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Abstract. Due to the lockdown during the COVID-19 pandemic in China from late January to early April in
2020, a significant reduction in primary air pollutants, as compared to the same time period in 2019, has been
identified by satellite and ground observations. However, this reduction is in contrast with the increase of surface
ozone (O3) concentration in many parts of China during the same period from 2019 to 2020. The reasons for
this contrast are studied here from two perspectives: emission changes and inter-annual meteorological varia-
tions. Based on top-down constraints of nitrogen oxide (NOx) emissions from TROPOMI measurements and
GEOS-Chem model simulations, our analysis reveals that NOx and volatile organic compound (VOC) emission
reductions as well as meteorological variations lead to 8 %, −3 % and 1 % changes in O3 over North China,
respectively. In South China, however, we find that meteorological variations cause ∼ 30 % increases in O3,
which is much larger than −1 % and 2 % changes due to VOC and NOx emission reductions, respectively, and
the overall O3 increase in the simulations is consistent with the surface observations. The higher temperature
associated with the increase in solar radiation and the decreased relative humidity are the main reasons that led
to the surface O3 increase in South China. Collectively, inter-annual meteorological variations had a larger im-
pact than emission reductions on the aggravated surface O3 pollution in China during the lockdown period of the
COVID-19 pandemic.
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1 Introduction

Surface ozone (O3), an important air pollutant that is harmful
to human health (Jerrett et al., 2009) and stomatal conduc-
tance of green vegetation (Gong et al., 2020), is produced
by photochemical reactions of nitrogen oxides (NOx) and
volatile organic compounds (VOCs; Liu et al., 1987; Sill-
man et al., 1990). In addition to emissions, meteorological
conditions, such as temperature, solar radiation and relative
humidity, also have large impacts on surface O3 formation
(Lu et al., 2019).

Ground observations show that surface O3 increased dra-
matically during the COVID-19 lockdown period in China
by around 40 % on average (Tong et al., 2023) and even more
than 100 % (Shi and Brasseur, 2020; Liu et al., 2021) depend-
ing on the time period and region. The reduction in economic
activities during the lockdown period led to a significant de-
crease in several primary air pollutant emissions. The NO2
vertical column density (VCD) from satellite measurements
and the surface NO2 concentrations from ground measure-
ments were reduced by 40 %–60 % in China during the lock-
down period (Bauwens et al., 2020; Shi and Brasseur, 2020;
F. Liu et al., 2020; Zhang et al., 2020). A lower but dis-
cernible reduction in sulfur dioxide (SO2), carbon monox-
ide (CO) and formaldehyde (HCHO) has also been identi-
fied by satellite or ground-based observations in China (Shi
and Brasseur, 2020; Levelt et al., 2022; Ghahremanloo et al.,
2021). However, during this period, surface O3 concentra-
tions increased, and the respective roles of meteorological
factors and emission reduction for the aggravated surface
O3 pollution during the lockdown in China need to be fur-
ther quantified.

This study provides a quantitative analysis of the causes
for the unexpectedly aggravated surface O3 pollution in
China during the lockdown period of the pandemic from two
perspectives using the GEOS-Chem model. One perspective
involves anthropogenic emission reduction of NOx and VOC
in response to the lockdown, possibly under a VOC-limiting
chemical regime of surface O3 production (Guo et al., 2023).
The other perspective involves the impact of natural variabil-
ity in meteorological conditions. Previous studies have re-
ported the enhanced surface O3 due to NOx emission decline
during the lockdown period in North China using chemical
transport model (CTM) simulations without controlling for
the impacts of meteorological variability (Zhang et al., 2021;
Huang et al., 2020; Miyazaki et al., 2020). Other studies
quantified or excluded the meteorological impacts on surface
O3 using statistical analysis instead of CTMs that account for
the physical and chemical processes (Venter et al., 2020; Bi
et al., 2022; Tong et al., 2023). Although a few studies have
investigated the contributions from both emission reduction
and meteorological variability to surface O3 increase using
CTMs, most of their results have uncertainties due to the lim-
itations of their analysis. For example, some of them keep
the emissions unchanged (Zhao et al., 2020) or assume an

arbitrarily uniform emission reduction instead of constrain-
ing the emission based on observations (Le et al., 2020; Liu
et al., 2021). In cases where the emissions were constrained
by the observations, the focus was limited to several cities in
China (T. Liu et al., 2020). Furthermore, in these past stud-
ies, the surface O3 increase during the lockdown period of
2–4 weeks is quantified in reference to the time period right
before the lockdown, instead of the same period in previous
years; such comparisons, by design, cannot exclude the pos-
sibility that the seasonal variation in meteorology from early
January to early April may have dominated the cause for the
surface O3 increase. A comprehensive analysis of the contri-
butions from emission reductions and meteorological varia-
tions to the surface O3 increase during the first round of the
lockdown period, with respect to the same time period in pre-
vious years in China, is therefore overdue.

