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Abstract. A significant uncertainty in assessments of the role of clouds in climate is the characterization of the
full distribution of their sizes. Order-of-magnitude disagreements exist among observations of key distribution
parameters, particularly power law exponents and the range over which they apply. A study by Savre and Craig
(2023) suggested that the discrepancies are due in large part to inaccurate fitting methods: they recommended the
use of a maximum likelihood estimation technique rather than a linear regression to a logarithmically transformed
histogram of cloud sizes. Here, we counter that linear regression is both simpler and equally accurate, provided
the simple precaution is followed that bins containing fewer than ∼ 24 counts are omitted from the regression.
A much more significant and underappreciated source of error is how to treat clouds that are truncated by the
edges of unavoidably finite measurement domains. We offer a simple computational procedure to identify and
correct for domain size effects, with potential application to any geometric size distribution of objects, whether
physical, ecological, social or mathematical.

1 Introduction

The broad range of cloud sizes in the atmosphere poses a
significant challenge to the modeling of weather and cli-
mate. Small clouds tend to be most numerous, while large
clouds have more significant meteorological and climate im-
pacts. An approximate balance means that all size classes
contribute to overall cloud cover (Wood and Field, 2011), to-
tal rainfall (Peters et al., 2009) and the dissipation of buoyant
potential energy (Garrett et al., 2018). The commonly used
“divide-and-conquer” approach to the problem isolates a par-
ticular spatial scale for study, such as mesoscale convective
systems larger than∼ 100 km (Houze, 2004), shallow clouds
in the trades between 20 and 200 km (Stevens et al., 2020;
Bony et al., 2020) or sub-kilometer cumulus (Koren et al.,
2008; Mieslinger et al., 2019). While this approach has prac-
tical benefits, it cannot easily be used to address how clouds
of all scales interact.

Revealingly, independent of the spatial scale or cloud type
considered, the measured horizontal dimensions of clouds
tend to follow power law distributions such that the number

of clouds is proportional to their size to some power (Ca-
halan and Joseph, 1989; Wood and Field, 2011; Mieslinger
et al., 2019; Savre and Craig, 2023). Quantities that follow
power law distributions are often described as being “scale-
free” or “scale-invariant”, meaning that there is no “charac-
teristic” object scale as there would be in defining, e.g., an
exponential or Gaussian distribution. Power law behavior is
in fact quite general among physical, social and biological
systems, applying to, e.g., meteor diameters, neuronal firing,
personal incomes, city populations and forest sizes (Buzsáki
and Draguhn, 2004; Newman, 2005; Bettencourt et al., 2007;
Saravia et al., 2018).

Quantities that exhibit scale-free behaviors, however de-
terministically complicated they may be, allow for an impor-
tant mathematical simplification. That is, phenomena mea-
sured at any one scale shed light on the behavior at others.
They also present a practical challenge, which is the unavoid-
able limitation that geometrically defined objects must in-
evitably be measured within a domain of some finite size,
i.e., a domain that is not scale-free. The domain enforces a
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maximum scale for object measurement – the size of the do-
main – and this may not reflect the maximum scale that the
objects can attain.

For cloud areas a, we recently argued that improper con-
sideration of the scale of the measurement domain has con-
tributed to wide discrepancies in the reported nature of cloud
area distributions and in particular to the upper bound amax
to which a power law can be claimed to apply (DeWitt et al.,
2024). Because clouds cannot be arbitrarily small, there must
also be a lower bound amin to the power law regime, one that
has not yet been determined but that could approach the Kol-
mogorov microscale of ∼ 1 mm, below which turbulent cir-
culations are damped by viscous forces. Between amin and
amax, the power law regime can be represented by the proba-
bility distribution

n(a)∝ a−(α+1)
; amin < a < amax, (1)

where α is a constant, indicating that n(a) is linear on doubly
logarithmic axes. The upper bound at amax represents a “scale
break” beyond which studies generally find that the distribu-
tion is “cut off” by a regime following either a steeper power
law with a larger value of α or an exponential (Cahalan and
Joseph, 1989; Benner and Curry, 1998; Neggers et al., 2003;
Peters et al., 2009; Mieslinger et al., 2019; van Laar et al.,
2019; Christensen and Driver, 2021; Savre and Craig, 2023).

Estimates of the location of the scale break at amax dif-
fer widely. This uncertainty has underappreciated implica-
tions for studies of the role of clouds in climate because the
integral

∫ amax
amin

an(a)da, which is the total cloud amount, is
sensitive to the scale break location. For example, a cutoff
regime at areas of order∼ 10 km2, as suggested by some (Ca-
halan and Joseph, 1989; Benner and Curry, 1998; Neggers
et al., 2003; Savre and Craig, 2023), would imply that clouds
larger than ∼ 4000 km2 would be so rare that they would
contribute negligibly to the total, while other findings sug-
gest that such large clouds contribute approximately 50 % to
the global cloud cover (Wood and Field, 2011; DeWitt et al.,
2024).

The power law exponent α for cloud areas is also highly
uncertain, with similar implications for the relative roles of
different cloud types. The exponent determines the relative
numbers of small and large clouds. Values close to unity
(e.g., Peters et al., 2009; Wood and Field, 2011; Mieslinger
et al., 2019; DeWitt et al., 2024) imply that clouds of all or-
ders of magnitude contribute equally to the total cloud cover,
in which case small clouds that are often left unresolved by
models and measurements may be an important omission.
Conversely, values less than unity (e.g., Cahalan and Joseph,
1989; Benner and Curry, 1998; Neggers et al., 2003; Ko-
ren et al., 2008; Yamaguchi and Feingold, 2013; Bley et al.,
2017; Senf et al., 2018; van Laar et al., 2019; Savre and
Craig, 2023) indicate that large clouds dominate the total area
and so remain a reasonable subject for more focused study.

The lack of consensus among studies on the value of α
may be due to differences in the dominant cloud type that
was considered or how diurnal variability affects amax (van
Laar et al., 2019). However, even if temporal and spatial vari-
ability of the size distribution exists, there remains a nec-
essary prerequisite to measuring such variability, which is
to first ensure that the size distribution is being accurately
measured in the first place. To this end, Savre and Craig
(2023) recently argued that, while size distributions do show
some variability, the use of inaccurate statistical methods to
fit power law distributions could also partially explain the
lack of consensus among prior measurements of cloud sizes.
In particular, they showed that the common method of fitting
a least-squares linear regression to a logarithmically trans-
formed histogram of cloud areas can lead to biased measure-
ments of α.

Here we argue that the choice of fitting method is less im-
portant than whether past studies properly accounted for the
finite size of the study domain. A finite domain size is a gen-
eral problem for measuring scale-free quantities. For exam-
ple, Serafino et al. (2021) argued that scaling properties of
networks can be obscured by such finite-size effects, causing
a truly scale-free network to appear non-scaling.

