Atmos. Chem. Phys., 24, 7911-7925, 2024 Atmospheric
https://doi.org/10.5194/acp-24-7911-2024 :

© Author(s) 2024. This work is distributed under Chemls.try
the Creative Commons Attribution 4.0 License. and Physics

How well can persistent contrails be predicted?
An update

Sina Hofer!, Klaus Gierens', and Susanne Rohs?

Unstitut fiir Physik der Atmosphire, Deutsches Zentrum fiir Luft- und Raumfahrt, Oberpfaffenhofen, Germany
2Forschungszentrum Jiilich, IEK-8, Jiilich, Germany

Correspondence: Sina Hofer (sina.hofer @dlr.de)

Received: 9 February 2024 — Discussion started: 28 February 2024
Revised: 15 May 2024 — Accepted: 22 May 2024 — Published: 11 July 2024

Abstract. The total aviation effective radiative forcing is dominated by non-CO; effects. The largest contrib-
utors to the non-CO» effects are contrails and contrail cirrus. There is the possibility of reducing the climate
effect of aviation by avoiding flying through ice-supersaturated regions (ISSRs), where contrails can last for
hours (so-called persistent contrails). Therefore, a precise prediction of the specific location and time of these
regions is needed. But a prediction of the frequency and degree of ice supersaturation (ISS) on cruise altitudes
is currently very challenging and associated with great uncertainties because of the strong variability in the
water vapour field, the low number of humidity measurements at the air traffic altitude, and the oversimplified
parameterisations of cloud physics in weather models.

Since ISS is more common in some dynamical regimes than in others, the aim of this study is to find vari-
ables/proxies that are related to the formation of ISSRs and to use these in a regression method to predict per-
sistent contrails. To find the best-suited proxies for regressions, we use various methods of information theory.
These include the log-likelihood ratios, known from Bayes’ theorem, a modified form of the Kullback-Leibler
divergence, and mutual information. The variables (the relative humidity with respect to ice, RHigras; the tem-
perature, T'; the vertical velocity, w; the divergence, DIV; the relative vorticity, ¢; the potential vorticity, PV; the
normalised geopotential height, Z; and the local lapse rate, y) come from ERAS, and RHip/1, which we assume
as the truth, comes from MOZAIC/IAGOS (Measurement of Ozone and Water Vapour on Airbus In-service
Aircraft/In-service Aircraft for a Global Observing System; commercial aircraft measurements).

It turns out that RHigras is the most important predictor of ice supersaturation, in spite of its weaknesses, and
all other variables do not help much to achieve better results. Without RHigras, a regression to predict ISSRs
is not successful. Certain modifications of RHigras before the regression (as suggested in recent papers) do
not lead to improvements of ISSR prediction. Applying a sensitivity study with artificially modified RHigras
distributions points to the origin of the problems with the regression: the conditional distributions of RHigras
(conditioned on ISS and non-ISS, from RHin 1) overlap too heavily in the range of 70 %—100 %, so for any case
in that range, it is not clear whether it belongs to an ISSR or not. Evidently, this renders the prediction of contrail
persistence very difficult.
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1 Introduction

In order to avoid persistent (warming) contrails, it is neces-
sary that they can be reliably predicted. For this aim, three
conditions need to be fulfilled. First, the formation of con-
trails has to be predicted with reasonable skill. Contrails
form if (super)saturation with respect to water occurs dur-
ing the mixing process of the ambient air with the exhaust
gases from the aircraft. This criterion is called the Schmidt—
Appleman criterion (SAC; see Schmidt, 1941; Appleman,
1953; Schumann, 1996). Second, contrails need ice super-
saturation (ISS) to be persistent. So, this state must be repre-
sented and reliably predicted in weather models. Third, in or-
der to determine whether a contrail will be warming or cool-
ing in advance, some kind of radiative transfer calculation
or a corresponding regression formula (e.g. Corti and Peter,
2009; Schumann et al., 2012; Wolf et al., 2023a) is required.

While the first of these conditions, the ability to predict
the SAC, is generally fulfilled with a satisfying quality, this is
not the case for the prediction of ice supersaturation (Gierens
et al., 2020). Predicting ice supersaturation at air traffic cruise
levels presents major difficulties. Gierens et al. (2020) com-
pared temperature and humidity data obtained from instru-
mented passenger aircraft with reanalysis data interpolated
in space and time to the measurement locations. They came
to the result that the forecast of ice supersaturation at given
times and locations (for flight routing purposes) is currently
almost like tossing a coin. In contrast, the forecast of ISS is
much easier for larger regions and periods of time (e.g. for
planning measurement campaigns; see Voigt et al., 2017). In
the present paper, we investigate the problem of the forecast
of ISS in more detail and we do not cover the first and third
condition.

There are several reasons why the prediction of persis-
tent contrails is currently challenging. The main reason is the
strong variability in the water vapour field in the atmosphere.
This is because water substance is present in three aggregate
states; it is involved in chemical and aerosol processes, and
thus it varies greatly in the atmosphere. This problem is in-
tensified by the low number of humidity measurements at
cruise levels for data assimilation. Data assimilation is nec-
essary to keep the simulation of a complex system close to
measured reality. Therefore, more data on relative humidity
at flight levels are urgently needed. Note that satellite data
cannot fill this gap since their vertical resolution is insuffi-
cient (Gierens and Eleftheratos, 2020). A third reason for the
challenging prediction of persistent contrails is that current
parameterisations of ice cloud physics in weather models are
generally kept simple enough in order not to spend too much
computing time for a part of the atmosphere that so far has
usually not been the main focus of weather prediction. ISS
hardly affects the weather on the ground. Thus, it was not
represented in numerical weather prediction (NWP) models
until about 25 years ago (Wilson and Ballard, 1999; Tomp-
kins et al., 2007), and its representation is still generally too
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crude for a reliable prediction of ice supersaturation and con-
trail persistence.