Here, we apply a top-down method to update NOx and
VOC emissions in February and March in 2020 based on
the TROPOMI NO2 and formaldehyde (HCHO) product.
GEOS-Chem model simulations, with NOx and VOC emis-
sions and meteorological fields in different time periods, are
then conducted. Based on the difference in surface O3 con-
centration in different modeling sensitivity experiments, we
quantitatively assess the respective roles of emission and me-
teorology in regulating surface O3 concentration in conti-
nental China. The ground observations of surface O3 and
NO2 concentrations are compared with the model simula-
tions to verify our analysis. Section 2 introduces the satel-
lite and ground-based measurements, NOx emission update
scheme, and the configurations of GEOS-Chem simulation
experiments. Section 3 provides an evaluation of the con-
strained NOx emission and surface O3 simulations, as well
as the analysis of the mechanism of the aggravated surface
O3 pollution. The summary and conclusions are presented in
Sect. 4.

2 Datasets and methods

2.1 TROPOMI NO2 and HCHO product

We used tropospheric NO2 and the HCHO level 2 VCD prod-
uct provided by the TROPOspheric Monitoring Instrument
(TROPOMI) on board the Sentinel-5 Precursor (S5P) satel-
lite (Veefkind et al., 2012). S5P is a sun-synchronous polar
orbit satellite launched on 13 October 2017, which covers the
near-global domain in a single day. TROPOMI provides NO2
and HCHO retrievals at an approximately 7 km× 3.5 km spa-
tial resolution (5.5 km× 3.5 km since 6 August 2019) from
the ascending orbit, with an equatorial crossing time of
∼ 13:30 LT (local time; Van Geffen et al., 2020; De Smedt
et al., 2018). The datasets were obtained from the NASA
Goddard Earth Sciences Data and Information Services Cen-
ter (https://daac.gsfc.nasa.gov, last access: 16 August 2023).
A quality control procedure similar to Bauwens et al. (2020)
but with slightly stricter criteria is adopted for TROPOMI
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NO2 and HCHO data. The TROPOMI retrievals, under one
or more than one of the following conditions, are screened
out for data quality control: (1) the quality assurance value is
no larger than 0.5, (2) the cloud radiance fraction within the
NO2 or HCHO retrieval window is larger than 0.3, (3) the so-
lar zenith angle is larger than 70°, and (4) the viewing zenith
angle is larger than 70°.

2.2 Ground O3 and NO2 measurements

Surface measurements of O3 and NO2 were collected from
∼ 1600 operational air quality monitoring stations, over
mainland China managed by the China National Environ-
mental Monitoring Centre (http://www.cnemc.cn/en/, last ac-
cess: 5 September 2023). We calculated daily maximum
8 h average (MDA8) O3 concentration from hourly in situ
measurements. Surface O3 is measured by the ultraviolet
photometric method and indigo disulfonate spectrophotom-
etry, following the national environmental standards of HJ
590-2010 and HJ 504-2009. Surface NO2 concentrations are
measured by the chemiluminescence method (Zhang and
Cao, 2015) that quantifies the NO2 concentrations by mea-
suring the NO decomposed from NO2, which can cause a
positive bias in the NO2 measurements (Steinbacher et al.,
2007) because NOz (compounds produced from the atmo-
spheric oxidation of NOx) can also be decomposed to NO.
The true NO2 concentrations only account for 43 %–76 %
and 70 %–83 % of measured values for rural and urban sites
(Steinbacher et al., 2007). Following Wang et al. (2020b), we
also applied a correction factor but with a lower value of 0.75
to the measured NO2, considering that we included both rural
and urban sites. The sampling ports are placed at 3 to 15 m
above ground level (a.g.l.) following the national environ-
mental monitoring method standard HJ 664-2013. The mea-
sured data are reported in the units of µgm−3 under standard
temperature (273.15 K) and pressure (101.325 kPa) accord-
ing to the national environmental standard GB 3095-2012.

2.3 The GEOS-Chem model and its adjoint

The global 3D chemical transport model GEOS-Chem (Bey
et al., 2001) version 12.7.2 is used here. We apply the
nested-grid version of GEOS-Chem (Chen et al., 2009; Wang
et al., 2004) with the horizontal resolution of 0.25°× 0.3125°
and 47 vertical hybrid-sigma levels over East Asia (15–
55° N, 70–140° E). The boundary conditions are obtained
from the 2°× 2.5° global simulation. The model is driven by
the GEOS-FP meteorological field provided by the NASA
Global Modeling and Assimilation Office (GMAO). A de-
tailed O3–NOx–hydrocarbon chemistry (Mao et al., 2010,
2013; Travis et al., 2016) is included in the GEOS-Chem
model. The altitude of the surface O3 output from GEOS-
Chem is specified at 9 ma.g.l. to match the in situ mea-
surements (Travis et al., 2017; Zhang et al., 2012). Through
our sensitivity test using GEOS-Chem, the variation in sur-

face O3 from 3 to 9 m a.g.l. is generally less than 0.723 ppb
(75th percentile), and the median bias is 0.283 ppb. Travis
et al. (2017) reported that from 60 to 10 ma.g.l., the MDA8
O3 could decrease by ∼ 3 ppb. Therefore, when comparing
GEOS-Chem surface O3 with in situ measurements, the dif-
ferences caused by inconsistent reported altitudes (9 m ver-
sus 3–15 m) can be ignored.