Similarly, cloud sizes must necessarily be measured within
a non-scaling finite domain. It is easy to appreciate that the
area of clouds larger than the domain size cannot be mea-
sured. A more subtle effect is that the measured numbers of
clouds of a given area, even those smaller than the domain
area, are highly sensitive to whether clouds that cross the do-
main edge are included or removed in the measured distri-
bution (an example is shown in Fig. 1). We term such clouds
“truncated clouds” as they appear effectively truncated by the
domain edge, with only the portion of the cloud lying within
the domain available for measurement.

Whether truncated clouds are included or removed from
distribution fits is an issue rarely mentioned in past studies,
but those that do consider the effect tend to remove truncated
clouds without applying any correction factor (e.g., Peters
et al., 2009; Christensen and Driver, 2021). One exception is
a study of one-dimensional cloud chords by Wood and Field
(2011), who found that the removal of chords truncated by
the domain edge leads to an undercounting of large chords
relative to what would be measured in a larger domain. For
cloud areas, it may be hypothesized that a similar effect could
explain the observed differences in measurements of amax.

In this study, Sect. 2 reconsiders the hypothesis proposed
by Savre and Craig (2023) that discrepancies in distribution
parameters can be largely explained by improper methods
used to fit a power law distribution to measurements of cloud
sizes. Section 3 then examines how the choice of either in-
cluding or removing clouds that are truncated by the domain
edge can change the measured cloud size distributions. We
suggest that such a methodology may bias measured distri-
bution parameters, and we offer recommendations for future
studies measuring any object size distribution within a finite
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Figure 1. An example cloud mask derived from GOES satellite
imagery, where cloudy pixels are white or orange and clear pix-
els are dark blue. Clouds which are truncated by the domain edge
are marked in orange. The areas of such “truncated clouds” cannot
be properly quantified as some unknown portion lies beyond the
measurement domain.

domain, for both clouds and any other geometrically defined
objects.

2 Fitting power law distributions to empirical data

The most straightforward method to fit a power law to em-
pirical measurements of cloud areas is to bin the data into
discrete bins of constant width δa, resulting in a discrete set
of counts ni for each bin i. The logarithm of Eq. (1) is the
linear equation logni =−(α+1) loga+ const., so a line can
be fit to logni vs. loga to estimate α using a least-squares
linear regression.

Goldstein et al. (2004) showed that such a linear-
regression-based estimate can be biased by up to 36 % rel-
ative to the known value in computer-generated power-law-
distributed data. “Logarithmic binning,” with bins of expo-
nentially increasing width or constant δ loga, increases bin
counts ni at large a. Increasing ni reduces the “statistical
error”, which is the standard deviation of ni evaluated over
many hypothetical realizations of a given experiment. This
reduction in the statistical error enables more accurate esti-
mates of α (White et al., 2008). In the case of logarithmic
binning, the calculated slope of a histogram is −α rather
than −(α+ 1) because the number of clouds in a given bin
is the bin width, which is proportional to a, times the dis-
tribution in that region, which is a−(α+1) (mathematically,
dn/dlna = adn/da).

However, even with logarithmic binning, linear regression
has been found to produce a biased estimate of α relative to a
known value for empirical tests that use computer-generated
power-law-distributed data (Goldstein et al., 2004; White
et al., 2008; Clauset et al., 2009). Nonetheless, linear regres-
sion – whether to linearly or logarithmically spaced bins – re-
mains a commonly employed method in cloud studies (e.g.,
Wood and Field, 2011; Yamaguchi and Feingold, 2013; Bley
et al., 2017; Senf et al., 2018).

There are two other linear-regression-based approaches
worth mentioning, i.e., cumulative distributions and rank-
frequency plots, both of which approximate the integral∫ a
amin

n(a′)da′. Fitting a linear regression to such plots has
been argued to be superior to fitting a linear regression
to a histogram of counts (Clauset et al., 2009). Such ap-
proaches work well for unbounded power law distributions
with amax→∞, but for a truncated power law distribution
with finite amax the cumulative distribution is not linear, even
with doubly logarithmic axes (Savre and Craig, 2023). The
nonlinearity implies that a linear regression would be inap-
propriate for estimating α.

An alternative method of fitting a power law to data, max-
imum likelihood estimation, is argued on empirical grounds
to be generally more accurate than linear-regression-based
approaches (Goldstein et al., 2004; Newman, 2005; White
et al., 2008; Clauset et al., 2009). Maximum likelihood es-
timation employs the “likelihood function”, which estimates
the probability of observing the measured data given many
different possible power law distributions. The distribution
that is the best fit is the one that maximizes the likelihood
function. Savre and Craig (2023) argued that some of the
disagreement between prior measurements of cloud size dis-
tributions could be resolved through the use of maximum
likelihood estimation rather than linear-regression-based ap-
proaches.

Evidence supporting the superiority of maximum likeli-
hood estimation put forth by Goldstein et al. (2004), White
et al. (2008) and Clauset et al. (2009) was obtained from
numerical experiments using synthetic data generated from
an unbounded power law (i.e., amax→∞ in Eq. 1). In this
case, the likelihood function may be analytically maximized,
resulting in a simple formula that can be used to estimate
α. For a truncated power law with finite amax, however, the
likelihood function must instead be numerically maximized
(Savre and Craig, 2023), introducing much more complex-
ity and computational expense to the analysis (Hanel et al.,
2017), especially when compared to a least-squares linear re-
gression.

In fact, because the truncation at amax removes the portion
of the distribution at large a that contains the most statisti-
cal errors, it might be argued that linear-regression-based ap-
proaches are more accurate for power laws that are bounded,
as they inevitably are for clouds. Indeed, Goldstein et al.
(2004) found that, when linear regression was applied to only
the five smallest linearly spaced bins, which effectively trun-
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cated the distribution at the upper limit of bin 5, the power
law exponent was estimated accurately relative to the known
value.

To evaluate the accuracy of the linear regression approach
for fitting a power law with finite amax, as is relevant for
any physical dataset, we randomly sample values for a from
a synthetic truncated power law distribution (Eq. 1) with
parameters α = 1, amin = 10 and amax = 1000, which are
close to what might be measured for cloud sizes. This is
accomplished by first drawing N values ai from an un-
bounded power law (amax→∞) using the Python package
powerlaw (Alstott et al., 2014) and then removing and re-
drawing values larger than amax until all N values lay within
(amin,amax). This process is repeated until 200 “samples”
were created, each with N = 1000, 3000 or 10 000 values.
Samples are then binned into 30, 100 or 300 logarithmically
spaced bins, and a “minimum bin count” threshold is applied,
which removes any bin with a count lower than a range of
specified thresholds between 0 and 50. A fit to each sample
is then performed only if the remaining bins span at least 1
order of magnitude in a. This requirement is necessary for
any fitting method because power law distributions funda-
mentally describe systems spanning many scales (Newman,
2005) but is less stringent than the span of 2 orders of mag-
nitude recommended by Stumpf and Porter (2012). Because
the fitting accuracy is increased for datasets spanning a larger
range of values, the requirement of 1 order of magnitude used
here represents a conservative threshold for the purpose of
evaluating fitting methods using a known power law distri-
bution. If power law behavior itself is in question, a larger
span is required.