However, there is growing interest in reducing the climate
impact of aviation nowadays, and a relatively straightforward
possibility would be the avoidance of the formation of per-
sistent contrails if only ice supersaturation could be predicted
with the precision necessary for flight routing. Because of
the challenges mentioned before, the relative humidity field
is insufficient for this purpose, and we need either correc-
tions to the humidity field (Teoh et al., 2020, 2022) or other
quantities that help in predicting of ISS. Gierens and Brinkop
(2012) and Wilhelm et al. (2022) show that ISS is typically
related to certain dynamical regimes, e.g. anticyclonic diver-
gent uplift. This triggered the idea that using dynamical fields
can indeed help in contrail forecast. We pursue this idea in
the present study and show how far we can get with dynam-
ical proxies together with modern regression methods. The
results turn out to be considerably better than without such
methods, but they are still not satisfying. A sensitivity study
shows what impedes better results and where the source of
the problem lies.

In the present paper, we concentrate on the prediction of
ice supersaturation, i.e. the prediction of persistent contrails.
For this purpose, we use data obtained from an instrumented
passenger aircraft and reanalysis data, which are explained
in Sect. 2. We test different methods for predicting persistent
contrails, which is the content of Sect. 3, as well as the results
we obtained. Later on, in Sect. 4, we concentrate on modify-
ing the relative humidity of ERAS and on different sensitivity
tests to artificially separate the conditional RHi distributions
of ERAS. Finally, we summarise our results and conclude in
Sect. 5.

2 Data

Various data sources are utilised in this study. These are
briefly described in the following sections, Sect. 2.1 and 2.2.

2.1 Data from a commercial aircraft

In this study, we use pressure and relative humidity with
respect to ice (RHipy1) data collected from 16588 flights
during 10 years (2000-2009) of MOZAIC (Measurement
of Ozone and Water Vapour on Airbus In-service Aircraft;
Marenco et al.,, 1998) measurements. As MOZAIC was
transferred to the European infrastructure IAGOS (In-service
Aircraft for a Global Observing System; Petzold et al., 2015)
in 2011, we refer to the data as MOZAIC/IAGOS (https:
/Iwww.iagos.org, last access: 4 July 2024). MOZAIC/TAGOS
operates autonomous in situ instruments installed on a long-
range commercial aircraft. Due to this, it has the highest data
density in the flight corridors of the mid-latitudes, making
it an ideal data set for the investigation of contrail-forming
regions. MOZAIC/TAGOS in situ measurements are avail-
able every 4 s. This corresponds to a flight distance of around
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1 km. We randomly select only 1 % of the data points (around
every 100th point) to avoid autocorrelation. This means the
temporal distance is around 400 s on average.

For this study, we have chosen aerial boundaries of 30 to
70° latitude and —125 to 145° longitude at cruise levels be-
tween 310 and 190 hPa, that is, a region with heavy air traffic.
We use these data as a basic truth to determine whether the
formation of a persistent contrail is possible or not at a spe-
cific position and time.

2.2 Reanalysis data

In addition to the data from commercial aircraft, hourly
ERAS5 high-resolution realisation (HRES) reanalysis data
(Hersbach et al., 2018a, b, 2020) of the relative humidity
with respect to ice, RHigras; the temperature, T'; the ver-
tical velocity, w; the divergence, DIV; the relative vortic-
ity, ¢; the potential vorticity, PV; and the normalised geopo-
tential height, Z, for 200, 225, 250, and 300 hPa from the
Copernicus Data Service (Copernicus Climate Change Ser-
vice, 2017) of ECMWF (European Centre for Medium-
Range Weather Forecast) are retrieved and interpolated to
the exact position and time of the aircraft (see ERAS5, https:
//cds.climate.copernicus.eu, last access: 4 July 2024). The
chosen pressure range from 300 to 200 hPa covers approx-
imately the flight levels of 300 to 390 hft (hectofeet; 100 ft
corresponds to approximately 30 m). The spatial resolution
of these data is 1° x 1°. With the pressure and temperatures
on two adjacent levels, the local lapse rate, y, at the aircraft
positions is also calculated (Gierens et al., 2022). The selec-
tion of these particular variables comes from Wilhelm et al.
(2022).

3 Methods and results

In this work, we consider whether it is possible to use the
dynamical proxies suggested by Wilhelm et al. (2022) to im-
prove the forecast of ice supersaturation and contrail persis-
tence. To quantify the success (or not) of several approaches
we took, we use the equitable thread score (ETS) as in
Gierens et al. (2020). The motivation for this choice of score
value, the defining equations, and interpretation of the ETS
are given below in Sect. 3.2.3.

The most simple way to map the values of the six dynami-
cal proxies to probabilities for ice supersaturation or contrail
persistence is to divide the phase space into six-dimensional
rectangles/blocks (six because of the six suggested dynami-
cal proxies by Wilhelm et al., 2022), to count the number of
cases with persistent contrails in each block, and to divide it
by the total amount of data in that block. The blocks should
not be too large so that the probabilities are specific for cer-
tain circumstances. Simultaneously, the blocks must not be
too small so that the number of events in each block allows
one to determine the probability with some statistical reli-
ability. Unfortunately, it turns out that even almost 400 000
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data points are insufficient for this simple and most straight-
forward method; many blocks are either empty or do not have
enough data points unless we use quite large blocks and lose
precision. Therefore, we cannot use this simple method and
have to try others, like Bayesian learning or modern non-
linear regression methods.

3.1 Bayesian learning
3.1.1  Theory

We are interested in whether persistent contrails are possible
or not, i.e. whether there is ice supersaturation or not. Un-
fortunately, the moisture field in the models is not accurate
enough for that purpose. So, how can we solve this problem?

It is known that ISS is more frequent in some dynamic
situations than in others (Gierens and Brinkop, 2012; Gierens
et al., 2022; Wilhelm et al., 2022). One can try to exploit
the fact that there are certain dynamical quantities, X, whose
conditional probability densities, fx(x|ISS) and Fx(x|ISS),
differ more or less from each other (read as fx(x|ISS) being
the probability density for a quantity X for the special value
x in cases where ISS prevails; fy(x|ISS) is the analogue for
cases where non-ISS (ﬁ) prevails).

Let us assume there is a value x of a variable X and that
this particular value is compatible with both ISS and ISS.
Then the question arises of which statements can be made
about ice supersaturation using this quantity. Is it more likely
or less likely when X = x?