The global anthropogenic emission used in the GEOS-
Chem model is the Community Emissions Data System
(CEDS) inventory (Hoesly et al., 2018), which is replaced by
the MIX inventory (Li et al., 2017) over the Asian region.
Biogenic emissions for VOCs follow the Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN) inven-
tory (Guenther et al., 2012). Natural NOx emissions include
biomass burning from the GFED4 inventory (Van Der Werf
et al., 2017), soil NOx emissions (Hudman et al., 2012) and
lightning sources (Murray et al., 2012; Ott et al., 2010).

The adjoint of the GEOS-Chem model (Henze et al., 2007;
Henze et al., 2009) is a component of the four-dimensional
variational (4D-Var) inversion method that can efficiently
optimize spatially disaggregated aerosol and gas emissions.
This is done simultaneously through iterative minimization
of a cost function using the model adjoint to calculate the
gradient of the cost function with respect to a large num-
ber of model parameters (such as anthropogenic NOx emis-
sions in each grid box). The cost function is the sum of
the error-weighted difference between forward model out-
puts and observations and the divergence of posterior model
parameters from the prior estimate (Sect. 2.4). We devel-
oped and validated the observation operator for TROPOMI
NO2 in the GEOS-Chem adjoint model version 35n simi-
larly to Wang et al. (2020a) and used it to optimize the an-
thropogenic NOx emission during the lockdown period in
China. The monthly NOx emission optimization is imple-
mented using the 4D-Var method with the GEOS-Chem ad-
joint at a nested grid resolution of 0.25°× 0.3125° by assim-
ilating the daily TROPOMI NO2 measurements. The prior
anthropogenic NOx emission used in the GEOS-Chem ad-
joint is HTAP version 2 (Janssens-Maenhout et al., 2015),
which is equivalent to the MIX inventory in East Asia (Li
et al., 2017).

2.4 NOx and VOC emission updates

Two approaches are used to update the emissions during the
lockdown period in 2020. The first is a simple mass balance
approach (Leue et al., 2001; Martin et al., 2003; Vinken et al.,
2014) for updating the NOx emission by assuming a constant
NOx lifetime and NOx/NO2 ratio. In the period from 2010
to 2019, the anthropogenic NOx emissions declined signif-
icantly as a result of the clean air actions of the Chinese
government (Zheng et al., 2018). We scale the anthropogenic
NOx emission from year 2010 to 2019 using the spatially
gridded ratio of mean TROPOMI tropospheric NO2 VCD in
February–March 2019 to the GEOS-Chem-simulated NO2
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column, with a default MIX 2010 emission (Appendix A)
to obtain the baseline anthropogenic NOx emission in 2019,
which is denoted as MIX 2019. To derive anthropogenic
NOx emissions in 2020 in China during the COVID-19
lockdown (MIX 2020), the spatially gridded ratio of mean
TROPOMI tropospheric NO2 VCD in February–March 2020
to that in February–March 2019 is taken as a scaling fac-
tor for the updated baseline anthropogenic NOx emission in
2019 (MIX 2019). The 2-month means of TROPOMI NO2
VCD in 2019 and 2020 are calculated with the physical over-
sampling procedure (Sun et al., 2018). Scaling factors in re-
gions where the mean TROPOMI tropospheric NO2 VCD in
February–March 2019 is less than 0.1 Dobson units (DU) are
set to 1 for emission updates in both 2020 and 2019, assum-
ing that the lockdown only affects the populated areas (that
have high NO2 in 2019).

The second method for updating NOx emission is 4D-
Var via the GEOS-Chem adjoint model. The anthropogenic
NOx emissions in the 2020 lockdown period derived from
the GEOS-Chem adjoint are hereafter denoted as 2020 Ad-
joint. Following Wang et al. (2020a), the cost function J for
optimizing the NOx emission is defined as

J =
1
2

∑
c∈�

[H (c)− s]TS−1
obs[H (c)− s]

+
1
2
γ (σ − σ a)TS−1

a (σ − σ a), (1)

where s is the tropospheric slant column density of
TROPOMI NO2, which is the product of TROPOMI NO2
VCD and air mass factor. H is the TROPOMI NO2 obser-
vation operator that maps the modeled NO2 concentrations c
to the observations in time and space and calculates the cor-
responding slant column density to make an apple-to-apple
comparison of the model to TROPOMI. � is the spatial and
temporal domain where both model simulations and obser-
vations are available. σ is the scaling factor of anthropogenic
NOx emissions to be optimized, and σ a is the prior emis-
sion scaling factor, which equals 1. Sobs and Sa are observa-
tional and prior error covariance matrices, respectively. γ is
the regularization factor that balances the weights of the ob-
servational term and prior term. We assumed Sobs to be di-
agonal, following Wang et al. (2020a), with the diagonal val-
ues calculated as the square of the standard error in tropo-
spheric NO2 slant column density from the TROPOMI prod-
uct. The prior error in the NOx emissions is assumed to be
100 %. The spatial correlation of NOx emissions is consid-
ered in this study, and the off-diagonal elements of Sa are
computed by assuming an exponentially decaying error cor-
relation with a fixed decaying distance of 150 km following
Qu et al. (2017). The γ value was determined as 500 via the
total error minimization and L-curve test (Henze et al., 2009;
Qu et al., 2017).