Estimated values of the power law exponent, denoted as α̂
to avoid confusion with the specified value α, are determined
by fitting a least-squares linear regression to the bins satis-
fying the above criteria. Statistical uncertainty ε associated
with fitted values α̂ is estimated using the Python package
scipy (Virtanen et al., 2020) as 2 standard errors on the lin-
ear regression, corresponding to a 95 % confidence interval.
For each combination of sample size, number of bins and
minimum bin threshold, 200 samples are generated. A “fail-
ure rate” is calculated as the fraction of estimates that do not
include the true value α = 1 within their 95 % uncertainty
range:

failure rate≡
count of α̂ 6∈ (α− ε,α+ ε)

200
. (2)

We define an “accurate” estimation method as one whose
failure rate is less than 5 %. Selected tabular results are listed
in Appendix D.

As shown in Fig. 2, if the minimum bin count threshold is
less than 24, α cannot be accurately estimated using a linear
regression technique, in agreement with what was argued by
Goldstein et al. (2004), White et al. (2008) and Clauset et al.
(2009). However, regardless of sample size or the number of
bins, if the regression is only applied to bins with counts of

Figure 2. Failure rates for fitting α to synthetic data using a linear
regression to logarithmically spaced bins, as a function of the min-
imum required count in each bin. Each point represents a unique
combination of the number of bins, the sample size and the min-
imum bin count threshold. Minimum bin count thresholds greater
than 24 always ensure accurate estimates of α, while smaller thresh-
olds sometimes produce inaccurate estimates. While some points
represent low failure rates for low bin count thresholds, these thresh-
olds cannot be relied on as their accuracy depends on the sample
size and number of bins.

at least 24, estimates of α̂ determined from linear regression
lay outside of uncertainty bounds less than 5 % of the time,
which is consistent with a 95 % confidence threshold. In this
sense, they are accurate.

Applying a simple rule that least-squares linear regression
only be applied to those bins with sufficiently large counts
may seem obvious: estimating any statistical measure using
a very small sample tends to result in error. In this particular
case of statistically independent measurements, the low fail-
ure rates for high minimum bin count thresholds can be un-
derstood in terms of the central limit theorem, where the suc-
cessive measurement and binning of power-law-distributed
variables can be interpreted as a counting process (see Ap-
pendix A). Provided bin counts ni exceed approximately 24,
statistical error in both counts and the logarithm of the counts
follows a Gaussian distribution (Fig. 3). In this case, general-
purpose linear regression packages that assume Gaussian er-
ror at each point may be used to accurately estimate the ex-
ponent of a power law distribution.

In summary, whether binning is done linearly or logarith-
mically, there may be bias in previously calculated values of
α for cloud area distributions that are power-law-distributed,
but only if bins with fewer than 24 counts are included in
the regression. A very simple fix is to omit such bins. Other
studies that estimated α over a range of scales that exclu-
sively included large bin counts (e.g., Benner and Curry,
1998; Cahalan and Joseph, 1989; Wood and Field, 2011; De-
Witt et al., 2024) may have obtained estimates of α that were
as reliable as maximum-likelihood-derived estimates. In fact,
Mieslinger et al. (2019) estimated α for shallow cumulus us-
ing both a linear regression to logarithmically spaced bins
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Figure 3. Statistical error in measured counts ni (a) or logni (b) within a bin bounded by 10 and 100 for a collection of 1000 samples, each
containing 5000 randomly generated power-law-distributed random variables xi with exponent α = 1 (Eq. 1). Each sample has a count ni in
the bin, and the plot shows a histogram of these counts ni for all 1000 samples. The plot is thus a “histogram of histograms”. The p values for
normality using a Kolmogorov–Smirnov test are 0.333 for ni and 0.326 for logni , indicating that the null hypothesis of Gaussian variability
cannot be excluded using a 95 % confidence threshold in either case. Table A1 shows p values for more combinations of bin location and
sample size.

and maximum likelihood estimation, finding that both fitting
methods produced similar results.

Clauset et al. (2009) state that, while a histogram that is
linear when logarithmically transformed is not sufficient to
identify a power law distribution, linearity is certainly nec-
essary. The challenge with cloud sizes is that some portions
of the cloud size distribution appear linear in some studies
but are clearly nonlinear in others. For example, Cahalan and
Joseph (1989), Benner and Curry (1998) and Neggers et al.
(2003) all find a scale break at ∼ 1 km2, where a power law
regime transitions to an exponential or a different power law
with a much larger value of α. Either case indicates a clear
nonlinear portion of the doubly logarithmic histogram at or
beyond the scale break. This is in disagreement with other
studies that find linear power law scaling up to ∼ 10 km2 or
∼ 100 km2 (van Laar et al., 2019; Savre and Craig, 2023)
and especially with the findings of power law scaling extend-
ing beyond 105 km2 (Wood and Field, 2011; Christensen and
Driver, 2021; DeWitt et al., 2024). Differences in the choice
of fitting method used, whether maximum likelihood estima-
tion or regressions to linearly or logarithmically spaced bins,
cannot explain these differences in measured amax. While
differences in meteorological conditions may contribute, me-
teorological influences may still be obscured by methodolog-
ical problems. We next explore how the improper treatment
of clouds that are truncated by the edge of the measurement
domain could influence measured size distributions.

3 How a finite domain changes measured size
distributions

Truncated clouds, which span the domain edge (Fig. 1),
present a conundrum. If one wants to accurately measure
the size distribution within a finite domain, should one re-

move them from consideration, risking undercounting clouds
in some size classes, or should the clouds be included, risking
inaccurate area measurements? To investigate the magnitude
of this truncation effect, we explore measured size distribu-
tions for various domain sizes.

3.1 Atmospheric cloud measurements, the percolation
model and domain subsampling

For measurements of atmospheric clouds, we use data from
the Advanced Baseline Imager (ABI) aboard the GOES-West
(GOES-17) satellite. GOES-West is a geostationary satellite
centered at 137° W with a nadir-imaging resolution of ap-
proximately 2 km. A preprocessed cloud mask product that
attempts to identify every pixel as “cloudy” or “clear” is
used, and so each “image” is a binary array of pixels spec-
ified as 1 for cloudy or 0 for clear. A total of 10 processed
images are used, each taken at local noon (21:00 UTC) be-
tween 1 and 10 June 2021.

We use the 2000× 2000 pixels located in the center of the
image and approximate all pixel dimensions as 2 km× 2 km,
which underestimates the true pixel length dimensions by at
most 12 %. The chosen domain is in the central Pacific be-
tween longitudes of 117 and 157° W and latitudes of 19° S
and 19° N. There are no missing data for the domain and time
period considered. Because clouds are fractal, clouds made
up of a small number of pixels appear unrealistic because
their shapes are overly influenced by the shape of non-fractal
square pixels (Christensen and Driver, 2021). Thus, fits for
the power law exponent are restricted to cloud areas larger
than 10 times the area of 1 pixel (DeWitt et al., 2024).

