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S1. CMIP models 

Eighteen CMIP5/6 models are available having run the ISCCP simulator. We use the first available, historical 

(AMIP) realisations for CCFs and cloud radiative anomalies for the years 1981 – 2000 from the following models: 

• CMIP5: CanESM2, CNRM-EM2-1*, HadGEM2-ES*, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, 

MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, 

• CMIP6: CanESM5, CNRM-CM6-1*, GFDL-CM4, HadGEM3-GC31-LL, IPSL-CM6A-LR*, 

MIROC6, MIROC-ES2L, MRI-ESM2-0, UKESM1-0-LL. 

*Models where daily air temperature and/or humidity at standard pressure levels is not available, therefore no 

CAPE or CIN data has been calculated. 

S2. Standard deviation weighting 

We note that not all regions are equally cloudy, which leads to differently high levels of variance in 𝑅𝐿𝑊 

and, thus, signals for the regression to learn from. As a result, performance metrics tend to be lower in subsidence 

regions where there are few high clouds. For the global performance averages, we have addressed this issue by 

weighting grid-cells based upon their climatological mean 𝑅𝐿𝑊 in addition to the cosine of their latitude, to avoid 

penalising average metrics from low scores in regions with relatively little signal.  

 

S3. CCF importance at different spatial scales 

Here we expand on our analysis of complex interplay between spatial domain, model dimensions, and 

predictive skill. Though the most important predictor, UTRH’s explained variance fraction (EVF) robustly 

decreases as a function of domain size (shown in Fig. S6c-f). Inspection of composite spatial sensitivities reveals 

that the magnitudes of the regression coefficients are largest close to the target grid cells (typically within the local 

optimal 7x3 domain), with noisy patterns further afield (shown in Fig. S6a-b). We find this is also true for 𝜔300 

and (though to a lesser extent) 𝑅𝐻700. However, for a few of the predictors (∆𝑈300, 𝑇𝑠𝑓𝑐 and 𝑆𝑈𝑇), adding non-

local data adds valuable information, underlining the advantages of including non-local predictors in general, also 

showing increasing EVF with domain size.  Note that there are several mechanisms that may be associated with 

non-local sensitivities, including remote SST pattern effects for deep convection (Fueglistaler, 2019), the 

transferral of cloud from one grid-cell to another, or upstream/downstream advection of the meteorological 

drivers. 

We thus propose that a trade-off in predictive skill exists; while increasing domain size may add more 

relevant information for “non-local” predictors (such as 𝑇𝑠𝑓𝑐), superfluous information may be added for more 

“local” predictors (such as UTRH and 𝜔300) which average out at the globally-aggregated scales, all while 

increasing the number of model dimensions and thus supressing local predictive skill. The visible patterns in the 

regression coefficients thus underpin the empirical result that too distant information does not provide additional 

predictive skill, at least to the degree that it would outweigh the corresponding increase in dimensionality of the 

regression problem. Though this may suggest that different predictors have different optimal domain sizes, we 

use equal domain sizes to ensure coefficients are weighted equally (owing to collinearity of the predictors). 



 



  

Figure S1. ERA5 (left column) and multi-model mean CMIP (right column) monthly climatological mean for the CN21 

and candidte CCFs (from top to bottom, surface temperature, estimated inversion strength, vertical velocity at 500hPa 

and 300hPa, relative humidity at 700hPa and in the upper troposphere, static stability in the upper troposphere, 

boundary layer moist static energy, convective available potential energy, convective inhibition, and easterly wind 

shear. Note different scales and units on the colourbars for each variable. The Pearson r correlation coefficient for the 

spatial distribution of ERA5 and multi-model CMIP mean values is shown in the bottom left of each ERA5 figure.   

 

 

 



 

 

 

 

Figure S2. Schematic showing the process used to train and test the cloud controlling factor configurations. This method 

results in a continuous 20-year validation dataset, with no data having been predicted using the corresponding months 

in the training data. 

 



 

Figure S3. Matrices showing Pearson 𝒓 for predictions made for the observed RNET time series at each domain size 

using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling factors used 

to predict RNET. Each configuration uses Tsfc, RH700, UTRH and ω300 (with the exception of the first column, where ω500 

is used instead) and a candidate CCF(s) (e.g., SUT), which is used to label each column. Predictions are made locally, 

with the Pearson r averaged (a) globally and (b) in tropical ascent regions defined as grid-cells with observed 

climatological EIS < 1 K, ω500 < 0 hPa s-1. Metrics are weighted by the cosine of latitude and monthly standard deviation 

of RLW of each grid-cell. Pearson 𝒓 is also shown for aggregated predictions, (c) globally and (d) in the tropical ascent 

regions, and compared to similarly aggregated observations. Note different scales for each colorbar. 



 

Figure S4. Multi-model median skill metrics (from top to bottom: Pearson 𝒓, R2 score, and RMSE) for predictions of 

𝑹𝑳𝑾 time series using the configuration 𝑺𝑼𝑻 +  𝜟𝑼𝟑𝟎𝟎 (also with Tsfc, RH700, UTRH and ω300), with CCFs within a spatial 

domain of 21x11. Grey contours show the tropical ascent regions. This figure is analogous to Figure 3 in the main text, 

where skill metrics for the observations are shown instead. Predictive skill is strongest in the tropics where high clouds 

are ubiquitous and there is a large standard deviation in monthly 𝑹𝑳𝑾, resulting in a strong signal for the regression 

model to learn from. Lower scores are present in the subsidence regions and the Southern Ocean. In addition to weaker 

𝑹𝑳𝑾 signals, poorer performance in the Southern Ocean may be attributable to a reduced quality of reanalysis data, 

arising from fewer observations available for assimilation (Mallet et al., 2023). Performance metrics are high in the 

tropics, leaving less room for improvement. Regardless, we find most of our configurations increase (decrease) local 

Pearson 𝒓 (RMSE; see Fig. S5) compared to 𝑬𝑰𝑺 (𝝎𝟑𝟎𝟎). Larger improvements are present in the extratropics, where 

∆𝑼𝟑𝟎𝟎 leads to improvements. 