We developed the observation operator for the TROPOMI
NO2 product in the GEOS-Chem adjoint model, with the

GEOS-Chem NO2 vertical profiles and TROPOMI NO2 av-
eraging kernel applied to minimize the discrepancies be-
tween the assumptions in the TROPOMI NO2 retrieval and
GEOS-Chem model simulation. See Appendix B for addi-
tional details. The observation operator has been validated
using the finite difference method (Appendix C).

For an anthropogenic VOC emissions update, we only
applied the mass balance method based on the TROPOMI
HCHO data. The default anthropogenic VOC emissions used
in the GEOS-Chem are also part of the MIX 2010 inven-
tory (Li et al., 2017). We ignore the change in anthropogenic
VOC emissions from 2010 to 2019 (Appendix D). The base-
line VOC emission in 2019 (MIX 2019) is identical to that of
MIX 2010. The updated anthropogenic VOC emissions dur-
ing the lockdown period are denoted as MIX 2020. HCHO is
one species of VOC and may not be able to represent other
VOC species. Unlike NOx , biogenic sources, meteorologi-
cal impacts and the large retrieval uncertainties of HCHO
(due to its low optical depth) prevent accurately quantify-
ing the emission decline due to lockdown from satellite re-
trievals (Levelt et al., 2022). Vigouroux et al. (2020) reported
that TROPOMI HCHO tends to be overestimated by ∼ 26 %
for the HCHO column lower than 2.5× 1015 molec. cm−2

and underestimated by ∼ 31 % for the HCHO column higher
than 8.0× 1015 molec. cm−2. To optimize the signal, we spa-
tially aggregate the ratio of TROPOMI HCHO in February–
March 2020 to that in February–March 2019 to the resolution
of 0.5°, which is used as the scaling factor for updating the
anthropogenic VOC emissions during the lockdown period.
The aggregation is based on the oversampling of TROPOMI
HCHO at a 0.01° resolution, and the ratio is computed as the
mean of the lowest 25th percentile of all ratios at a 0.01° res-
olution in each 0.5°× 0.5° grid box, which ensures that only
statistically significant changes are considered. We assumed
the change in anthropogenic VOC emissions over sparsely
populated areas (TROPOMI NO2 in February–March 2019
less than 0.1 DU) is insignificant and assigned the ratio val-
ues as 1. To further evaluate the uncertainties associated with
this approach, we also conducted a sensitivity study using a
different threshold in the aggregation.

We assess the results from model experiments (as de-
scribed in Sect. 2.5), adopting the updated NOx emission by
comparing mean tropospheric NO2 VCD from GEOS-Chem
and TROPOMI observations in February–March of 2019 and
2020. The averaging kernel of TROPOMI NO2 is applied to
the modeled NO2 column for this comparison, following Sha
et al. (2021). A further quantitative evaluation of the model
results also used the TROPOMI measurements of HCHO and
surface observations of O3 and NO2.

2.5 GEOS-Chem model experiments

A series of sensitivity experiments are conducted over China
with different NOx and VOC emissions and GEOS-FP me-
teorological fields in different years using the GEOS-Chem
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Table 1. Configurations of model sensitivity experiments.

Experiments Abbreviation Meteorology NOx emission VOC emission

Baseline (2019) 2019B GEOS-FP 2019 MIX 2019 MIX 2019
2020 Default 2020D GEOS-FP 2020 MIX 2019 MIX 2019
2020 NOx 2020N GEOS-FP 2020 MIX 2020 MIX 2019
2020 VOC 2020V GEOS-FP 2020 MIX 2019 MIX 2020
2020 Lockdown 2020L GEOS-FP 2020 MIX 2020 MIX 2020
2020 Adjoint 2020A GEOS-FP 2020 Adjoint 2020 MIX 2020

Figure 1. Updated anthropogenic NOx emission during February–March 2020 from (a) the mass balance method and (b) the 4D-Var
method as well as (c) their relative difference. The relative difference is calculated by subtracting the value in panel (a) from panel (b) and
then dividing the difference by panel (a).

(version 12.7.2) model. All simulations are conducted from
15 January to 31 March. The 17 d before 1 February is used
for spin-up, and the model outputs for February and March
are used for the analysis. The configurations of different sim-
ulations are listed in Table 1.

We use the following equations to quantify the contri-
butions from NOx and VOC emission reductions due to
COVID-19 and meteorological variations to the increase in
surface O3 as follows:

1ONOx
3 =

O2020A
3 −O2020V

3
O2019B

3
× 100%, (2)

1OVOC
3 =

O2020L
3 −O2020N

3
O2019B

3
× 100%, (3)

1Oems
3 =

O2020A
3 −O2020D

3
O2019B

3
× 100%, (4)

1Omet
3 =

O2020D
3 −O2019B

3
O2019B

3
× 100%, (5)

where 1ONOx
3 , 1OVOC

3 and 1Oems
3 are the relative differ-

ences in surface O3 concentration caused by emission de-
cline in NOx , VOC, and both NOx and VOC resulting from

COVID-19. 1Omet
3 represents the relative contribution to

the surface O3 change from the meteorological variation be-
tween 2 years. O2019B

3 , O2020D
3 , O2020N

3 , O2020V
3 , O2020L

3 and
O2020A

3 are mean MDA8 surface O3 concentrations simulated
by the modeling experiments Baseline (2019), 2020 Default,
2020 NOx , 2020 VOC, 2020 Lockdown and 2020 Adjoint,
respectively (Table 1).