We also consider size distributions for more idealized ob-
jects. The uniform square lattice, adopted from percolation
theory, is a two-dimensional square lattice where every site

https://doi.org/10.5194/acp-24-8457-2024 Atmos. Chem. Phys., 24, 8457–8472, 2024



8462 T. D. DeWitt and T. J. Garrett: Finite domains cause bias in cloud size distributions

(or cell) is occupied with uniform probability P. “Clusters”
are defined as regions of adjacent occupied sites (Stauffer and
Aharony, 1992), and their area a is defined as the number of
occupied sites in a single cluster. The mean cluster area 〈a〉
tends to increase with increasing P because a high site occu-
pation probability increases the likelihood of site connection
(Stauffer and Aharony, 1992).

A central result of percolation theory is that, as P ap-
proaches a critical point Pc ≈ 0.592746. . ., 〈a〉 tends to in-
finity and the distribution of cluster areas follows a power
law n(a)∝ a−τ , where τ = 187/91. The power law is only
exact in the limit of large clusters and an infinite lattice but
serves as a close approximation to the size distribution of
clusters that are larger than about 10 to 20 sites (Stauffer and
Aharony, 1992). In finite lattices, the size of the largest clus-
ter is limited by the size of the lattice, and so the power law
regime cannot extend to arbitrarily large scales as it does for
an infinite lattice. This “cutoff” is often modeled by an ex-
ponential function n(a)∝ a−τ e−a/ac , where ac is the charac-
teristic area of the largest clusters, a function of lattice size
(Stauffer and Aharony, 1992).

The percolation model is useful here for studying distri-
butions of object size distributions in finite domains because
the distribution of cluster sizes is known exactly. In partic-
ular, any deviation from power law scaling at the large end
of the cluster size distribution is known to exist because the
lattice has a finite size. Models similar to the uniform square
lattice used here have also been leveraged previously to ex-
plain the fractal dimension of precipitating regions (Peters
et al., 2009) and of the power law scaling in cloud sizes itself
(Savre and Craig, 2023).

We simulate three 10 000× 10 000 percolation lattices at
the percolation threshold P= 0.592746. For both the GOES-
derived cloud masks and the percolation lattices, clouds or
clusters are defined according to the convention that adja-
cent pixels are considered connected and diagonals are not.
This is standard practice in both percolation theory (Stauffer
and Aharony, 1992) and past cloud studies (e.g., Kuo et al.,
1993; Wood and Field, 2011). Individual object areas are cal-
culated by summing connected pixel areas, and an object is
flagged as “truncated” if it is connected to the lattice bound-
ary (Fig. 1).

To test how the domain or lattice size affects the measured
area distributions, the binary arrays representing cloud fields
or percolation lattices are subdivided as follows: if the shape
of the original array is L×L grid points, with L= 10000
for the percolation lattices and L= 2000 for the GOES-West
images, subarrays are created by choosing a value q and di-
viding the original array into subarrays of size L/q ×L/q.
We use values of q ∈ {5,50,200,500} for the percolation lat-
tices and values of q ∈ {10,40,100} for GOES images. Thus
the percolation subarrays have side lengths of 2000, 200, 50
or 20 grid cells, which match the dimensions of the original
GOES array and its subarrays.

3.2 Measured size distributions as a function of domain
truncation effects

For each subdomain considered in the cloud imagery, if trun-
cated clouds are removed from the size distributions, bin
counts are increasingly undercounted at larger object areas as
shown in Fig. 4. A spurious scale break is introduced at these
sizes that resembles an “exponential tail”, a functional form
suggested by Savre and Craig (2023) as being a real charac-
teristic of clouds under certain circumstances. The form of
the scale break also resembles many prior findings for both
simulated and observed clouds (e.g., Cahalan and Joseph,
1989; Benner and Curry, 1998; Neggers et al., 2003; Heus
and Seifert, 2013; Senf et al., 2018; van Laar et al., 2019;
Christensen and Driver, 2021). The locations of the spuri-
ous scale breaks, like those proposed in the literature, span
several orders of magnitude but only depend on the domain
size. A scale break is introduced because larger clouds are
more likely to be truncated and therefore removed from the
analysis (Fig. 5). This effect occurs for all the domain sizes.
The clouds need not be particularly large to be affected, as
the scale break appears at surprisingly small cloud areas oc-
cupying between 1 % and 0.1 % of the subdomain area.

Alternatively, if truncated clouds are included in the his-
togram, they are placed in a smaller-size bin than that in
which they belong. This leads to an overcount for all the bins,
particularly for large clouds and a spurious local maximum
in cloud frequency for clouds with areas close to the domain
area.

The effect of miscounting large clouds in a finite domain
is also mirrored in the percolation lattices, where either a cut-
off regime (an undercounting) or a local maximum (an over-
counting) is introduced into the size distribution, respectively
(Fig. 6). Because percolation clusters are known to follow a
power law size distribution, the undercounting or overcount-
ing can only be caused by the finite size of the lattice. This
illustrates how truncation effects are not limited to atmo-
spheric clouds but could affect measured size distributions
of any phenomenon that is measured within a finite domain.

The simple remedy of calculating α by fitting a power law
over a relatively linear region of the distribution that is sub-
jectively defined, as is often done, can lead to an overestimate
of α if truncated clouds are removed and an underestimate if
they are included. As an example, Fig. 7 depicts a hypothet-
ical scenario where the cloud area distribution is measured
using images that all cover a domain 100× 100 km in size.
For this purpose, we use all the 100× 100 km subdomains
from GOES. Values of α are calculated over a subjectively
defined linear range of scales for both cases of including and
excluding truncated clouds in the distribution. Regardless of
whether least-squares linear regression or maximum likeli-
hood estimation is used, including truncated clouds in the
fit for α leads to underestimates of 36 % and 19 %, respec-
tively, while excluding them leads to overestimates of 24 %
and 20 %, respectively, relative to values calculated for the
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Figure 4. Histograms of cloud areas for several sizes of subdomains from GOES-West. Filled shapes indicate histograms which do not
include truncated clouds, while hollow shapes include truncated clouds. Hollow shapes are offset vertically by a factor of 10 for clarity. The
vertical dashed lines mark the smallest bin in which 50 % of the objects are truncated by the domain edge for each domain size.

Table 1. Fits from the hypothetical scenario where cloud areas are measured within the 100× 100 km GOES subdomains and fits are obtained
over a subjectively defined linear region (Fig. 7). Fits are obtained using both linear regression (LR) as described in the text and maximum
likelihood estimation (MLE) as described by Savre and Craig (2023). Errors for MLE fits are calculated using a standard bootstrapping
procedure and correspond to the 95 % confidence interval. For comparison, fits to clouds measured in the full domain are included as “truth”.
“Difference” is the difference in α̂ between the two domain sizes. The difference is expressed in units of standard errors as calculated from
the subdomains.

