations, drawing
inspiration from the NO2 comparison framework. Figure 3
illustrates the absolute differences in the simulated HCHO
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Figure 2. The global maps of linear trends of annual tropospheric
NO2 columns observed by OMI and simulated by M2GMI before
and after the Bayesian fusion. The model simulations are sampled
at the exact time and location of OMI and are masked if OMI obser-
vations were unavailable due to the data quality criteria used. The
dots indicate statistically significant trends at the 95 % confidence
interval.

total columns with respect to OMI before and after the
Bayesian data fusion application, in addition to AKs. The
prior model simulation has considerable skill in capturing the
HCHO total columns over several areas, such as the Middle
East, Europe, India, and East Asia. However, marked posi-
tive biases are discernible in regions with abundant isoprene
emissions, such as the Amazon, Southeast Asia, the south-
eastern US, and central Africa. This outcome is most likely
due to an overestimation of biogenic emissions; various in-
vestigations have reported a predominantly positive bias (a
factor of between 2 and 3) linked to isoprene emissions esti-
mated by MEGAN using satellite measurements in isoprene-
rich regions (e.g., Millet et al., 2008; Stavrakou et al., 2009;
Marais et al., 2012; Bauwens et al., 2016; Souri et al., 2020a).

The simulated HCHO concentrations are relatively too
low over pristine areas, such as high latitudes and moun-
tains. This may be attributed to an underestimation of CH4 in
M2GMI due to assigning its values as background conditions
(Strode et al., 2019). The integration of OMI satellite data
has proven effective at reducing the biases in areas where
HCHO concentrations are large because the signal-to-noise
ratio tends to be large, resulting in high AKs. Nonetheless,
there are some adjustments over remote areas. In fact, OMI

Figure 3. Same as Fig. 1 but for HCHO total columns.

HCHO columns provide more information than OMI NO2
in remote areas because background HCHO concentrations
are not extremely low due to evenly distributed methane and
methanol concentrations. It is worth noting that the biases in
M2GMI greatly exceed the expected OMI HCHO column bi-
ases, suggesting that the adjustments to HCHO improve the
model.

Figure 4 shows the global maps of HCHO total column
trends derived from OMI, the prior M2GMI, and the poste-
rior M2GMI. The widespread upward trends in HCHO over
India are evident due to a lack of effective efforts to cut emis-
sions related to VOCs (e.g., De Smedt et al., 2015; Kuttippu-
rath et al., 2022; Bauwens et al., 2022). We observe HCHO
columns going up in the northwestern US and over oil sands
in Canada, possibly due to increased evergreen needleleaf
forests and an increase in crude oil production (Zhu et al.,
2017), respectively. The downward trends over the south-
eastern US could be due to a decrease in drought events
(Fig. S5 in the Supplement), which significantly affect iso-
prene emissions and the oxidation of VOCs (Duncan et al.,
2009; Naimark et al., 2021; Wang et al., 2022). Alternatively,
this downward trend could be partially due to the dampened
HCHO production from VOC oxidation due to reduced NOx
emissions (Marais et al., 2012; Wolfe et al., 2016; Souri et
al., 2020c). In agreement with previous studies (Stavrakou et
al., 2017; Souri et al., 2017, 2020a; Shen et al., 2019), HCHO

Atmos. Chem. Phys., 24, 8677–8701, 2024 https://doi.org/10.5194/acp-24-8677-2024



A. H. Souri et al.: Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) 8687

columns increase over the NCP. HCHO columns tend to de-
crease over parts of central Africa (e.g., the Democratic Re-
public of the Congo) and the Amazon basin, potentially due
to reduced deforestation rates (De Smedt et al., 2015; Jones
et al., 2022). However, large variability in the signs of HCHO
trends over these regions is seen: Congo shows an opposite
trend to that of the Democratic Republic of the Congo, and
the northern portion of the Amazon basin has an increasing
trend. Encouragingly, prior knowledge captures the upward
trends over India and China along with the downward trends
over central Africa. However, the magnitudes and spatial fea-
tures of these trends are not entirely in line with OMI.