The difference in simulated surface O3 between 2020 and
2019 is the result of both emission reductions and meteoro-
logical variations and is denoted as1Oall

3 . It is calculated and
evaluated against the observed relative difference in mean
MDA8 O3 in February to March between 2019 and 2020 at
all ground sites as follows:

1Oall
3 =

O2020A
3 −O2019B

3
O2019B

3
× 100%. (6)

3 Results

3.1 Changes in NOx and VOC emissions during
COVID-19

We updated the anthropogenic NOx emissions during the
COVID-19 lockdown using both the 4D-Var method and
mass balance method (Figs. 1 and 2). The NOx emissions
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Figure 2. Scaling factors for anthropogenic NOx emissions in February–March from 2019 to 2020 as derived from the (a) 4D-Var method
and (b) mass balance method. Scaling factors for anthropogenic VOC emissions from the mass balance are shown in panel (c).

from the 4D-Var inversion share a similar spatial pattern and
magnitude with those found using the mass balance method
(Fig. 1). However, the NOx emissions from the 4D-Var in-
version are lower overall than those from the mass balance
method over North China by ∼ 10 % and larger over cen-
tral China by ∼ 40 %. Figure 2a and b show that the 4D-
Var NOx emission reduction is more severe over urban re-
gions and displays a smoother spatial pattern than that from
the mass balance approach, which is caused by the arbitrary
cutoff with 0.1 DU of NO2 VCD in the latter. Furthermore,
the 4D-Var inversion captured the NOx emission decline in
northeast China where the mass balance approach did not be-
cause of the low NO2 VCD. During February–March 2020,
the anthropogenic NOx emissions in East China decreased
by ∼ 30 % compared to those in the same period in 2019.

We also scale the anthropogenic VOC emissions based
on the TROPOMI HCHO data (Fig. 2c). The VOC emis-
sions decrease by∼ 20 %–30 % in East Asia and South Asia.
The anthropogenic VOC emission changes in sparsely pop-
ulated areas over northwest China are neglected. TROPOMI
HCHO data cannot distinguish the anthropogenic emissions
from biogenic and biomass burning sources for the Indochi-
nese Peninsula in Southeast Asia because of the dense veg-
etation in this region. However, this study investigated the
O3 pollution in China; Southeast Asia, with its dense veg-
etation, is outside our study domain. The impact of a VOC
emission bias in Southeast Asia on surface O3 pollution in
China is negligible, considering the generally short lifetime
of biogenic VOC (Atkinson, 2000). For the populated urban
regions in China, where the surface O3 pollution exerts more
significant health impacts, the anthropogenic source domi-
nates the VOC emissions (Williams and Koppmann, 2007).

3.2 Validation of NO2 simulations

We further assess our updated anthropogenic NOx emis-
sions by comparing the NO2 VCD from TROPOMI with that
from GEOS-Chem with the anthropogenic NOx emissions
before and after the scaling (Figs. 3 and 4). Before updating
the NOx emissions, the 2020 Default (Fig. 3b) simulation
significantly overestimates the NO2 VCD compared to the

TROPOMI NO2 observations (Fig. 3a). With the NOx emis-
sions updated, the 2020 NOx (Fig. 3c) and 2020 Adjoint
(Fig. 3d) simulations exhibit a much better agreement with
the TROPOMI NO2 observation than the 2020 Default ob-
servation. However, Fig. 3c shows that the GEOS-Chem sim-
ulation with the NOx emissions from the mass balance ap-
proach overestimated the NO2 VCD over Beijing and the
southwest Hebei Province (pink and black circles in Fig. 3)
compared with TROPOMI data. The reason is that scaling
factors are applied only to anthropogenic NOx emissions, not
total NOx emissions, so it is expected that the model may
still overestimate the NO2 column after scaling part of the
total NOx emission. With the anthropogenic NOx emissions
optimized by the 4D-Var method, the overestimation of NO2
VCD over Beijing and the southwest Hebei Province (pink
and black circles in Fig. 3) is mitigated compared with the
NOx emissions from the mass balance approach.

Figure 4 further displays the statistics for the compari-
son between the TROPOMI NO2 and GEOS-Chem simu-
lations via the scatterplot. The Baseline (2019) simulation
captures the magnitude of NO2 VCD observations in 2019
well (Fig. 4a). The root mean square error (RMSE) and mean
bias error (MBE) for the simulation with 2020 NOx emis-
sions derived from the mass balance method (Fig. 4b) de-
creased by 0.050 and 0.057 DU as compared to the 2020 De-
fault (Fig. 4c) simulation. Compared with the result from the
GEOS-Chem simulation 2020 NOx , emissions from the 2020
Adjoint simulation (Fig. 4d) further led to the reduction in the
MBE of the NO2 VCD by 0.006 DU and improved the cor-
relation coefficient by 0.003. The significant overestimation
of several pixels, with the TROPOMI NO2 VCD larger than
0.4 DU by the simulation 2020 NOx , is also mitigated by the
2020 Adjoint simulation. The MBEs between GEOS-Chem
and TROPOMI for the Baseline (2019), 2020 NOx and 2020
Adjoint simulations are −0.004, 0.015 and 0.009 DU, re-
spectively. The corresponding relative biases are 1.9 %, 10 %
and 6.0 %, which are all less than the relative uncertainty
of ∼ 30 % for the TROPOMI tropospheric NO2 VCD over
East China (Van Geffen et al., 2022). The improved agree-
ment between the simulation with updated NOx emission
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Figure 3. Comparison of tropospheric NO2 VCD from (a) the TROPOMI product in February–March 2020 with that from the GEOS-Chem
(b) 2020 Default simulation, (c) 2020 NOx simulation and (d) 2020 Adjoint simulation. The pink and black circles mark the areas where
NOx emissions from 4D-Var mitigated the NO2 overestimation by the mass balance method. The emissions and meteorology configurations
are listed in Table 1 for the GEOS-Chem 2020 Default simulation, 2020 NOx simulation and 2020 Adjoint simulation.