 

 



 

Figure S5. The % difference in local Pearson 𝒓 (left column) and RMSE (right column) scores for predictions made of 

observed 𝑹𝑳𝑾 compared to configuration 𝑬𝑰𝑺 (also with Tsfc, RH700, UTRH and ω300), using a 21x11 domain for each 

configuration. A “CCF configuration” refers to the selection of cloud controlling factors used to predict RLW. Each 

configuration uses Tsfc, RH700, UTRH and ω300 and a candidate CCF(s) (e.g., SUT), which is used to label each row. Red 

indicates regions where the configuration labelled on the LHS preforms better than 𝑬𝑰𝑺 (𝝎𝟑𝟎𝟎) (and visa versa for 

blue). Note the reversed colorbars for each column. This is to indicate where performance is improved, corresponding 

to an increase in Pearson 𝒓 or decrease in RMSE. 



 

Figure S6. Composite spatial sensitivities using the 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 (with additional core 

CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) in (a) tropical ascent grid-cells (defined by climatological mean EIS < 1 K, and 

ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and (b) North Atlantic (60°W to 10°E, latitudes north of 30°N) 

midlatitude clouds (climatological mean EIS > 1 K, and ω500 < 1.5x10-4 hPa s-1). Panel (c) shows the global mean EVF 

as a function of cloud controlling factor and domain size for local predictions. Note that the global mean EVF has only 

been weighted based on latitude, and not as a function of 𝑹𝑳𝑾 standard deviation. Panel (d) shows the EVF for globally-

aggregated predictions. 



 

 

 

Figure S7. Matrices showing multi-model median Pearson 𝒓 for predictions made for CMIP RLW time series at each 

domain size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling 

factors used to predict RNET. Each configuration uses Tsfc, RH700, UTRH and ω300 (with the exception of the first column, 

where ω500 is used instead) and a candidate CCF(s) (e.g., SUT), which is used to label each column. Predictions are made 

locally, with the Pearson r averaged (a) globally and (b) in tropical ascent regions defined as grid-cells with observed 

climatological EIS < 1 K, ω500 < 0 hPa s-1. Metrics are weighted by the cosine of latitude and monthly standard deviation 

of RLW of each grid-cell. Pearson 𝒓 is also shown for aggregated predictions, (c) globally and (d) in the tropical ascent 

regions, and compared to similarly aggregated observations. Note different scales for each colorbar. 
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Figure S8. Sensitivities (∑ 𝜣𝒊) to the cloud controlling factors in configuration 𝑺𝑼𝑻 +  ∆𝑼𝟑𝟎𝟎(also with Tsfc, RH700, UTRH 

and ω300) for longwave radiative anomalies caused by changes in cloud fraction, derived using a 21x11 domain and 

defined for a one-standard deviation anomaly in each CCF. To produce the maps, we sum all elements of the sensitivity 

vectors at each point 𝒓. Sensitivities are shown for the observations (first two columns) and the  multi-model mean (last 

two panels).  The same colorbar has been used as Figure S9 to show the  relative strengths of the sensitivities. 



 

 

 

Figure S9. Sensitivities (∑ 𝜣𝒊) to the cloud controlling factors in configuration 𝑺𝑼𝑻 +  ∆𝑼𝟑𝟎𝟎(also with Tsfc, RH700, UTRH 

and ω300) for longwave radiative anomalies caused by changes in cloud top pressure, derived using a 21x11 domain and 

defined for a one-standard deviation anomaly in each CCF. To produce the maps, we sum all elements of the sensitivity 

vectors at each point 𝒓. Sensitivities are shown for the observations (first two columns) and the  multi-model mean (last 

two panels).  The same colorbar has been used as Figure S8 to show the  relative strengths of the sensitivities.



 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure S10. Observed monthly climatologies for (a) longwave high-cloud radiative anomalies and the decompositions 

into radiative anomalies induced by changes in (b) cloud fraction (c) cloud top pressure and (d) optical depth. 



 

 

 

 

Figure S11. Sensitivities (∑ 𝜣𝒊) to the cloud controlling factors in configuration 𝑺𝑼𝑻 +  ∆𝑼𝟑𝟎𝟎(also with Tsfc, RH700, 

UTRH and ω300) for net radiative anomalies caused by changes in cloud fraction, derived using a 21x11 domain and 

defined for a one-standard deviation anomaly in each CCF. To produce the maps, we sum all elements of the sensitivity 

vectors at each point 𝒓. Sensitivities are shown for the observations (first two columns) and the  multi-model mean (last 

two panels).  
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Figure S12. Scatter plot showing the correlation between observed and predicted monthly globally-aggregated (a) 

𝑹𝑵𝑬𝑻,𝑪𝑭 and (b) 𝑹𝑵𝑬,𝑪𝑻𝑷 time series using configuration 𝑺𝑼𝑻 +  𝜟𝑼𝟑𝟎𝟎 (in addition to Tsfc, RH700, UTRH, and ω300) and 

a 21x11 domain. El Niño months are shown using coloured circles, with the annual mean shown using a coloured 

square. Solid lines show y = x, and the dashed lines show the line-of-best fit through the points.  

 