Domain size Fit range Excluding Including Excluding Including
(amin,amax) truncated truncated truncated truncated

LR α̂ LR α̂ MLE α̂ MLE α̂

4000× 4000 km (20 km, 38 070 km) 0.93± 0.05 0.90± 0.04 0.97± 0.01 0.96± 0.01
100× 100 km (20 km, 800 km) 1.2± 0.2 0.7± 0.2 1.22± 0.02 0.79± 0.01

Difference 3.0σ −2.7σ 33.1σ −29.2σ

Figure 5. Histogram of cloud areas measured in the 400× 400 km
subdomains, as in Fig. 4, but separated into those that are trun-
cated by the edge of the domain (crosses) and those that are not
(hexagons). At small areas, the number of truncated clouds is negli-
gible compared to the number of non-truncated clouds, but at larger
areas the pattern reverses and the number of non-truncated clouds
becomes negligible relative to the number of truncated clouds.

full 4000× 4000 km domain (Table 1). These errors would
be greater if larger area values were included in the fit or if

the domain were smaller. Nonetheless, it is clear from Fig. 7
that both approaches remain well-approximated by a power
law distribution, and so the truncation effect could easily be
missed if only one approach was presented. This would lead
to reported power law behavior with a value of α that is a sig-
nificant departure from the true value that would have been
measured if the domain had been larger.

We recommend, as a simple solution for the errors intro-
duced by domain truncation effects, only analyzing bins con-
taining a small number of truncated clouds ntruncated relative
to the total in each bin ntotal. Because larger clouds are more
likely to be truncated by the domain edge (Fig. 5), this proce-
dure effectively removes the large end of the size distribution
from the fit. Conveniently, in practice this procedure some-
times also enforces the minimum bin count threshold of 24
that is necessary for reliable linear-regression-derived fits for
the power law exponent.

In Table 2, estimates of α are listed for the region where
ntruncated/ntotal < 0.5 for a series of subdomains created from
the GOES cloud masks and the percolation lattices. Although
imperfect, when a 50 % threshold is used, fitted values for
α are much less sensitive to the choice of fitting method or
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Figure 6. As for Fig. 4 but for cluster areas in the percolation lattices.

Table 2. Estimated values of α (denoted as α̂) to cloud areas measured within the full domain and subdomains over the region where
ntruncated/ntotal < 0.5 as a function of the choice of including or excluding truncated clouds in the fit. Only those subdomains in which the
fitting region spans at least 1 order of magnitude are included. Fits are obtained using both linear regression (LR) as described in Sect. 2
and maximum likelihood estimation (MLE) as described by Savre and Craig (2023). Errors for MLE fits are calculated using a standard
bootstrapping procedure and correspond to a 95 % confidence interval.

Domain size Fit range Excluding Including Excluding Including
(amin,amax) truncated truncated truncated truncated

LR α̂ LR α̂ MLE α̂ MLE α̂

GOES cloud masks

4000× 4000 km (80 km2, 36 912 km2) 0.94± 0.05 0.90± 0.05 0.95± 0.02 0.92± 0.02
400× 400 km (80 km2, 1481 km2) 1.0± 0.1 0.8± 0.1 1.02± 0.03 0.85± 0.02

Percolation lattices

Exact result 187/91− 1 1.055 1.055 1.055 1.055
10 000× 10 000 site (20, 168 322) 1.06± 0.03 1.03± 0.02 1.000± 0.003 1.040± 0.003
2000× 2000 site (20, 13 106) 1.07± 0.02 0.99± 0.03 1.060± 0.003 1.020± 0.003

Figure 7. Example of how a measurement α̂ of the power law ex-
ponent could be biased by whether or not truncated clouds are in-
cluded in the analysis. The histograms shown are created using all
100× 100 km subdomains from GOES. The same histograms are
shown in Fig. 4 but spanning a wider range of scales. This particu-
lar range of scales is heavily influenced by the choice of including
truncated clouds. Fits for α are shown in Table 1.

whether truncated clouds are included or removed. The 50 %
threshold represents a compromise between allowing for a
significant range of scales to be analyzed and removing those
bins most affected by truncation effects. A more stringent
threshold of 10 % (not shown) was found to produce similar
results but to omit a larger portion of the distribution from
the fit.

Regardless of the domain size, truncation effects occur.
For robust power law fits, the resolution ξ must be suffi-
ciently small so that the distribution spans the recommended
2 orders of magnitude (Stumpf and Porter, 2012) even after
the 50 % threshold is applied. For the square domains con-
sidered here, using a lower limit for the fit of amin = 10ξ2,
we find that the domain length L must be on the order of
L/ξ ∼ 300 to satisfy this requirement.

In principle, because the 50 % threshold removes larger
objects in the distribution that may be of scientific interest,
an algorithm could be devised to correct cloud truncation
effects. One such algorithm was used by Wood and Field
(2011). However, it was assumed that clouds are square-
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shaped. In general, any correction algorithm requires some
similarly questionable assumption, and so considerable cau-
tion should be exercised when devising such an algorithm.
This issue is discussed further in Appendix B.

3.3 Finite-domain effects in periodic domains

One commonly employed method for reducing artifacts
caused by domain boundaries in cloud simulations is to uti-
lize doubly periodic simulations that allow fluxes out of one
side of the numerical grid to re-enter on the opposite side
(e.g., Neggers et al., 2003; Yamaguchi and Feingold, 2013;
Heus and Seifert, 2013; Garrett et al., 2018). Unfortunately,
even without a domain edge, simulations with periodic do-
mains still suffer from a finite domain area that modifies the
cloud size distribution. For example, consider the limiting
case of a model composed of a single horizontal grid cell.
Even with a periodic domain that maintains flux conserva-
tion laws, the cloud size distribution would nonetheless be
unphysically constrained to one possible cloud size, leaving
α undetermined.

The impact of employing periodic domains may easily
be examined within percolation lattices. Because each site
has an occupation probability that is independent of the sur-
rounding sites, the model can be made periodic simply by
changing the site connectivity to be periodic at the lattice
boundaries. Specifically, if a lattice of size L×L sites has
coordinates (i,j ) and if both sites (1,b) and (L,b) are oc-
cupied, they are defined as part of the same cluster for any
index b. Similarly, sites (c,1) and (c,L) are also part of the
same cluster when both are occupied for any c.

In this case, as Fig. 8 shows, size distributions in periodic
percolation lattices remain strongly influenced by the finite
lattice size, appearing qualitatively similar to those measured
in non-periodic lattices with truncated clusters included in
the size distribution (Fig. 6). That is, distributions have a lo-
cal maximum for cluster areas that are similar to the area of
the domain. Such a local maximum is an example of a non-
power law size distribution that is not representative of the
power law cluster size distribution that is known to charac-
terize a larger lattice. The implication is that periodic bound-
ary conditions cannot be adopted as a fix for finite-domain
effects on a measured size distribution.