and TROPOMI NO2 provides a basis for further analyzing
the mechanism of aggravated surface O3 pollution.

Figures 5 and 6 show the comparison of surface NO2 be-
tween ground measurements and GEOS-Chem simulations.
The GEOS-Chem Baseline (2019; Fig. 5b) and 2020 Ad-
joint (Fig. 5d) simulations capture both the spatial pattern and
magnitude of surface NO2 measurements in February–March
of 2019 (Fig. 5a) and 2020 (Fig. 5c) well, respectively. Fig-
ure 6 further displays the good agreements of surface NO2
from Baseline (2019) (Fig. 6a) and 2020 Adjoint (Fig. 6b)
with the in situ measurements via scatterplots. Table 2 dis-
plays the evaluation statistics, including the correlation coef-
ficient (R), MBE, RMSE, and the slope and intercept of the
linear regression, for the simulated surface NO2 from vari-
ous simulation experiments compared with the in situ mea-
surements. The correlation coefficient, MBE and RMSE be-
tween the Baseline (2019) simulation and the ground mea-
surements in February–March 2019 are 0.724, 1.572 and
8.49 µgm−3, respectively. Without updating the NOx emis-
sions in 2020, the 2020 Default simulation overestimates the
ground measurements of surface NO2 in February–March
2020 (Table 2). The slope for the linear regression is 1.19,
and the MBE and RMSE are 6.021 and 10.43 µgm−3, re-

spectively (Table 2). After updating the NOx emissions, the
GEOS-Chem 2020 NOx and 2020 Adjoint simulations have
good agreements with the in situ measurements in February–
March 2020. The correlation coefficient between the simu-
lation 2020 Adjoint and the in situ measurements is 0.651,
which is higher than that of 0.608 for the simulation 2020
NOx versus the ground measurements (Table 2). The MBE
and RMSE of 2020 Adjoint (0.683 and 6.68 µgm−3) are
lower than those of 2020 NOx (1.726 and 7.74 µgm−3; Ta-
ble 2). This result further indicates the superiority of 4D-Var
for optimizing NOx emissions compared with the mass bal-
ance method (Cooper et al., 2017; Streets et al., 2013).

Figure 7a is the Taylor diagram for evaluating the GEOS-
Chem simulations of surface NO2 concentrations from the
2020 Default, 2020 NOx and 2020 Adjoint simulations us-
ing the in situ measurements. The 2020 Adjoint simula-
tion (inverted triangle in Fig. 7a) has the best performance
among these three simulations with the lowest relative bias
and lowest normalized centered RMSE. Without updating
the NOx emission, the 2020 Default simulation features a
relative bias of ∼ 37 %. After updating the NOx emissions,
the 2020 NOx simulation reduces the relative bias, the nor-
malized centered RMSE and the normalized standard devia-
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Figure 4. Scatterplot of TROPOMI NO2 VCD versus the GEOS-Chem simulations for (a) Baseline (2019), (b) 2020 Default, (c) 2020 NOx
and (d) 2020 Adjoint. TROPOMI data in February–March of 2019 were used in panel (a), and those of 2020 were used in panels (b)–(d). The
emissions and meteorology configurations for GEOS-Chem simulations are listed in Table 1. Only pixels larger than 0.1 DU, with TROPOMI
NO2 VCD in February–March 2019, are included in all comparisons.

Table 2. Evaluation statistics for modeled surface NO2 compared with the in situ measurements.∗

Experiments R MBE (µgm−3) RMSE (µgm−3) Slope Intercept (µgm−3)

Baseline (2019) 0.724 1.572 8.49 1.01 1.43
2020 Default 0.661 6.021 10.43 1.19 2.95
2020 NOx 0.608 1.726 7.74 0.92 3.03
2020 Adjoint 0.651 0.683 6.68 0.91 2.22

∗ The Baseline (2019) simulation experiment is compared with the ground measurements in February–March 2019. The other
three experiments are compared with the ground measurements in February–March 2020.

tion from around 37 %, 1.38 and 1.80 to around 10 %, 1.20
and 1.51 compared with the 2020 Default simulation, but
the correlation coefficient also decreases. Using the 4D-Var
method, the 2020 Adjoint simulation further reduces the rel-
ative bias, normalized centered RMSE and normalized stan-
dard deviation and increases the correlation coefficient com-
pared with the 2020 NOx simulation. We also validated the
VOC emissions by comparing the simulated HCHO VCD
with TROPOMI measurements (Appendix D).