We do not fully understand the HCHO trends over the
oceans. Some of these patterns might be caused by transport
from nearby sources. For instance, areas around South Asia,
South America, and the Gulf of Mexico can be affected by
the trends over the land in their vicinity. However, trends over
several areas, such as the southern part of the Indian Ocean,
Australia, and the Sahara, are not fully explainable by nearby
sources. It is possible that certain patterns can be linked to
climate variability or OH (Wolfe et al., 2019) affecting the
oxidation of background VOCs; in-depth understanding of
HCHO trends over the oceans certainly deserves a separate
follow-up study.

The posterior estimates line up better with the OMI
trends, especially over the Amazon, India, and central Africa
(Sect. S3 in the Supplement). The correction factors, how-
ever, worsen the trends over the southeastern US and Canada.
One possible explanation for this may be the varying errors
from the data fusion algorithm, which tend to be reduced
more in summertime than in wintertime due to the larger
OMI HCHO signal. This results in some degree of incon-
sistency of the linear trend over these regions, with larger
interannual and interdecadal variabilities.

In summary, we saw that M2GMI NO2 and HCHO, both
inputs to the parameterization of OH, were broadly bet-
ter presented through the integration of OMI observations.
Consequently, the improvement is expected to elevate the
level of reliability in the experimental outcomes, particu-
larly in the context of the SOHnitro and SOHform simu-
lations. As for other important compounds, such as strato-
spheric columns, tropospheric O3, and water vapor, the com-
parison of the model with OMI total ozone columns shows
a strong degree of agreement (< 4% biases), with no signifi-
cant trend at the low to middle latitudes (Figs. S1 and S2).
The well-documented upward trend in tropospheric ozone
in the Northern Hemisphere is well reproduced by M2GMI
(Fig. S3). We did not validate GEOS water vapor simulations
because of the use of MERRA-2, which is thoroughly vali-
dated in Bosilovich et al. (2017). Furthermore, the compari-
son of integrated water vapor linear trends from our GEOS-5
run (2005–2019) with the satellite data presented in Borger
et al. (2022) shows remarkable agreement (Figs. S7–S8).

Figure 4. Same as Fig. 2 but for total HCHO columns. The lin-
ear trends in OMI SAO are smoothed by a median filter for better
visualization.

3.2 Added value of OMI to simulated tropospheric OH

Here, we present the results from three OMI-related experi-
ments (SOMInitro, SOMIform, and SOMInitroform) to un-
derstand the effect of OMI adjustments made to M2GMI on
TOH. Moreover, we calculate the response of TOH to NO2
and HCHO using Eq. (5).

Figure 5 consists of three columns, illustrating the percent-
age adjustments made by OMI NO2 using OI, the response of
TOH to NO2 concentrations, and the simulated TOH derived
from the SOMInitro experiment. The observed pattern of in-
crements aligns with the improvements seen in Fig. 1, with
positive (negative) values indicating underestimation (over-
estimation) of M2GMI. Broadly, the overestimations domi-
nate the underestimations, resulting in a global tropospheric
NO2 reduction of ∼ 4%. Upon segregating the increments
into four distinct seasons, it becomes evident that the ad-
justments do not uniformly apply to every season. This non-
uniformity is primarily attributed to biases in M2GMI influ-
enced by biomass burning (boxes A and C) (Sect. 3.1.1), both
of which exhibit strong seasonality.

Deciphering the precise chemical processes influencing
the response of OH to NO2 using a machine learning ap-
proach is challenging. However, it is widely recognized that
reactive nitrogen has a positive feedback on tropospheric
OH through increased NO+HO2 and ozone (Murray et al.,
2021; Zhao et al., 2020; He et al., 2021). Considering NO2
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Figure 5. The percentage of the adjustments applied to M2GMI NO2 fields within the troposphere suggested by OMI tropospheric NO2
columns for four different seasons (first column), the semi-normalized response of tropospheric OH to tropospheric NO2 changes based on
ECCOH offline calculations (second column), and the resulting effect of the adjustments on the tropospheric OH derived from the online
simulation (SOMInitro) (third column). MAM, JJA, SON, and DJF are abbreviations for March–April–May, June–July–August, September–
October–November, and December–January–February.

to be a surrogate for reactive nitrogen, similar tendencies are
expected, as is evident from the positive numbers from the
sensitivity results obtained from offline calculations. The re-
sponse of TOH to NO2 displays a pronounced seasonal cycle
stemming mainly from photochemistry. It is believed to have
some negative values for the sensitivity of OH to NO2 for ex-
tremely polluted regions due to radical termination through
NO2+OH or ozone titration (Nicely et al., 2018). While we
have not identified any negative values in the tropospheric
domain, we have observed significant negative values of OH
when perturbing NO2 at the model surface layer (Fig. S26 in
the Supplement). This tendency highlights ECCOH’s ability
to account for nonlinearities.