Naively, one could compare fx(x|ISS) and fx (x|ISS) and
choose the larger of the two values. However, this ignores
the fact that ISS cases are much more frequent than ISS cases
when no further circumstances are considered — the so-called
a priori probability. The latter is taken into account by Bayes’
theorem in the following form:

P(x|ISS) - P(ISS)

PISS|X =x) = —_—,
P(x|ISS) - P(ISS) + P(x[ISS) - P(ISS)

6]

where P(ISS) is the a priori probability for ice su-
persaturation. P(x|ISS) = fx(x|ISS) dx and P(x|ﬁ):
fx(x|ISS) dx. In Eq. (1), the dx is cancelled out and, on
the right side of the equation, P(x|ISS) and P(x|ISS) can
be replaced by the corresponding densities, fx(x|ISS) and
Jx (x[ISS).

Another possibility of framing Bayes’ theorem for the
present problem is to use an odds ratio:

P(SS|x) _ fx(x[ISS) P(ISS)
P(SS|x)  fx(x|[ISS) P(ISS)’

2

The first factor on the right side of Eq. (2) is the likeli-
hood ratio, which represents the gain (> 1) or loss (< 1) in
confidence for ISS that we get by learning the current value
of X. A likelihood ratio exceeding 1 does not mean that ISS
is more likely than ISS but that the probability of ISS in-
creases. ISS is only more likely than ISS if the factor on the
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left side, the a posteriori odds ratio, is larger than 1. The sec-
ond factor on the right side is the prior odds ratio. In our case,
P(ISS) is given by the ratio of the number of data points
with ISS and the total number of data points (according to
MOZAIC/TAGOS), which is 0.125. So, only 12.5 % of our
data belong to the ISS class. The prior odds ratio is therefore
0.125/0.875 = 0.14. This means that the likelihood ratio has
to be larger than 1.0/0.14 =7.14 to make ISS more prob-
able than ISS. Instead of the odds ratio, one often uses its
logarithm, which leads to log-likelihood ratios (also known
as logits) with values symmetric around O (instead of values
asymmetric around 1). That is, positive logits increase the
probability for ISS and negative logits decrease the probabil-
ity for ISS. As mentioned before, the a posteriori odds ratio
has to be larger than 1 to make ISS more probable than ISS.
This also means that the logarithm of the a posteriori ratio has
to be positive to make ISS more likely than ISS. As the log-
arithm of the prior odds ratio is In(0.125/(1 — 0.125)) ~ —2,
the logit must exceed 2 to make ISS more probable than ISS.

As long as there is only one special value x of a dynamical
variable X, we are finished and this is already the result. Now,
assume that there are two quantities, X and Y, and one wants
to know which of these quantities carries more information
about the probability of ice supersaturation. Obviously, it is
the quantity whose logits deviate more from zero in both the
positive and negative directions or the quantity for which the
absolute values of the logits are larger on average over the
ranges of x and y. Taking the averages has to be done with
a weighting that accounts for the values of the variables that
actually occur in a given situation, e.g.

fx(XIISS)>‘ dr. (3)

AL(fx|1ssl fyiss) /fx(’” ) ‘n(fx(xﬂSS)

As one does not know in advance whether a situation is
ISS or not, it is best to also use the corresponding expectation
of the absolute logit, EAL(fX|ﬁ| | fxnss) (where ISS and 1SS
are interchanged), and to average the two results. Let the re-
sult for X be Ear(X). It may be called the expectation of the
absolute logit. The quantity that yields the largest Eap(X)
has the largest learning effect for the question of whether a
situation is ISS or not.

Note that Eap(.||.) has some resemblance to a quantity
known as Kullback-Leibler divergence, Dxy.( fxissl| fX\@)
(the same expression without the absolute sign), and the
corresponding symmetric form (the mean value of the
two asymmetrical divergences, Dgr(fx/ssl| fX|ﬁ) and
Dxi.( fX‘ﬁH fxpss)) is known as Jeffreys divergence in in-
formation theory. For quantities that are not related to su-
persaturation, fy(x|ISS) = fx(xlm) = fx(x), and the logit
is zero. Thus, EAp(X) = 0 as well, which signifies that one
cannot learn anything about the presence of ISS using such a
quantity.
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3.1.2 Application

The conditional probability densities of the dynamical prox-
ies of ERAS5 for ISS and ISS cases (depending on whether the
relative humidity with respect to ice of MOZAIC/IAGOS,
RHip 1, is > 1.0 or < 1.0) are calculated using the Epanech-
nikov smoothing kernel with 300 equally spaced points be-
tween the minimum and maximum of the respective proxy.
The log-likelihood ratios for some dynamical quantities are
shown in Fig. 1. ISS gains in probability are relative to the
low prior probability if the log-likelihood ratio is positive
and vice versa (solid line in the diagrams). However, it needs
to exceed 2 to make ISS more probable than ISS (dashed
lines). Obviously, this threshold is only exceeded in quite
small ranges of the proxies or not at all. Only where RHi
from ERAS5 exceeds 100 % does the logit exceed 2; this says
that ISS and persistent contrails are more probable than not
(the wiggles in the curve at even higher RHi are considered
noise). The low values of the logits of the other variables
indicate that the dynamical proxies do not help much in pre-
dicting ice supersaturation via the Bayesian law. Obviously,
the strong separation of their conditional distributions is only
a necessary but not a sufficient condition for good proxies.

For the calculation of the expectation of the absolute logit
Eap(X) (see Eq. 3), the absolute values of the different logit
functions are needed. These are shown in orange in Fig. 2 for
different proxies. The products of these functions with ei-
ther of the conditional densities are shown as well in light
blue and dark purple. The integrals of these functions are
given in Table 1 for the relative humidity with respect to
ice, RHigras5; the temperature, T'; the vertical velocity, w;
the divergence, DIV; the relative vorticity, ¢; the potential
vorticity, PV; the lapse rate, y; and the normalised geopo-
tential height, Z. The averages of the first two rows of each
column are the desired Eap(X). High values for RHigras,
¢, and y are noticeable for the ISS case and high values
for RHigras, PV, and y for ISS. Therefore, according to
our analysis, RHigras, ¢, ¥, and PV seem to be the best-
suited proxies for our purpose, but, as stated, they should be
tried rather for regression and not for Bayesian learning. The
high value of Ea1 (PV) is probably due to the fact that a high
PV indicates the stratosphere where ISS hardly occurs. So,
for tropospheric situations (low-PV cases), this finding is not
very helpful, and, accordingly, the high Eap (PV) must not
be over-interpreted.

