

Input to MLs

Stockholm air quality forecast system

Local meteorological forecast via API
SMHI & Met Norway

Local emission data base and non-exhaust road dust model (NORTTRIP)

Land-use and topographic data

CAMS
Regional AQ
Forecasts Via API

Meteorological diagnostic wind model (Airviro)

Urban Gaussian dispersion model (Airviro)

Street Canyon model (Airviro, OSPM)

Deterministic forecast of PM₁₀, NO_x, O₃

Meteorological variables:
wind speed, wind direction, relative humidity, cloud cover, precipitation, temperature, pressure, boundary layer height (+ sine and cosine of cyclic variables)

Calendar variables:
hour of day, day of week, Julian day, year (+ sine and cosine of cyclic variables)

Measurements+ :

NO_x, PM₁₀, O₃

Autocorrelation:

lagged of NO_x, PM₁₀, O₃

Feature Engineering:

mean/max/.../Q3/min of concentration from the rolling historical period

**4 separate training data sets:
1 urban background and 3 street canyon sites**

Random forest

XGBoost

LSTM

GAM Ensemble model

**4 test data sets
1-day forecast**

**4 test data sets
2-day forecast**

**4 test data sets
3-day forecast**

Random forest
1-, 2-, 3-day

XGBoost
1-, 2-, 3-day

LSTM
1-, 2-, 3-day

GAM
1-, 2-, 3-day

Evaluation of 1-day, 2-day, 3-day hourly forecasts at 4 sites

PM₁₀, NO_x and O₃

Comparison between deterministic forecasts & 4 ML forecasts

R^2 , MAPE, nRMSE, nMAE, MSE, Pearson, MQI

Method of feature importance ranking

MDI, Permutation, SHAP, Gradient-based method