The impact of adjustments made by OMI NO2 on TOH
is most substantial over regions where both the adjustments
and TOH responses to NO2 are significant. For instance, the
large adjustments made over Europe in December–January–
February (DJF) do not substantially affect TOH because the
response value is low due to reduced photochemistry.

On a global scale, changes to TOH are much milder (1 %
reduction) than those occurring regionally. For instance, we
see substantial regional impacts (up to 20 %) over many ar-
eas, such as central Africa, the US Midwest, the Middle
East, and eastern Europe. In light of the global reduction in
OH, we observe global column average methane mixing ra-
tios (XCH4) increasing by 10 ppbv on average (Sect. S4 in
the Supplement). This augmentation happens monotonically

with an increase of 0.9 ppbv yr−1, ultimately resulting in a
∼ 15 ppbv difference at the end of the simulation (Fig. S13 in
the Supplement). This is essentially due to the long lifetime
of CH4. Likewise, the TOH reduction results in column av-
erage CO mixing ratio (XCO) enhancements which transpire
more locally than XCH4 does due to the shorter XCO life-
time. The XCO enhancements reach above 10 ppbv in Africa
(Sect. S5).

Figure 6 demonstrates the same scheme as Fig. 5 but with a
focus on SOMIform. Marked negative increments are found
in regions characterized by elevated isoprene concentrations
because of the overestimations of M2GMI biogenic isoprene
emissions. Positive increments are mostly confined to high
latitudes and certain areas of East Asia (Sect. 3.1.2).

The interplay between HCHO and OH is contingent on
the intricate dynamics governing HCHO production from the
oxidation of VOCs as well as methane and HCHO loss from
various chemical pathways (Valin et al., 2016; Wolfe et al.,
2019). In remote areas where HOx is low, the prevailing sink
of HCHO is through photolysis. Conversely, in more polluted
areas, the reaction of HCHO+OH emerges as a competing
loss pathway. Assuming a steady-state approximation, which
is a reasonable assumption for pristine areas, the photoly-
sis loss of HCHO dominates over the reaction with OH, re-
sulting in a linear relationship between HCHO and OH. In
other words, high (low) HCHO concentrations are indicative
of high (low) TOH. It is because of this that we use HCHO

Atmos. Chem. Phys., 24, 8677–8701, 2024 https://doi.org/10.5194/acp-24-8677-2024



A. H. Souri et al.: Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) 8689

as a proxy of TOH in remote ocean regions. In regions char-
acterized by heightened HOx levels, OH and HCHO become
decoupled. Encouragingly, our implicit parameterization of
OH has considerable skill in elucidating these intricate chem-
ical tendencies; specifically, it reveals muted responses in re-
gions with relatively tangible pollution levels, whereas posi-
tive responses are evident in ocean regions. Like the results
obtained for NO2, the response map has a seasonal cycle due
to photochemistry.

Because of the muted response of TOH to HCHO over
land, a substantial portion of geographical regions undergo-
ing significant adjustments made by OMI becomes less im-
portant. TOH primarily changes over oceanic areas in a way
that it decreases at low latitudes but increases at high lat-
itudes. The largest reduction occurs downwind in the Ama-
zon, where both increments and responses display large mag-
nitudes. As a result of these changes, we see a marginal in-
crease in XCH4 over the tropics, where OMI increments re-
duced TOH. The HCHO adjustment did not noticeably affect
XCO either (Sect. S5).