To apply the Bayesian law for several proxies simultane-
ously, e.g. as for P(ISS|RHigras, ¢, y), we would need a
much larger amount of data to compute the likelihood ra-
tios with some robustness over the whole domain. Instead,
we now try to apply non-linear regression.

3.2 Non-linear regression

The dynamical candidate proxies are not independent quan-
tities, and one has to take care that a regression is not formu-
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Table 1. Expectation values for absolute logit of the different proxies. Eap(X) is the
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mean of EAL(fxjisslfy ) and

EAL(fxiss!|fxiss)s s0 EAL(X) = X (EAL(fX\ISSHfX‘@) + EAL(fx s3] IfX|Iss))-

Quantity RHigrAs T o DIV ¢ PV y zZ
EAL(fX|ISS||fX|§) 1.75 034 056 042 096 090 096 0.52
EAL(fX|ﬁI|fx|lss) 341 038 043 033 120 2.07 1.24 0.88
EaL(X) 2.58 036 050 038 1.08 1.49 1.10 0.70
(a)3 ____________________________________________________________________________________________
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Figure 1. Log-likelihood ratios for dynamical quantities. Positive values raise the probability for ISS and negative values lower it. The
probability for ISS exceeds the probability for ISS only in the small ranges where the log likelihood reaches values above 2 (marked by the

dashed lines).

lated with redundant information. But, of course, a variable
that has some relation with (i.e. information on) the relative
humidity is welcome. Above, we see that RHigras, ¢, and
y are promising in this respect. Also, PV has a quite large
absolute logit, but that comes mainly from the ISS cases,
where it is an expression of the fact that dry stratospheric
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air (with PV > 3.5) is rarely found in a supersaturated state
(Neis, 2017; Petzold et al., 2020). Here, we apply another
measure. Usually, one uses the linear correlation between the
input data, but this does not work if the quantities are related
in a non-linear fashion. Therefore, it is necessary to use a
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Figure 2. The absolute logarithm of the quotient of the densities for ISS and ISS cases (orange), the absolute logarithm of the quotient of the
densities for ISS and ISS cases multiplied by the density for ISS cases (light blue), and the absolute logarithm of the quotient of the densities
for ISS and ISS cases multiplied by the density for ISS cases (dark purple) (see Eq. 3).

more general measure of correlation, namely the mutual in-
formation from information theory.

3.2.1 Mutual information

The mutual information is a measure of information that one
variable, X, can provide about another, Y. Its formulation
uses the joint distribution of X and Y and both marginal dis-
tributions:

1X:¥) = / / meY(x,y)'log<%> dxdy, (4

where fxny(x,y) is the joint probability density for X and
Y. In the case that X and Y are independent, the joint density
equals the product of the marginal densities and the logarithm
is zero. Then, the mutual information between X and Y is
zero as well. In all other cases, it is positive and it is the
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expected value of log(
weight function.

Since we assume the humidity of MOZAIC/IAGOS
(RHim/p) is the truth, we calculate the mutual information
of RHipy 1 with other quantities and compare them with
each other. The results of the computed mutual information
I(RHi1; Y) for different variables Y are shown in the first
row in Table 2. The highest values of the mutual information
are reached by RHigras (1.26 bits), PV (0.57 bits), y (0.38
bits), and ¢ (0.37 bits). This means, according to the mutual
information, that RHigras, PV, y, and ¢ seem well suited as
proxies for regressions.

To be a good proxy for a regression, it must not only be
well correlated with RHin /1 (i.e. have a high value of mutual
information, /(RHiyy1; Y), but, at the same time, it should
not be correlated with other variables (i.e. a low value of mu-

];)’;% ) with the joint distribution as the
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tual information with the other proxies, /(X; Y)) to avoid re-
dundant information. The values of the individual mutual in-
formation, /(X; Y), can be found on the right side in Table 2.
The matrix is symmetrical, so, for a better overview, only one
side is filled.

As mentioned before, out of all quantities, RHigras, PV,
v, and ¢ have the highest mutual information with RHip1.
However, PV and y are themselves quite strongly correlated
(1.07 bits). So, because I(RHin1; PV) > I(RHimy1; ¢) but
1(PV; ¢) is also very high, ¢ should be omitted when using
PV as a proxy.

3.2.2 Generalised additive model

A generalised additive model (GAM) is a regression method
for predicting a response Y based on non-linear functions of
several predictors, X = {X1, X2, ..., X}. In meteorology, for
instance, it has been successfully used for the prediction of
thunderstorms (Ridler et al., 2018). The general formula for
GAMs is

PASSIX) \
0 <m> = Bo+s1(X1) +52(X2) + ... + 5p(Xp). 5)
% is the posterior odds ratio,

P(ISS|X)/P(SS|X). The GAM thus constructs a re-
lation between the (posterior) odds ratio and a linear
combination of functions of the set of predictors, X. For the
functions, we use smoothing splines, s(X). Here, we test the
following six different GAMs with combinations of various
dynamical proxies (input parameters) to predict whether
persistent contrails are possible:

— GAMy with RHigras,

GAM; with T, RHigras,

GAM,; with PV, T, RHigras,

GAM;3 with PV, T, ¢, RHigras,
GAMy with y, T, Z, PV, ¢, and

- GAM; with y, T, Z, PV, ¢, RHigRras -

The procedure is as follows: for the tests, 395576 inde-
pendent data points are used. First, we divide the data set
(MOZAIC/TAGOS and ERAS5 data) into a training and test
data set (training data set makes up ~ 80 % and test data set
~ 20 % of the whole data set). The presence of persistent
contrails is known from the MOZAIC/IAGOS data, as de-
scribed in Sect. 2.1. Next, we train the model, which means
that we find the best coefficients for the relationships be-
tween the proxies and prediction using the training data set
and a software environment for statistical computing called R
(Thaka and Gentleman, 1993). Then, we use the gained best
coefficients and functions to predict the presence of persis-
tent contrails in the test data set. At the end, we validate the
forecast by comparing the predictions with the truth and cal-
culating the so-called equitable threat score (see Sect. 3.2.3).
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3.2.3 Equitable threat score

In this study, the equitable threat score (ETS) is used to val-
idate and compare the prediction accuracy of the different
GAMs (with varied input parameters) with that of the raw
data. For the calculation of the ETS (Gierens et al., 2020),
the events are summed up according to the contingency table
(see Table 3), where a distinction is made between potential
persistent contrails predicted (yes or no) and persistent con-
trails observed (yes or no).