3.3 Evaluation of surface O3 simulations

We evaluated the GEOS-Chem simulations of MDA8 sur-
face O3 from different simulation experiments listed in Ta-
ble 1 using ground measurements. Figure 7b is the Taylor
diagram for comparing the surface O3 concentrations during
February–March 2020 from the ground measurements and
GEOS-Chem simulations. We focused on areas with signifi-
cant NOx emissions reduction to better assess the role of up-
dated NOx emissions in improving surface O3 simulations.
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Figure 5. Comparison of surface NO2 concentrations from ground measurements for (a) February–March 2019 and (c) February–March
2020 versus those from the GEOS-Chem (b) Baseline (2019) and (d) 2020 Adjoint simulations. Grey color means no data are presented.

Figure 6. Scatterplots for comparing the surface NO2 concentrations from the GEOS-Chem simulations and ground measurements. (a) The
GEOS-Chem Baseline (2019) simulation versus ground measurements in February–March 2019. (b) The GEOS-Chem 2020 Adjoint simu-
lation versus ground measurements in February–March 2020. Note that the number of ground sites differs in these 2 years.
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Figure 7. Taylor diagram for evaluating the GEOS-Chem simulations of (a) surface NO2 and (b) surface O3 during the lockdown period
(February–March 2020) using ground observations for different simulation experiments listed in Table 1. The evaluation of surface O3 only
includes the areas where the NOx emissions, optimized by 4D-Var, reduced by more than 10 %.

The ground sites are excluded where the NOx emissions from
4D-Var decline by less than 10 %. The correlation coefficient
between the Baseline (2019) simulation and ground observa-
tions is ∼ 0.53, and the relative bias is around −25 %. By
applying 2020 meteorological fields and scaling the VOC
emissions, the correlation coefficients decreased to ∼ 0.40
for model 2020 Default and 2020 VOC simulations, with lit-
tle reduction in the relative bias. By updating the NOx emis-
sions, the relative bias reduced to around −10 %, while the
correlation coefficients remained at∼ 0.50 for model simula-
tions 2020 NOx , 2020 Lockdown and 2020 Adjoint. This in-
dicates that the NOx emission updates significantly improve
the surface O3 simulations. Comparing the simulations 2020
Default and 2020 VOC, or 2020 NOx and 2020 Lockdown,
the results show that scaling VOC emissions does not im-
prove the surface O3 simulations significantly over continen-
tal China; however, over South China, the VOC emissions
update reduces the relative bias by 3 %. Among all simula-
tions, 2020 Adjoint exhibits the best performance with the
lowest normalized centered RMSE, the largest correlation
coefficient and a low relative bias of ∼ 10 %. This result fur-
ther confirms the superiority of the 4D-Var with respect to the
mass balance method for optimizing NOx emissions. There-
fore, we used the 2020 Adjoint to evaluate the impacts of
NOx emission on surface O3 in the following analysis.

Figure 8 compares the modeled surface O3 in February–
March of 2019 (Fig. 8a) and 2020 (Fig. 8b) and the rel-
ative difference (Fig. 8c) computed from Eq. (6) with the
in situ measurements (Fig. 8d–f). The ground observations

show that the highest level of surface O3 pollution occurs
in North China and in the southwest of China. The aver-
age MDA8 O3 in 2 months can reach up to ∼ 110 µgm−3

at STP (∼ 51.4 ppbv), which is higher than the China Na-
tional Ambient Air Quality Standard daily maximum 8 h
grade I standard of 100 µgm−3. The GEOS-Chem model un-
derestimates the surface O3 over North China for both years
compared with ground observations, which could be a re-
sult of the underestimation of biogenic VOC emissions (Ap-
pendix D). The underestimation of the simulated O3 over
North China does not significantly affect our study purpose
since this study focuses on revealing the impacts of emis-
sions and meteorology change on the surface O3 change by
each region. The bias is predominantly systematic and was
substantially canceled when we computed the relative differ-
ence in the surface O3. The model captures well the magni-
tude and spatial distribution of surface O3 and the increas-
ing trend in South China. In South China, the measured sur-
face O3 in February–March 2020 increases by 30 %–50 %,
while over North China, it increases generally by less than
20 % and even decreases in some regions. The relative dif-
ferences in simulated surface O3 between 2 years is com-
parable to the ground observations over South China (green
box in Fig. 8c and f). In the Sichuan Basin, the trend of the
surface O3 change from the model is opposite to that of the
measurements, which is probably caused by the inaccurate
simulation of the meteorological effects (see Sect. 3.4) due
to the complex terrain features in this region. The localized
improvement of the model simulation is further needed for
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Figure 8. Comparison of MDA8 surface O3 in 2019 and February–March 2020 and the relative difference between 2 years from the GEOS-
Chem model simulations (a–c) versus ground observations (d–f). Also shown is the GEOS-Chem mean MDA8 O3 at 9 ma.s.l. under standard
temperature and pressure (STP; 273.15 K and 101.325 kPa) from the (a) Baseline (2019) and (b) 2020 Adjoint simulations (Table 1) together
with (c) their relative difference. Ground observed mean MDA8 surface O3 under STP in (d) February–March 2019 and (e) February–March
2020 with (f) their relative difference. The pink and green boxes in panel (c) and panel (f) define the North China and South China domain.