Modifications of HCHO by OMI do not signal substantial
changes in background VOC oxidation through OH. In fact,
TOH changes by this proxy are 1 order of magnitude less
than those by OMI NO2. This tendency is a result of two
key factors: (i) the adjustments wield their major influence
over the oceans, where M2GMI has a fair performance; and
(ii) the amount of information obtained from OMI HCHO
(i.e., AKs) remains somewhat limited in remote areas due to
low signal-to-noise ratios.

Due to the rather independent nature of the TOH responses
to NO2 and HCHO, where the former prevails over land and
the latter over ocean, the concurrent adjustments of HCHO
and NO2 using OMI (i.e., SOMInitroform) result in a rather
linear combination of outcomes derived from SOMIform and
SOMInitro (Fig. S21 in the Supplement). This linear out-
come is characterized by a large decrease in TOH at low lat-
itudes and a moderate increase at high latitudes, resulting in
a decrease in global TOH of ∼ 1%.

3.3 Synergy of the model and satellite observations for
explaining TOH long-term trends

3.3.1 The dominant contributor to TOH trends

Here, we take advantage of the wealth of information from
satellites and our well-characterized model used for the in-
puts to the parameterization of OH to rank the dominant
contributor to TOH linear trends. By assuming that TOH
follows a linear combination of each individual experiment
designed to isolate OH drivers and proxies (i.e., SOHnitro,
SOHform, SOHtropozone, SOHstratozone, and SOHwv),
wherein second-order (or higher-order) chemical feedback is
disregarded, we can determine the biggest contributor to the
TOH trend for each model grid box by finding which driver
or proxy holds the largest absolute amount. We only label

a grid if the absolute linear trend of the dominant driver or
proxy surpasses the second most dominant one by 30 %.

Figure 7 illustrates the dominant factor explaining TOH
trends. Several patterns can be found from this result. (i) NO2
plays a significant role in TOH trends in various polluted
areas, such as Asia and the Middle East. (ii) The upward
trend of TOH over the western Pacific Ocean is primarily
attributed to increased tropospheric ozone from Asia (e.g.,
Lin et al., 2017); also, we observe a significant fraction of
TOH over the tropical Atlantic Ocean, increasing because of
rising tropospheric ozone from Africa, Central America, and
South America (Edwards et al., 2003). (iii) HCHO is con-
volved with TOH trends over the tropical oceans. (iv) Water
vapor plays a pivotal role in shaping TOH trends over the
oceans across the globe. (iv) Stratospheric ozone columns
are mostly significant over the South Pole due to the ozone
healing process (Fig. S2). The next sections will focus on the
magnitudes of these trends and the degree to which they can
collectively explain the variance in TOH trends compared to
Sanalysis.

It is important to recognize that the analysis presented here
should be interpreted as a relative assessment of a limited
number of TOH drivers and proxies, rather than as an exhaus-
tive evaluation of all the physical and chemical processes that
are tied to TOH. Nonetheless, the data presented offer valu-
able insights into the TOH trends and can be used as a basis
for further research.

3.3.2 Magnitudes of linear trends of TOH key inputs

Figure 8 shows the TOH linear trends influenced by NO2
(SOHnitro), HCHO (SOHform), water vapor (SOHwv), tro-
pospheric ozone (SOHtropozone), and stratospheric ozone
(SOHstratozone). Discussions of each parameter follow.

– SOHnitro – the trends in TOH driven by NO2 show a
strong correlation with the a posteriori trend discussed
in Sect. 3.1.1, with low- and medium-income countries
experiencing an increase in TOH due to rising NO2 lev-
els, while high-income countries see a reduction in TOH
due to the opposite trend. The most significant increase
in TOH is observed over India, where both the NO2
trend and the TOH sensitivity to NO2 are prominent.
The most rapid regional decline in TOH seems to be
over the NCP because of NOx reductions that began af-
ter 2011. This finding is particularly noteworthy since
M2GMI did not reproduce this trend without OMI as a
constraint. The trend in TOH resulting from NO2 is pre-
dominantly anthropogenic in nature. This aligns with
the findings of Chua et al. (2023), who observed that
the impact of lightning NOx emissions on TOH trends
was relatively minor. The global trend in TOH driven
by NO2 is positive but with considerable variation due
to the significant disparities in how anthropogenic NOx
emissions have changed.
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Figure 6. Same as Fig. 5 but for HCHO.