The sum of the events is labelled as a (contrails are pre-
dicted and observed), b (no contrails are predicted but ob-
served), ¢ (contrails are predicted but not observed), and d
(contrails are neither predicted nor observed). For the calcu-
lation of the ETS, the numbers of the events, a, b, ¢, and d,
and the following equation are used:

a—r

ETS=———, 6
a+b+c—r ©
with
_(@a+b)-(a+c) o
T a+4+b+c+d

If the prediction agrees perfectly with the observation,
ETS = 1. For a completely inverse relation, ETS is negative,
and for a random relation, ETS = 0. The advantage of using
ETS instead of another skill score is that the influence of the
predominant case in which ISS is neither predicted nor ob-
served (large value of d) is minimised. This is the case here,
since ISS is much more probable than ISS.

In order to fill the contingency table, it is necessary to de-
cide on a conditional probability threshold P(ISS|X) up to
which ISS and from which ISS is predicted. To determine
the threshold, one generally uses the value that gives the best
ETS. In the present case, this threshold probability is 0.34.
That is, with a given set of proxies, X, we predict contrail
persistence or ice supersaturation if P(ISS|X) > 0.34 (and
vice versa).

3.2.4 Regression results

Table 4 shows the results of the application of six different
general additive models (GAMy to GAMs). Note that Sy is
different for every GAM even if it is abbreviated in the same
way in all GAMs. In the first (white) row, the ETS value of
0.198 is given, which is obtained when only RHigra5 and
RHip 1 are compared (without applying a GAM to it). In
that case, we only check how well the prediction of ISS in
ERAS matches the observation of ISS of MOZAIC/TAGOS.
So, it is only examined how often RHigras5 > 1.0 matches
RHip/1 > 1.0. The SAC is not taken into account.

In GAMy, we only use RHigras and get an ETS value
of 0.337. In GAM;, we also take T into account since the
temperature and the humidity are the two important variables

Atmos. Chem. Phys., 24, 7911-7925, 2024
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Table 2. The mutual information matrix, /(X; Y), is used to identify the correlations of the variables with each other. The first row of the
matrix, I (RHipyr1; Y), shows the correlation of RHip,1 with the other proxies and the columns the correlations between the variables among

themselves.

I(X;Y)inbits  RHimyr  RHigras

w DIV ¢ PV % z

RHiwpy1 1.26  0.29
RHigrAs 0.35

0.06 0.04 037 057 038 023
0.08 0.06 043 0.61 043 025
0.02 0.02 0.12 0.16 0.05 0.36
0.21 0.04 0.09 0.10 0.06
0.03 0.04 0.04 0.03

0.73 043 0.19

1.07 0.54

0.54

Table 3. Contingency table for predicting and observing persistent contrails.

Potential persistent contrails predicted

Yes No

Persistent contrails observed  Yes
No

correct (a) false negative (b)
false positive (¢)  correct (d)

to compute whether contrails form (using the SAC). With
these proxies we get an ETS of 0.372, which is a little bit
higher than in GAMj but not significantly.

As we saw in Sect. 3.2.1, when calculating the mu-
tual information, RHigras, PV, ¢, and y show particularly
high values with RHin1 (1 (RHin 1; RHigras) = 1.26 bits,
I(RHinm 1 PV) = 0.57 bits, I(RHipy; )= 0.38 bits, and
I(RHiwy1; ¢) = 0.37 bits) and are therefore very suitable as
proxies. But when looking at the mutual information among
these proxies, then it is noticeable that in particular PV and y
correlate strongly (1.07 bits). That is why y can be omitted
when using PV. I(PV; ¢) is also very high (0.73 bits), which
is why we only use the PV in GAM; (in addition to 7" and
RHigras). The resulting ETS value is also 0.372.

For GAM3, we use PV, T, ¢, and RHigras because we
want to enter even more proxies in the GAM as inputs ac-
cording to the mutual information. So, we do the same GAM
as before, but we also use ¢ because I(RHipy1; ¢) is also very
high and I(PV; ¢) < I(PV; y). The ETS in this case is 0.373.
We see that GAM; and GAM3 hardly differ from GAM; in
terms of their ETS values. The reason for this is that even if
I(RHimy1; PV) is very high, the PV is already very strongly
correlated with RHigras (I (RHigrAs; PV) = 0.61 bits). This
means that not much more additional information is provided
by PV (and the other variables provide even less).

Next, we use all proxies that show separate distributions
in their probability density functions (PDFs, not shown),
P(X|ISS) vs. P(le), but, as an experiment, we omit
RHigras in GAMy. So, we use y, T, Z, PV, and ¢ as in-
puts. The ETS only reaches a value of 0.197. This shows us
two important things:
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i. Even if we supposedly put more information into the
GAM using more proxies, the ETS does not increase.

ii. The relative humidity cannot be ignored as an input
variable. This indicates that even if the relative humidity
is an imprecise variable, it must not be excluded; other-
wise, the ETS value will drastically decrease.

These two new insights may be explained by the log-
likelihood ratios (Fig. 1): only RHigras shows values above
2 for a large range, so ISS is more probable in this range. This
is probably the reason why RHigras has to be used as an in-
put for the GAMs. All other quantities show values above 2
either not at all or only for a very small range.