3.4 Finite-domain effects for exponential distributions

Even if the distribution of object sizes does not follow a
power law, domain truncation effects may still bias measured
size distributions. As an example, consider the distribution of
raindrop sizes as measured by the new Differential Emissiv-
ity Imaging Distrometer (DEID). The DEID measures rain-
drop mass by measuring the time it takes for raindrops to
evaporate after landing on a hotplate (Rees et al., 2021). Wa-
ter drop areas and lifetimes can be estimated from images of
the hotplate, from which precipitation rates and size distribu-

tions can be estimated based on first-principles heat trans-
fer physics. Because the procedure requires calculation of
size distributions of droplets within a finite two-dimensional
image, drop size distribution estimates may be affected by
droplets truncated by the edge of the image in a similar man-
ner to images of cloud fields taken by a satellite.

The main difference between precipitation and cloud size
distributions is that precipitation size distributions tend to
follow an exponential rather than a power law (Marshall,
1948; Singh et al., 2023). Nonetheless, removal of truncated
droplets from the analysis would still influence the measured
distributions. This can be illustrated by examining a manu-
factured exponential distribution. For this purpose, we create
a percolation lattice with a site occupation probability just
smaller than the critical probability Pc. In this case, analyti-
cal results suggest that cluster sizes follow a power law with
an exponential tail (Stauffer and Aharony, 1992). The char-
acteristic cluster size of the exponential tail increases without
bound as the site occupation probability approaches Pc.

Figure 9 shows histograms of cluster sizes calculated from
percolation lattices with a site occupation probability equal
to P= 0.5 for several sizes of lattice subdomains. As shown
in Appendix C, in this case the cluster size distribution is
exponential for clusters larger than ∼ 200 sites. The fraction
of truncated clusters, relative to the total for each bin, never
exceeds 50 % in the 10000× 10000 and 200× 200 lattices,
indicating that truncation effects are insignificant. However,
a histogram taken from the 50× 50 lattices is strongly influ-
enced by the removal of truncated clusters, thus undersam-
pling large clusters relative to sampling done within a larger
domain.

As with power laws, sufficiently large bins in an expo-
nential distribution are dominated by truncated clusters. Ap-
plying the same 50 % truncated cluster criterion provides a
straightforward method to identify which bins are most in-
fluenced by the choices of including or removing truncated
clusters. A more accurate size distribution can still be ob-
tained provided that these bins are omitted from the fit.

4 Conclusions

There is significant disagreement in the literature on what
the appropriate choice of distribution should be to describe
cloud horizontal areas. Most studies find that cloud areas fol-
low a power law n(a)∝ a−(α+1), although there is consid-
erable disagreement on the range of scales over which the
power law applies and the value of α. A recent study pro-
posed that, while differences in local climatological charac-
teristics contribute to variability, some of the disagreement
is due to the use of inferior linear-regression-based fitting
methods, arguing that maximum-likelihood-based methods
are superior (Savre and Craig, 2023).

The present study shows that the choice of fitting method
cannot explain the disagreement among observations, partic-
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Figure 8. Histogram of cluster areas in doubly periodic percolation lattices for several domain sizes.

Figure 9. Histogram of percolation cluster areas generated in lattices with a site occupation probability equal to 0.5. Plotted counts do not
include truncated clusters. For the 50×50 lattices, as in Fig. 6, truncated clusters outnumber non-truncated clusters in bins to the right of the
dashed yellow line. For the larger domains, there are no bins that contain a majority of truncated clusters.

ularly for the range of scales over which a power law applies.
We find that a linear regression to logarithmically spaced
bins is an equally accurate fitting method for power-law-
distributed data provided the simple requirement is adopted
that bins with fewer than ∼ 24 counts are omitted from the
regression. Linear regression also has the advantage of be-
ing computationally trivial and more conceptually straight-
forward than maximum-likelihood-based alternatives.

We suggest that different accounts of cloud power law
behavior in the literature are best explained by treatments
of clouds whose geometries are “truncated” by the edge of
the measurement domain. Removal of truncated clouds from
the distribution introduces an artificial “cutoff scale” beyond
which clouds can be significantly undersampled, with a re-
sulting distribution consistent with many previous findings
(e.g., Cahalan and Joseph, 1989; Benner and Curry, 1998;
Neggers et al., 2003; Heus and Seifert, 2013; Senf et al.,
2018; van Laar et al., 2019; Christensen and Driver, 2021). If
included, a local maximum in the distribution appears at ar-
eas comparable to the domain scale that does not reflect the
true distribution. Even when a periodic domain is used, mea-

sured size distributions do not reproduce the size distribu-
tions that would be obtained in larger domains. In any case,
a power law may still easily be measured, but the value of
the power law exponent could be underestimated or overes-
timated by 20 % to 30 % or more.

While size distributions measured within any domain size
are affected by truncation effects, they are most important
only for the largest clouds. The affected scale is easily iden-
tified by counting for each bin the fraction of clouds that are
truncated relative to the total in that bin. We recommend that
power law fits be applied only to bins in which the fraction
of these clouds is less than 50 %.

Truncation effects are not limited to power law size distri-
butions, as exponentially distributed objects can be similarly
affected. Fortunately, the 50 % truncated object criterion is
applicable regardless of the underlying form of the distribu-
tion.

The issues and remedies discussed here are not specific to
atmospheric clouds and can be applied to size distributions
characterizing any other phenomena measured within a finite
geometric domain, e.g., with ecological predator–prey mod-
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els (Pascual et al., 2002), CO2 pockets in sedimentary rocks
(Iglauer et al., 2010), snowflakes (Rees et al., 2021), cloud
droplets (Beals et al., 2015), aerosols (Magín Lapuerta and
Gómez, 2003) and soil particles (Mora et al., 1998).

Appendix A: Statistical variability in histogram bin
counts

The result that linear-regression-based fitting methods can
accurately estimate the power law exponent α, provided that
bins with counts less than ∼ 24 are omitted from the re-
gression, might appear to contradict the results of Clauset
et al. (2009). They argued in their Appendix A that linear-
regression-based estimation methods for α are biased. In this
section, we explain their argument why linear regression can
in fact be accurate, and point out a subtle error made in the
widely cited work by Clauset et al. (2009).

The central issue is the statistical error of bin counts in a
histogram. As a conceptual model, consider a large number
of experiments that all measure some variable many times
and bin the results into a histogram. The count in each bin
can be expected to be roughly similar from experiment to ex-
periment but not exactly the same. The “statistical error” is
the standard deviation of the bin counts, which could be esti-
mated, e.g., by sampling a large collection of experiments.