Figure 7. The major contributor to TOH trends based on the largest absolute trends of TOH drivers and proxies above 30 % of the second
most dominant factor.

– SOHform – we saw that HCHO was a reasonable
proxy for TOH over the oceans. Accordingly, the TOH
trends are primarily observed over the oceans, espe-
cially over the Pacific and Indian oceans. This lines
up with the information gathered from the analysis of
M2GMI and OMI HCHO observations (Fig. 4). These
upward HCHO trends, as discussed in Sect. 3.1.2, may
be influenced by transport and dynamics. It is worth not-
ing that the increase in TOH tied to this proxy (HCHO)
is a global tendency attributable to the relatively uni-
form rise in HCHO levels across the oceans.

– SOHwv – water vapor is a primary source of OH.
The offline sensitivity of ECCOH captures this ten-
dency (Fig. S22 in the Supplement). Accordingly, the

TOH linear trends mirror those of integrated water va-
por (IWV) (Fig. S8), with major increases over the
oceans. Similar to the other experiments, the global
TOH increases because of rising water vapor in the at-
mosphere. We acknowledge that understanding the rea-
sons for changes in water vapor, which our model shows
to agree with Borger et al. (2022), is a complex subject
that goes beyond the scope of our research. It requires an
in-depth understanding of the water cycle, evapotranspi-
ration and precipitation rates, and the effect of temper-
ature on the air’s capacity to hold moisture, known as
the Clausius–Clapeyron relationship. However, a great
deal of effort has been made to demonstrate that global
water vapor levels have increased significantly in recent
decades. This is based on reanalysis data, microwave
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satellites, and in situ measurements (Trenberth et al.,
2005; Chen and Liu, 2016; Wang and Liu, 2020; Allan
et al., 2022), which is consistent with what our model
shows, as it is well constrained by MERRA-2 data.

– SOHtropozone – the impact of tropospheric ozone on
OH formation is widely acknowledged (Lelieveld et al.,
2016). Likewise, our ECCOH offline sensitivity tests
have revealed a largely positive correlation between
tropospheric ozone and OH (Fig. S23 in the Supple-
ment). Consequently, the linear trends observed in TOH
closely mirror those of tropospheric ozone in M2GMI
(Fig. S3). This tendency is especially noticeable in the
Atlantic Ocean, East and Southeast Asia, as well as
the northern region of the Pacific Ocean, where ris-
ing ozone levels have increased TOH. M2GMI suggests
that tropospheric ozone levels in the Southern Hemi-
sphere have decreased (Sect. S1), potentially leading to
a downward trend in TOH, an observation that has yet
to be fully confirmed (e.g., Thompson et al., 2021). This
finding is especially important given past research in-
dicating that models tend to exaggerate TOH asymme-
try between the Northern Hemisphere and the South-
ern Hemisphere (Strode et al., 2015; Naik et al., 2013).
The decrease in the simulated tropospheric ozone may
offer a plausible explanation for this tendency, but fur-
ther verification is deemed necessary. Like the previous
experiments, tropospheric ozone on average leads to a
global increase in TOH in 2005–2019.

– SOHstratozone – stratospheric ozone columns reduce
UV actinic fluxes, leading to a reduction in tropospheric
JO1D and thus OH, a tendency well reproduced by EC-
COH (Fig. S24 in the Supplement). Nonetheless, strato-
spheric columns did not change noticeably in the trop-
ics and at the middle latitudes, where OH production is
important. Consequently, the linear trends are close to
zero or faintly negative due to a slight upward trend in
the column. This tendency results in a rather uniform
decrease in TOH globally.