Using the same proxies as before and adding RHigras
(GAMs), the corresponding ETS reaches a value of 0.378.

It seems that the use of dynamical proxies in the GAMs
does not outperform a simple GAM that uses only relative
humidity and temperature by much. At least the ETS values
obtained via the GAMs (that is, for prediction of potential
persistent contrails) distinctively exceed those obtained from
a simple check of the ISS prediction, as can be seen from
the study of Gierens et al. (2020, in which ETS = 0.08 for a
relatively small set of data from 2014) and from the present
much larger data set (ETS = 0.198). This means that even if
a value of 0.378 seems small at first glance, it is still larger
than if the prediction of ice supersaturation is purely based
on the relative humidity with respect to ice from the ERAS
data.

Note that despite 7' not being particularly prominent in
neither the Er nor its mutual information with RHipn /1, we
use it in GAM; to GAMs because it is such an important
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quantity in the SAC, and we use the proxies to provide fur-
ther information (in addition to 7 and RHiggras). So, when
running our best GAM (GAM5), but this time without 7', the
ETS reaches a value of 0.357. T does not increase the ETS
significantly, but we leave it in for the reasons mentioned
above.

Since, as we have seen, the relative humidity should defi-
nitely be used as an input for a GAM, although it is not very
precise, the questions arise of whether it is possible to im-
prove the regression results using corrections to the relative
humidity field from the weather forecast models and what the
reason for why even the most advanced regression methods
are not able to yield better ETS values is. These questions are
dealt with in the next section.

4 Sensitivity tests

If weather forecasts were perfect, contrail persistence could
easily be predicted using temperature and relative humidity
alone and it would not be necessary to use any proxies. Un-
fortunately, it seems that the predicted humidity field in par-
ticular (at least from ERAS but certainly from other weather
models as well) is not good enough to allow for such a fore-
cast for single flights, that is, waypoint to waypoint (Gierens
et al., 2020). There are plausible reasons for this, a lack of in
situ observations of humidity at cruise levels and outdated
cirrus parameterisations in numerical weather prediction
models in particular (Sperber and Gierens, 2023). In the fol-
lowing, we perform regression tests with artificially changed
distributions of relative humidity. We first assume that the
two conditional RHiggas distributions, P(RHigras|ISS) and
P(RHiERA5|@), were more separated (less overlap) than
they are (ideally the overlap should be very small, includ-
ing only sublimating contrails in the ISS-conditioned PDF
and cases that are supersaturated but too warm in the ISS-
conditioned PDF). Second, we test two different methods of
humidity corrections to see whether they help to reach higher
ETS values in the regression models.

4.1 Separating the probability density functions
conditioned on persistence

We guess that the root of the problem of predicting ice su-
persaturation and contrail persistence is the too strong of
an overlap of the two conditional humidity PDFs, namely
FRHigpas (711SS) and fRHiggas (7|ISS), where r is a special
value of RHigras. This substantial overlap can be seen in
panel (f) of Fig. 3. Now we artificially separate these two
distributions using a perfectly separated pair of distributions,
a log-normal distribution fpc, cut off at 0.8 and 1.5 for cases
that allow for persistent contrails (PC), and a second one,
Joopc, ranging from 0.0 and 0.8 for cases that do not (no
PC). Then, we mix the original conditional probability dis-
tributions of all data, both in the training and test data set,
more and more into the artificial distributions, namely using
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a weighting factor, 0 < a < 1, as follows:
f(rIﬁ, a) - aanPC + (1 - a)fRHiERA5 (V|m),
f(rlISS, a) = a fec + (1 — a) fRHiggas (7 [ISS). 3

Some examples of these artificial distributions are shown in
Fig. 3. From these distributions, we draw random humidity
values and replace the original ones with them, keeping their
ISS and ISS label (i.e. either persistent contrail, RHi,, drawn
from f(r|ISS, a) or non-persistent or no contrail drawn from
f(r|ISS, a)). This data set is then again divided into a train-
ing (80 %) and test data (20 %) set and GAMs (with T and
RHi, like in GAM) and the corresponding ETSs are com-
puted for every value of a.

The results are shown in Table 5. It is noticeable that even
with a small shift in the relative humidity data, the ETS value
increases drastically. This can be observed especially for
small values of a, which means that if the original RHigras
data were just slightly more separated, the results would dras-
tically improve. This is good news since it shows that the
model prediction of RHigras5 does not need to be perfect.
Very good ETS values already appear for conditional distri-
butions that are a little less separated than they actually are.
Note that the further increase in ETS of a > 0.5 is quite weak
since ETS (a = 0.5) already exceeds 0.9.

4.2 Correction formulas

As Sect. 4.1 shows, there is a strong increase in the ETS for
decreasing overlap. For this reason, two different methods
are being tested to further separate the two conditional distri-
butions, fRHiggas(711SS) and frHiggs (7|ISS), using correc-
tions to the modelled relative humidity values. These correc-
tion methods are quantile mapping based on the present data
sets (e.g. Gierens and Eleftheratos, 2017; Wolf et al., 2023b)
and the RHi modification used by Teoh et al. (2022).

4.2.1 Quantile mapping

The quantile mapping procedure uses the two cumulative dis-
tributions of RHi, the one from the MOZAIC/IAGOS data
and the corresponding one from ERAS; see Fig. 4. Evidently,
the two distributions differ, in particular around saturation.
This is, therefore, the range of values where corrections have
the greatest effect. The procedure is quite simple: for each
RHigRras, the corresponding quantile value (the value on the
y axis) is looked up and the corresponding RHin,r that has
the same quantile value is taken as the corrected RHigm.
This is illustrated by the black arrows in Fig. 4. We note that
saturation (RHigm = 1) is already reached at the predicted
(i.e. ERAS) relative humidity of RHigras = 0.934 using this
method.
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Table 4. Results of comparing RHigra5 and RHiyj,1 with each other and of different GAMs.