This conceptual model can be made more precise by
considering the experiments to be a random counting pro-
cess consisting of N independent and identically distributed
draws of a random variable X from an arbitrary distribution.
Consider some bin i of fixed size and location in the param-
eter space of X. The “bin count function” ni may be intro-
duced by first considering an indicator function I which is
equal to 1 if X lies within i and 0 otherwise. The bin count
ni is simply the sum of I over all draws.

The advantage of introducing I is that the central limit the-
orem applies to I even if it does not to X. Specifically, the
theorem requires independent, identically distributed random
variables, a finite variance and a finite mean. Because the
mean value 〈I〉 and the variance σ 2 of I are both bounded
by 0 and 1, these assumptions are satisfied, and therefore the
central limit theorem states that the bin count ni tends to a
Gaussian distribution as N→∞.

Standard linear regression packages assume that each data
point has Gaussian error. In their Appendix A, Clauset et al.
(2009) argued that linear-regression-based estimation meth-
ods are invalid if the regression is performed to logni , which
is supposedly not Gaussian if ni is Gaussian.

This is incorrect because the central limit theorem also
states that the variance of ni tends to σ 2√ni (where σ 2

≤ 1
because 0≤ I≤ 1), and so the standard deviation of ni is
σn

1/4
i � ni for large ni . This means that almost all errors ε

are much smaller than ni , and so we may linearize log(ni+ε)
using a Taylor expansion about ni so that

log(ni + ε)≈ logni +
ε

ni
+O

(
ε2

n2
i

)
. (A1)

Thus, in the neighborhood of ni , the logarithmic transforma-
tion is linear if terms of order 1/n2

i are neglected. Because the
transformation is linear, logni is also Gaussian-distributed,
in which case linear regression packages estimate both errors
and the power law exponent itself accurately for large ni . The
requirement of a large ni is not a significant one because it
is in fact required even for ni to be Gaussian, because ni is a
discrete quantity.

Figure 3 shows an empirical test of the above reasoning,
where 1000 samples, each containing 5000 randomly gen-
erated numbers, were drawn from a power law distribution
with α = 1. The bin 10< xi < 100 showed Gaussian vari-
ability in the bin count n as well as the log of the bin count
logn, as illustrated by nearly identical Kolmogorov–Smirnov
p values (0.333 vs. 0.326, respectively). Table A1 shows
Kolmogorov–Smirnov p values for more combinations of
bin location and sample size.

We suggest that this result explains why the linear regres-
sion technique used in Sect. 2 is accurate. Previous results,
including those of Clauset et al. (2009), may have produced
biased power law exponents simply because they included
bins with small ni in the linear regression. If such bins are
excluded from the linear regression, statistical errors of logni
are approximately Gaussian-distributed and estimations of
power law exponents can be accurately estimated within nor-
mal measurement uncertainties.

Are cloud sizes statistically independent?

The above argument applies to measurements that are statis-
tically independent because statistical independence implies
that the bin count ni has Gaussian error. The maximum like-
lihood estimation method presented by Clauset et al. (2009)
also requires statistically independent errors. Unfortunately,
statistical independence is often not satisfied in physical sys-
tems such as naturally occurring networks (Serafino et al.,
2021) and clouds (Garrett et al., 2018). Because cloud forma-
tion is constrained by the total available moisture, energy and
space, individual cloud areas are not physically independent,
and this appears in the statistics. For example, a large but rare
cloud that covers over half of a given measurement domain
makes it impossible to observe another similarly sized cloud
because a second large cloud could not fit inside the domain.
Thus, the first observation (i.e., the large cloud) alters the
probability of the next observation, which violates statistical
independence. Similarly, a finite amount of total available en-
ergy or moisture makes future cloud formation contingent on
what has occurred in the past. Thus, statistical errors of ni
may not be Gaussian, in which case maximum-likelihood-
estimation-based methods would be inappropriate.
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Table A1. Kolmogorov–Smirnov p values, as in Fig. 3, for more combinations of bin location, sample size and α. Combinations are excluded
if the mean ni is less than 3. With two exceptions, every case where the null hypothesis of normality in logni would be rejected using a
95 % confidence interval (bold) has a mean count that is less than 24. In the two exceptions, the null hypothesis would still be rejected if
the confidence interval were raised to 99 %. This is roughly consistent with the expectation that 1 in 20 experiments would result in a false
conclusion using a 95 % confidence interval.

Bin location i Sample size α Mean ni Linear p value Logarithmic p value

(9,10) 103 1 11 1.3 × 10−6 0.7 × 10−11

(9,10) 104 1 111 0.3 0.5× 10−1

(9,10) 104 2 24 1.2 × 10−3 0.6 × 10−4

(9,10) 105 1 1.1× 103 0.9 0.7
(9,10) 105 2 234 0.5 0.3
(9,10) 106 1 1.1× 104 0.6 0.5
(9,10) 106 2 2.3× 103 0.7 0.5
(10,100) 103 1 90 1.2× 10−1 0.6× 10−1

(10,100) 103 2 10 0.3 × 10−6 0.2 × 10−9

(10,100) 104 1 901 0.9 0.9
(10,100) 104 2 99 0.4 0.2 × 10−1

(10,100) 105 1 9.0× 103 0.9 1.0
(10,100) 105 2 991 0.6 0.8
(10,100) 106 1 9.0× 104 0.9 0.9
(10,100) 106 2 1.0× 104 0.9 0.9
(99,100) 105 1 10 0.3 × 10−5 1.1 × 10−10

(99,100) 106 1 101 1.0× 10−1 1.1× 10−1

(102,103) 103 1 9 0.3 × 10−5 0.8 × 10−13

(102,103) 104 1 90 1.4× 10−1 0.6× 10−1

(102,103) 105 1 901 0.8 0.6
(102,103) 105 2 10 0.2 × 10−6 0.2 × 10−10

(102,103) 106 1 9.0× 103 0.6 0.5
(102,103) 106 2 99 0.8× 10−1 1.2× 10−1

(103,104) 104 1 9 0.5 × 10−7 1.4 × 10−14

(103,104) 105 1 90 0.4 0.5 × 10−1

(103,104) 106 1 899 0.8 0.9

A priori, one might expect statistical errors for cloud sizes
to be lognormal instead (implying that logni is Gaussian),
because scale-by-scale conservation of a relevant variable
φ implies that φni is constant (because the total amount 8
within a bin is φni). As an example, Garrett et al. (2018)
identified cloud perimeters p as controlling cloud formation
in thin quasi-horizontal layers. By assuming pni = const.,
they derived a power law distribution for cloud perimeters.
Similarly, in their Sect. 3.3, Lovejoy and Schertzer (2013)
argue for a “multiplicative central limit theorem” for energy
flux, which implies that the logarithm of the energy flux is
Gaussian-distributed.