3.3.3 OMI contributions to TOH trends

It is attractive to gauge the additional information gained
from OMI to better represent the linear trends of TOH. To
achieve this, we need to analyze three sets of model out-
put: one with OMI scaling factors, one without OMI scal-
ing factors, and one with the NO2 and HCHO drivers (i.e.,
SOHnitro and SOHform). The linear trends from these sets
of model results are shown in Fig. 9. The trends in the first
column illustrate the overall effect of NO2 and HCHO on
TOH trends, while the other two subplots isolate the effect of
OMI from the prior information based on M2GMI. M2GMI
plays a significant role in shaping the trends in SOHnitro,
possibly due to the small discrepancy between the trends in

OMI and M2GMI columns over regions where TOH is re-
sponsive to the driver. The most significant impact of OMI on
NO2 is visible over the NCP. Concerning HCHO, OMI slows
down the upward trends in TOH over the oceans, which was
suggested by M2GMI. In general, M2GMI largely dictates
the overall shape of TOH trends driven by NO2 and HCHO,
possibly due to the small difference between the model and
OMI observations and/or the limited informational content in
OMI.

3.3.4 How well can these experiments explain the
simulated trends collectively?

We find that there is a good degree of correlation between the
sum of the linear trends and those of Sanalysis (R2

= 0.65),
indicating that a good portion of the variability in the TOH
trend can be explained well by these experiments (Fig. S25 in
the Supplement). Figure 10a shows the linear trend of TOH
from Sanalysis in 2005–2019, and Fig. 10b shows the sum of
the linear trends of the five OH key inputs. These maps are
one of the most recent and detailed TOH trends available, rel-
ative to newer studies (Nicely et al., 2018; Zhao et al., 2020;
Chua et al., 2023). The TOH trend from Sanalysis varies
greatly, where positive values are prevalent over the northern
parts of the Pacific Ocean, the Middle East, central Africa,
and several regions over East Asia. Negative trends are found
over the US, Southeast Asia, and the southern part of the
Pacific Ocean. The linear sum of the experiments strongly
aligns with Sanalysis, particularly over the Northern Hemi-
sphere, emphasizing that the selected parameters are sensible
choices for reproducing a large portion of the variance in the
TOH trend.

Revealing the unexplained portion of TOH trends, which
cannot be attributed to the selected TOH experiments, is
necessary. Within the model, various physiochemical factors
such as CO, CH4, dynamics, aerosols, and clouds can im-
pact the TOH trends. Although we will not delve into these
drivers in this study, we can identify unexplained parts of
TOH trends by subtracting the sum of trends derived from
the five primary TOH key inputs from those of Sanaly-
sis, which discounts second-order (or higher-order) chemical
feedbacks. Figure 10c displays the unexplained TOH trends
between 2005 and 2019. It is readily apparent that there are
uniform and significant downward trends in TOH in the trop-
ics and subtropics, where photochemistry is strong. This is
most likely triggered by increasing concentrations of CH4,
which is demonstrated in Fig. S10 in the Supplement, caus-
ing OH levels to decrease over time. It is very probable that
the extent of these downward trends in TOH has been exag-
gerated in our model because of the simulated CH4 increas-
ing too rapidly compared to in situ observations. The over-
estimation of the upward trend in CH4 in our model com-
pared to in situ observations could be caused by the biases
(∼ 3%) in sources minus sinks and/or the initial condition.
Consequently, the globally averaged TOH trend derived from
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Figure 8. The contribution of each TOH key input (addressed in this study) to TOH in 2005–2019. HCHO, NO2, and water vapor results are
observationally constrained. Stratospheric ozone columns yielded comparable results compared to the total ozone columns observed by OMI.
However, a large portion of the tropospheric ozone trend has remained unverified in the Southern Hemisphere. ENSO affects the variability
of TOH (Anderson et al., 2021), so we add a linear term to Eq. (4) that is a function of the Niño 3.4 Index. This helps prevent ENSO from
affecting the subsequent results. Dots indicate the statistically significant trends.

Figure 9. The resulting effect of tropospheric NO2 and HCHO on TOH linear trends during 2005–2019 (a, d). The contributions of OMI
information added on top of the prior knowledge (M2GMI) (b, e). The effect of the prior knowledge on shaping TOH linear trends (c, f).

Sanalysis may be slower than it should be. Lastly, an un-
explained strong upward trend in TOH over central Africa
lingers.