Comparison of raw data (assessment of the ISS prediction without using a GAM) ETS
RHigras and RHinmy 1 0.198
Prediction of potential persistent contrails using proxies and GAMs; log ( i ya (;80) = ETS
GAMy  Bp + s(RHigras) 0.337
GAM;  Bo +s(T) + s(RHIgRAS) 0.372
GAM;  Bo+s(PV)+s(T)+ s(RHigras) 0.372
GAM3  Bo+s(PV)+s(T)+s(¢)+ s(RHigrAS) 0.373
GAMy  Bo+s(y)+s(T)+s(Z)+sPV)+s(¢) 0.197
GAMs  Bo+s(y)+s(T)+s(Z)+sPV)+s(¢)+ s(RHigrA5) 0.378
a=10 a=038
(a)s (b)s
w? w?
[a] o
o o
0 0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
RHi RHi
a=06 a=04
(c)s (d)s
w? w?
o o)
o o
0 0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
RHi RHi
a=02 a=00
(e)s (f) e
w4 w4
a a
o o
2 2
0 0
0.0 0.5 1.0 15 0.0 0.5 1.0 1.5
RHi RHI

Figure 3. Conditional probability density functions f(r|ISS, a) (blue) and f (r[1SS, a) (red) for different values of a. Note that the original
distributions fRHjgg s (7[ISS) and fRHigg s (7|1 SS) are retained with a = 0.0 in panel (f).

1.00 —
0.75
[T
00.50
@)
0.25
0.00
0.0 05 1.0 15

RHiI

Figure 4. Illustration of quantile mapping for RHigras. The red
curve illustrates the cumulative distribution function (CDF) of
RHigrAs5 and the blue one the CDF of RHijy/1-
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4.2.2 RH/ modification by Teoh et al. (2022)

In a study by Teoh et al. (2022), the ERAS5 ice supersaturation
over the North Atlantic was adjusted to the corresponding
MOZAIC/TAGOS supersaturation by introducing two factors
used to scale RHigras:

RHiggrAs RHigras <1

— L

RHitgon = p

. b
RH
RHiTgol = min {(‘ERAS> , 1.65} if
a

with a =0.9779 and b = 1.635. Here we test whether this
modification can lead to improvements in our regression
models.

RHigRras -1 (9)
—a )
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Table 5. Results of the sensitivity test.

7921

a 1.0 0.9 0.8 0.7 0.6

0.5 0.4 0.3 0.2 0.1 0.0

ETS 1.0 099 0.989 0.976 0.956

0.921

0.863 0.765 0.639 0.484 0.372

4.2.3 Results using corrections

Table 6 shows the results of comparing the observed ice su-
persaturation RHiygyr with the modified relative humidities
with respect to ice, RHigm and RHitgon, and the results of
using these corrected humidities in the best GAM we have
found before (see Sect. 3.2.4). To recall the results to be com-
pared, which we have already described, the ETS of the com-
parison of RHigra5 and RHin,1 and also the original GAM;
have been added to the table.

We check how good the prediction of ice supersaturation
is using the corrected versions of RHigras. When comparing
the data of RHin/; with the modified relative humidity with
respect to ice using the quantile mapping method, RHigm,
the ETS reaches a value of 0.344. If the relative humidity
with respect to ice is modified according to the formula of
Teoh RHitgoy and compared to RHipy1, then the ETS is
0.284.

Now, we use the same proxies as in GAMj5 but we re-
place RHigra5 with RHigwm gained by quantile mapping and
for the other case with RHitgoy using the formula by Teoh.
The relative humidity of the whole data set is adapted. When
RHigras is modified by quantile mapping, we get an ETS
value of 0.377, and for a change in humidity, according to
Teoh, the ETS value is 0.376.

Unfortunately, it turns out that neither a GAM produced
with quantile-mapped ERA5 humidity values nor a GAM
where the Teoh et al. (2022) corrections have been applied
leads to larger ETS values than a GAM without the cor-
rections (reminder that the ETS of the original GAMs with
the original RHigras is 0.378). In comparison to the ETS
of 0.344 (quantile mapping) and 0.284 (Teoh) mentioned
above, when only the modified humidities are compared with
RHin,1, the GAMs with the best-suited proxies and the mod-
ified humidities hardly affect the ETS values.

The probable reason for this negative result is seen in
Fig. 5, which shows the original conditional PDFs (red and
blue) together with those obtained when the corrections are
applied. Evidently, there is some shift for the PDFs condi-
tioned on ISS in particular, but the overlap between the distri-
bution pairs still remains considerable, that is, too substantial
for a better result.

Another reason for the insensitivity of the GAMs to these
corrections may be that they absorb such modifications in
the coefficients of the non-linear smooth functions. This may
become clearer if one thinks of a linear regression (Y =
Bo + B1X + €) where a linear correction of the predictor X,
that is, X’ = a + bX, would also simply be absorbed in the
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Figure 5. The conditioned PDFs P(RHi|ISS) (blue) and
P(RH;|ISS) (red) of different RHi distributions are shown. The
solid curves are the PDFs of the original RHiggas of the whole
data set for ISS and ISS. The other curves represent RHi correc-
tions: the dashed lines are the conditioned PDFs of RHigy modi-
fied by the quantile mapping method. The dotted curves represent
the conditioned PDFs of RHiTgpoy modified by the Teoh formula.

regression coefficients By and B;. That is, they would simply
take different values, but the form of the regression and the
ETS would not change.

5 Summary and conclusions

There are various approaches to minimising the climate im-
pact of aviation. One of these approaches is to prevent the
formation of persistent contrails by avoiding flying through
ice-supersaturated regions, where contrails can last for hours.
For implementing such aircraft diversions, these regions have
to be accurately predicted in terms of time and location,
which is currently associated with difficulties and uncertain-
ties. This is mainly due to the inaccurate forecast of the
relative humidity. Since ice supersaturation (ISS) is more
common in some dynamical regimes than in others, we use
different dynamical proxies (in addition to the relative hu-
midity with respect to ice RHigras and to the temperature
T) as inputs to various approaches and methods to improve
the prediction of these regions. These methods include a
Bayesian approach and different regression models. The data
of the variables/proxies come from ERAS5, and the observa-
tion comes from MOZAIC/IAGOS, which we assume as the
truth. With the data of MOZAIC/IAGOS, we can make the
distinction between ISS and ISS. The evaluation of the dif-
ferent methods is carried out with a score value (ETS) that
checks how well the prediction matches the observation.