Regardless, lognormality in statistical errors of ni is a
convenient assumption when using linear-regression-based
methods to estimate a power law exponent, because in this
case logni is Gaussian, as software packages assume. How-
ever, it is conceivable that statistical errors of cloud area mea-
surements might follow a different distribution, in which case
neither maximum likelihood estimation nor linear regression
would be strictly appropriate. Another problem with either

method could be heteroscedasticity: that is, the variance of
ni could depend on cloud size. This could be due to either
physical differences in the spatial scale or the effect of the
finite domain size. Further work is needed to determine both
the shape of the distribution of ni as well as its dependence
on the spatial scale.

Appendix B: Correction algorithms for domain
truncation effects

The method we propose to address domain truncation effects,
i.e., to omit bins in which the truncated clouds are greater
than 50 % of the total, effectively removes a large portion
of the size distribution. If the large portion is of interest, an
algorithm could be derived in principle for the effects of the
removal of clouds that are truncated by the domain edge.

Consider the case of cloud area distributions. If cloud lo-
cations are statistically independent of the domain edge loca-
tion, the probability of a cloud being truncated by the domain
edge Ptruncated(a), a function of cloud area a, can be calcu-
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lated from the mean cloud “lengths”, defined as the longest
distance from one end of the cloud to the other in the or-
thogonal x and y dimensions of an image. If cloud lengths
can be related to cloud areas – which is a nontrivial problem
due to fractal cloud geometries – a correction for the removal
of clouds touching the edge is straightforward to implement
since n(a)obs. = (1−Ptruncated(a))n(a), where n(a) is the true
cloud area distribution. Wood and Field (2011) used a similar
formulation, assuming clouds were square-shaped in order to
relate cloud areas to cloud lengths.

In general, obtaining an appropriate correction algorithm
can be a surprisingly difficult problem. For clouds specif-
ically, there are several issues. First, cloud lengths would
likely not be proportional to

√
a since clouds are fractal and

the length dimensions of fractal objects do not necessarily
scale with

√
a (Mandelbrot, 1982). Second, on a rotating

planet, cloud lengths in the zonal direction may be related
to area through a different function than cloud lengths in the
meridional direction, since there are different temperature,
moisture and Coriolis force gradients zonally vs. meridion-
ally, and these gradients may be functions of the horizon-
tal scale. Third, cloud locations are not statistically indepen-
dent of the domain edge location for large domains due to
variability in regional climatological cloud fractions owing
to, e.g., the placement of the continents or the sphericity of
Earth. Finally, cloud shapes are quite variable, and so any re-
lationship between cloud length and cloud area can only be
expressed statistically.

This last point is particularly problematic, since it makes
simply measuring the relationship between cloud area and
cloud length difficult and affected, again, by the choice of
the domain size. Consider a hypothetical case where most
large clouds are much longer zonally than they are meridion-
ally but whose dimensions are measured in a square domain.
The only clouds whose zonal lengths can be accurately esti-
mated are those not truncated by the western or eastern sides
of the domain. Such clouds will be predominately not wider
zonally than meridionally because the zonally wider clouds
will be truncated and subsequently removed from the analy-
sis. The measured sample will be heavily biased away from
zonally wide clouds, skewing the measured relationship be-
tween cloud length and area.

For a more in-depth exploration of the subtleties involved
in correcting object size distributions, see Chap. 4 of the MS
thesis by DeWitt (2023).

Appendix C: Validation of exponential distributions
of percolation clusters

To create an exponential distribution of cluster sizes, in
Sect. 3.4 we create percolation lattices with a site occupa-
tion probability equal to 0.5. Theoretically, this should result
in a cluster size distribution that follows a power law with
an exponential cutoff. This is supported by Fig. C1, which
shows that the calculated histograms are indeed linear on a
log-linear plot for a & 200 sites, which is a requirement for
an exponential distribution.

Interestingly, the 40× 40 subdomains, which are strongly
influenced by the removal of truncated clusters, also result
in an apparently exponential distribution but with a steeper
slope. Such exponential behavior cannot continue to arbitrar-
ily large cluster areas, however, because a pure exponential
tail would predict a nonzero probability of observing a clus-
ter that is larger than the lattice itself, which is impossible if
truncated clusters are removed.
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Figure C1. As in Fig. 9 but with the x axis on a linear scale.

Appendix D: Tables of linear regression failure rates

Tables D1 and D2 display failure rates for the selected linear-
regression-based estimators for α that are plotted in Fig. 2.

Table D1. Rate of reliable estimates of the power law exponent α̂
for different linear-regression-based estimation methods (“estima-
tors”) for 200 samples. Table D2 shows additional estimators for
minimum bin counts of 30 and 50. Dashes indicate estimators where
at least one sample did not contain bins spanning the required 1 or-
der of magnitude after the minimum bin count threshold was ap-
plied and thus the power law exponent could not be estimated. Er-
rors ε are estimated as 2 standard errors on the regression and cor-
respond to a 95 % confidence interval. Biased estimators, defined as
estimators whose failure rate is more than 5 %, are marked in bold.

Minimum Sample Number Failure Mean Mean
bin count size of bins rate α̂ ε

0 1000 30 0.5 1.0 0.2
0 1000 100 10.5 0.9 0.2
0 1000 300 100.0 0.7 0.1
0 3000 30 0.5 1.0 0.1
0 3000 100 0.0 1.0 0.1
0 3000 300 78.0 0.9 0.1
0 10 000 30 0.0 1.0 0.1
0 10 000 100 0.5 1.0 0.1
0 10 000 300 0.0 1.0 0.1
10 1000 30 2.0 0.9 0.2
10 1000 100 3.5 0.7 0.3
10 1000 300 – – –
10 3000 30 0.0 1.0 0.1
10 3000 100 7.0 0.9 0.1
10 3000 300 13.5 0.8 0.2
10 10 000 30 1.0 1.0 0.1
10 10 000 100 5.0 1.0 0.1
10 10 000 300 37.0 0.9 0.1

Table D2. Continuation of Table D1 for minimum bin counts of 30
and 50.

Minimum Sample Number Failure Mean Mean
bin count size of bins rate α̂ ε

30 1000 30 – – –
30 1000 100 – – –
30 1000 300 – – –
30 3000 30 0.0 1.0 0.1
30 3000 100 – – –
30 3000 300 – – –
30 10 000 30 0.0 1.0 0.1
30 10 000 100 0.0 1.0 0.1
30 10 000 300 – – –
50 1000 30 – – –
50 1000 100 – – –
50 1000 300 – – –
50 3000 30 0.0 0.9 0.1
50 3000 100 – – –
50 3000 300 – – –
50 10 000 30 1.5 1.0 0.1
50 10 000 100 0.5 1.0 0.1
50 10 000 300 – – –

Code and data availability. Python code for calculating size
distributions, which automates the procedures recommended for
finite-domain effects, is freely available at https://github.com/
thomasdewitt/Size-distributions-in-finite-domains (last access:
17 July 2024; https://doi.org/10.5281/zenodo.11373373, DeWitt,
2024). The GOES-West dataset was downloaded from the ICARE
Data Center in Lille, France (https://www.icare.univ-lille.fr/,
ICARE, 2023).
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