4 Conclusions

While a comprehensive multi-sensor or multi-species data
assimilation and inverse modeling approach, such as Souri
et al. (2020a, 2021) or Miyazaki et al. (2020), would be ideal
for fully harnessing the potential of satellite information to
improve multiple aspects of a model representing OH, this
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Figure 10. (a) The linear trends derived from the Sanalysis exper-
iment, the “best effort” to simulate the evolution of the CH4–CO–
OH cycle, from 2005 to 2019. The statistically significant trends are
superimposed by dots. (b) The linear summation of the five selected
TOH influences, i.e., water vapor, NO2, HCHO, and stratospheric
and tropospheric ozone, showing a strong degree of correspondence
to the top panel, particularly in the Northern Hemisphere. (c) The
unexplained portion of the TOH trends, which was not explainable
by the five experiments addressed in this research.

would be prohibitively expensive. Therefore, our simplified
approach serves the purpose of understanding the first-order
effects of observational adjustments to TOH drivers and
proxies before committing substantial resources to the im-
plementation or execution of an observationally constrained
full-chemistry model. Here, we implemented the newest ver-
sion of the parameterization of OH, following Anderson et
al. (2022), within NASA’s GEOS model, presenting an op-
portunity to understand and mitigate TOH biases caused by
misrepresentation of HCHO and NO2 concentrations with re-
spect to the state-of-the-art OMI NO2 and HCHO retrievals
using Bayesian data fusion as well as to unravel the intri-
cacies of TOH in its key inputs, such as tropospheric and
stratospheric ozone and water vapor.

We found large positive biases in tropospheric NO2
columns in M2GMI, the archived model used as an input to
the parameterization of OH, compared to OMI over Africa,
eastern Europe, and the US Midwest. Because of a large pos-
itive effect of NO2 (a surrogate for NOx) on TOH, a tendency
well captured by our implicit parameterization, these overes-

timations introduced significant regional biases in TOH of
up to 20 % and a global overestimation of TOH of 1 %. Con-
sistent with former work, we saw distinct disparities in the
signs of linear trends of tropospheric NO2 over high- and
medium-income countries (i.e., negative) and low-income
countries (i.e., positive). While M2GMI generally replicated
these trends, notable deviations were identified over China,
leading to an erroneous trend of TOH.

Pronounced inaccuracies with regards to both the simu-
lated HCHO magnitude and the trend in M2GMI were re-
vealed by OMI over land. However, this proxy for OH was
loosely connected to TOH in areas where photolysis was not
the major sink of HCHO (Wolfe et al., 2019), especially over
land. Over the oceans, where HCHO and TOH were highly
correlated, adjustments to M2GMI by OMI HCHO were rel-
atively mild, resulting in small alterations to TOH which
were 1 order of magnitude lower than those of NO2. These
mild alterations speak to either an insufficient amount of in-
formation in OMI or the reasonable accuracy of M2GMI over
pristine areas.

In general, five variables, i.e., NO2, HCHO, water vapor,
tropospheric ozone, and stratospheric ozone, could collec-
tively account for 65 % of the variance in TOH trends glob-
ally. To estimate this, we conducted various modeling exper-
iments to isolate the effects of NO2, HCHO, water vapor,
tropospheric ozone, and stratospheric ozone on long-term
trends of TOH in 2005–2019 at 1°×1° resolution. Except for
tropospheric ozone, these variables were either constrained
by observations or aligned with independent observations,
boosting confidence in our trend results. Given the robust
positive correlation between OH and NO2, HCHO, water va-
por, and tropospheric ozone over regions where photochem-
istry was active, TOH trends influenced by these variables
closely mirrored the trends in their respective drivers and
proxies. For instance, high- and medium-income countries
exhibited negative TOH trends driven by NO2. Rising tropo-
spheric ozone over East and South Asia, heavily vetted by
various observations (Gaudel et al., 2018), led to an upswing
in TOH over the Pacific Ocean. The trend of water vapor,
greatly in agreement with independent observations (Borger
et al., 2022), was dominantly positive over the oceans, lead-
ing to further enhancement of TOH. The rising HCHO over
the Pacific and Indian oceans suggested by the constrained
M2GMI was associated with increased TOH. The effect of
stratospheric ozone on TOH was marginal at the low and
middle latitudes due to negligible changes in stratospheric
ozone columns in M2GMI, reconfirmed by OMI total ozone
column observations.