To find out which dynamical variables are best suited for
the regressions and which do not provide redundant informa-
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Table 6. Results of comparing RHip/1 and the modified humidities, RHigy and RHiTgoH, and of GAMs using RHigy and RHiTEQH-

Comparison of raw data (assessment of the ISS-prediction without using a GAM) ETS
RHiERAS and RHiM/] 0.198
RHigym and RHin/1 0.344
RHiTgoyg and RHim/1 0.284
Prediction of potential persistent contrails using proxies and GAMs; log ( %) = ETS
GAM; Bo+s)+s(T)+s(Z)+ s(PV)+5(¢) + s(RHigrA5) 0.378
GAM;s om Bo +s(y)+s(T)+5(Z)+ s(PV) + s(¢) + s(RHigm) 0.377
GAMs teon Bo+s(y)+s(T)+5(Z) +s(PV) +5(¢) + s(RHiTEOR) 0.376

tion, we use various methods of information theory and test
them. These include the log-likelihood ratios, known from
Bayes’ theorem; a modified form of the Kullback—Leibler di-
vergence, which we call the expectation of the absolute logit;
and the mutual information.

Log-likelihood ratios with values greater than 2 indicate
that ISS is more likely than ISS. Only RHigras delivers val-
ues above 2 in a larger range, which indicates that ISS is
more likely there than ISS. The vertical velocity, w, and the
relative vorticity, ¢, also show values above 2 but in a very
small range. All other log-likelihood ratios are always below
2, which means that their effect on updating the prior odds
ratio is quite small.

Particularly high values of the expectation for absolute
logits are found for RHigras; the lapse rate, y; and the rel-
ative vorticity, ¢, which means that these proxies have the
greatest learning effect when assessing whether the situation
is ISS or ISS.

Furthermore, to estimate the suitability of a proxy for a
regression, we use the mutual information, which is a mea-
sure of how much information one variable, X, can provide
about another variable, Y. To be a good predictor of ISS, it is
important that the variable is both very well correlated with
the relative humidity of the MOZAIC/IAGOS data, RHin 1
(which we assume as the truth), and at the same time as un-
correlated as possible with the other variables. RHigras, PV,
v, and ¢ have the highest mutual information on RHip,1, but
PV and y are themselves especially quite strongly correlated,
so it is sufficient for a regression to use PV and omit y be-
cause of the higher mutual information of PV with RHipm1.

We use the most promising variables in several regression
models to predict ISS. Through the regressions we find out
that no matter which and how many dynamical proxies are
added as an input, they provide only little new information
regarding ISS. With only the raw RHigras and 7' data of
ERAS, Gierens et al. (2020) could achieve an ETS value of
0.08 for the prediction of ice supersaturation. For the present
data set, it is 0.198. The best regression that we can find
achieves an ETS of 0.378. We consider this not satisfying
for flight routing.
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It turns out that the dynamical proxies hardly provide
information on the question of whether a situation is ISS
or ISS, although the mutual information between RHigras
and RHip 1 and between PV and RHipyp in particular is
quite large. Furthermore, we see that, of all variables, only
RHigras has a range of values with the logit function ex-
ceeding the critical level of 2 and that a regression without
RHigras is not successful. Thus, it turns out that the rel-
ative humidity, RHigras, at flight level is essential in our
regressions in spite of its weaknesses. We suspect that the
main problem with predicting ISS is the strong overlap of the
conditional probability density functions P(RHigras|/SS)
and P(RHigras |ﬁ), especially in the critical region around
RHigras of 70% to 100 %. Sensitivity tests show that the
ETS increases strongly with a decrease in the overlap, which
means that if P(RHigras|ISS) and P(RHiERA5|ﬁ) were
just slightly more separated, the results would drastically
improve. While corrections of RHigras lead to better pre-
dictions of ice supersaturation (increase in the ETS values)
for comparing RHin1 with the modified relative humidities,
they only slightly improve the forecast of potential persis-
tent contrails (based on the ETS of the ISS prediction) us-
ing regression methods, the proxies that turned out to be the
most suitable ones, and the modified relative humidities. This
is due to the fact that the overlap of the conditional PDFs
P(RHi|ISS) and P(RHi|ISS) of the modified relative hu-
midities is also hardly reduced and probably also because the
corrections are absorbed by the regressions, and thus they do
not become effective.

In the present paper, we use the meteorological data only
at the point and time where the prediction of ice supersatu-
ration is required. One can increase the effort and use addi-
tional forecast data from earlier points in time and locations
upstream of the location of interest (e.g. Duda and Minnis,
2009a, b). Wang et al. (2024) report that the humidity fore-
cast of the ECMWF model can be improved by the applica-
tion of an artificial neural network fed with data from previ-
ous atmospheric states (a couple of hours) and covering about
100 hPa in vertical distance in order to account for the past
vertical motion that led to the current state. While this is cer-
tainly a possibility when it comes to improving the predicted
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humidity field per se, it is not clear whether the methods are
fast and accurate enough for flight planning. Duda and Min-
nis (2009b) conclude that “reductions in the uncertainties of
meteorological variables to a point where acceptable contrail
forecasts are produced would be a good goal for NWA [nu-
merical weather analysis] modelers”.

We conclude that the representation of RHi in models of
numerical weather prediction needs to be improved. There
are several ways to do this, but it will take some time to re-
alise any of them. Cloud physics in numerical weather mod-
els is greatly simplified. This was justified for a long time
because of the constraints of computing time and because
the processes at flight level were not the focus of weather
prediction. However, as aviation needs to reduce its climate
impact, avoidance of contrails gets interesting for airlines
and thus the prediction of ice supersaturation needs improve-
ment. Furthermore, computer power is rising and additional
resources can be used to improve the description of phys-
ical processes. A recent example is the concept of a one-
moment scheme by Sperber and Gierens (2023). Further-
more, we think that more aircraft need to be equipped with
hygrometers to measure humidity at flight altitudes for data
assimilation. This would enable numerical weather models to
improve the prediction of relative humidity for flight routing.
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