A large offset between our analysis experiment with vary-
ing CO and CH4 concentrations was observed after removing
the sum of the linear trends derived from these five key exper-
iments from the analysis experiment, indicating that our fu-
ture research using ECCOH should include new experiments
isolating the effects of CO, CH4, and transport (e.g., Gaubert
et al., 2017; Zhao et al., 2020). Those experiments will re-
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fine the investigation of the unexplained portion of the TOH
trend.

The development of an effective parameterization of OH
that is capable of integrating advanced satellite-based gas re-
trievals and improved weather forecast models enabled us
to unravel the convoluted response of TOH to various pa-
rameters. Nonetheless, it is important to recognize some of
the limitations associated with our work: first, the offline na-
ture of the Bayesian data fusion algorithm makes the entire
experiment blind to the interconnected responses of various
compounds, such as ozone or aerosols, and to adjustments to
NO2 and HCHO. Despite this limitation, our work has pro-
vided valuable insights into the first-order effects of adjust-
ments on TOH key inputs. This can help quickly identify ar-
eas where our prior knowledge is least reliable for simulating
TOH. Second, the machine learning algorithm employed for
parameterizing OH is implicit and its response to drivers and
proxies is complex, making it difficult to quantitatively verify
against full chemistry models. However, by including a vast
number of parameters in the parameterization, Anderson et
al. (2022) boosted the ability to understand the convoluted
chemistry of OH. This has allowed for reproduction of OH
for events not included in the training dataset (Anderson et
al., 2022, 2023, 2024).

The longevity and stability of Aura’s record of observa-
tions have played a significant role in constraining and as-
sessing several important variables pertaining to TOH on a
global scale. This is exemplified by the wealth of information
obtained from OMI NO2, HCHO, water vapor, total ozone
columns, and Microwave Limb Sounder (MLS) temperature
and ozone, which are used directly or indirectly in our anal-
ysis. However, as Aura’s mission comes to an end, there will
be a gap in the monitoring of these variables. TROPOMI,
OMI’s successor, can help fill this gap, but its record of ob-
servation is still short; therefore, it is important to invest in
research to harmonize data from multiple satellite observa-
tions such as OMI and TROPOMI (e.g., Hilboll et al., 2013).
This is because each sensor can have different biases and spa-
tial representativities, which can lead to inconsistencies and
potentially conflicting values if they are used together.

Code availability. The OI-SAT-GMI Python pack-
age developed for this research can be found at
https://doi.org/10.5281/zenodo.10520136 (Souri, 2024a). GEOS-
Quickchem used to run the modeling experiments encompassing
ECCOH can be found at https://github.com/GEOS-ESM/
QuickChem.git (Manyin, 2023). The GEOS model can be ob-
tained from https://github.com/GEOS-ESM/GEOSgcm.git (NASA
GSFC, 2024). Offline ECCOH calculations to derive the sensitivity
of TOH to different drivers or proxies can be obtained from
https://doi.org/10.5281/zenodo.10685100 (Souri, 2024b).

Data availability. Satellite data can be ac-
cessed for level-2 OMI tropospheric NO2 at

https://doi.org/10.5067/MEASURES/MINDS/DATA204
(Lamsal et al., 2022), level-2 OMI total ozone columns at
https://doi.org/10.5067/Aura/OMI/DATA2024 (Bhartia, 2005),
OMI SAO HCHO at https://waps.cfa.harvard.edu/sao_atmos/data/
omi_hcho/OMI-HCHO-L2/ (Gonzalez Abad, 2023), MOPITT CO
(https://doi.org/10.5067/TERRA/MOPITT/MOP03JM_L3.008,
NASA LARC, 2000), and OMI and MLS TO3 at https://acd-ext.
gsfc.nasa.gov/Data_services/cloud_slice/data/tco_omimls.nc
(Ziemke, 2023).

In situ CO and CH4 observations can be obtained from
https://doi.org/10.15138/6AV8-GS57 (Helmig et al., 2021) and
https://doi.org/10.15138/VNCZ-M766 (Lan et al., 2023).

M2GMI model outputs can be downloaded from https://acd-ext.
gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/ (NASA God-
dard Space Flight Center, 2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-8677-2024-supplement.
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