the regional study. Over North China (pink box in Fig. 8c
and f), the average relative differences between 2 years from
the model and observation are 4.27 % and −3.01 %, respec-
tively, both of which are much smaller than their counterparts
in South China. While the relative difference from model
simulations has different signs as compared to that of ob-
servations on average, the change in O3 is indeed small and
the model is able to capture the part of O3 decrease in the
southwest part of the North China domain (Fig. 8c). We note
that some previous studies showed a large increase in O3 in
North China, but such an increase is in comparison with the
O3 in the month right before the lockdown (not the same time
in 2019; Shi and Brasseur, 2020; Liu et al., 2021).

3.4 Relative contribution from declining emissions and
meteorological variations

Using Eqs. (2)–(5), we can analyze the mechanism of sur-
face O3 increase in China during the COVID-19 pandemic
(Fig. 9). NOx emission reduction as a result of the COVID-
19 lockdown leads to a ∼ 8 % increase in the mean MDA8
surface O3 over North China (pink boxes in Fig. 9) between
2019 and February–March 2020 (Fig. 9a), while the VOC
emission decline causes ∼ 3 % of O3 decrease (Fig. 9b).
The average contribution of the meteorological variations

to the surface O3 change is less than 1 % in North China
(Fig. 9d). However, in South China, the inter-annual meteo-
rological variations dominate the surface O3 increases, caus-
ing a ∼ 30 % increase (Fig. 9d), while the reduction in NOx
and VOC emissions has little impact. The overall magni-
tude of emissions contribution to the surface O3 change over
North China is ∼ 5 %, which is similar to that of the mete-
orological effects, but meteorological variations lead to both
O3 increases and decreases in different regions. Over South
China, the meteorological effect is much larger than the net
effects of declining emissions. Overall, the impact of inter-
annual meteorological variations between 2019 and 2020 is
almost 30 times larger than the overall emissions impacts on
the aggregated surface O3 pollution in China.

Our results are consistent with the conclusion from Zhao
et al. (2020) that states that the meteorological variations
have larger impacts than emissions reduction on surface O3
in the southern city of Guangzhou, but in Beijing, emission
reduction has a larger impact during 23–29 January. Wang
et al. (2022) also showed that ∼ 80 % of the O3 MDA8 in-
crease during the COVID-19 lockdown period is caused by
the meteorological factors and that ∼ 20 % is caused by the
emission decline in East China. T. Liu et al. (2020) reported
that the surface O3 increase in the major cites of the Yangtze
River Delta region was driven by both emission reduction
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Figure 9. Relative difference in simulated surface O3 caused by (a) NOx emission reduction, (b) VOC emission reduction, (c) overall
emission reduction and (d) meteorological variations due to the COVID-19 lockdown. The pink and green boxes in each panel define the
North China and South China domain.

and meteorological variations to a similar degree from the
pre-lockdown period (1–22 January 2020) to the lockdown
period (23 January–29 February 2020). However, Zhao et al.
(2020), Wang et al. (2022) and T. Liu et al. (2020) only fo-
cused on the lockdown period of 1 to 5 weeks in reference to
the time period right before the lockdown instead of the same
period in previous years, which did not provide a compre-
hensive analysis over the whole lockdown period, and Zhao
et al. (2020) and T. Liu et al. (2020) did not separate the
effects of the seasonal trend from the meteorological anoma-
lies. Moreover, T. Liu et al. (2020) and Wang et al. (2022)
only analyzed four representative cities of the East China
region instead of showing the analysis at a national scale.
Further, Zhao et al. (2020) did not update the anthropogenic
emissions during the lockdown period, which brings signifi-
cant uncertainties into their analysis. Previous studies found
that the TROPOMI NO2 product has a negative bias of−7 %
to −20 % (Verhoelst et al., 2021; Judd et al., 2020; Li et al.,
2021). The sensitivity simulations indicate that this low bias
does not significantly affect the model evaluation and our
main conclusions (figures not shown).

3.5 Critical meteorological variables causing aggravated
surface O3 pollution in South China

To identify the critical meteorological variables that led to
the aggravated surface O3 pollution in South China, we in-
vestigated the correlations between the surface O3 concentra-
tions and 2 m air temperature, downward visible direct flux
at the surface, cloud fraction, relative humidity, and wind
speed. The positive correlation between the surface O3 and
temperature is widely observed and reported in the literature
(Pusede et al., 2015). A higher temperature leads to higher
concentrations of surface O3 because it improves the O3 pro-
duction rate by affecting the organic reactivity, production of
HOx radicals, and the formation and decomposition of per-
oxy nitrates and alkyl nitrates (Pusede et al., 2015). We calcu-
lated the daily difference in February–March between 2020
and 2019 (excluding 29 February 2020) for the daily mean
of MDA8 O3 from ground measurements and 2 m air tem-
perature and the downward visible direct flux at the surface
and cloud fraction from GEOS-FP data used in our GEOS-
Chem simulations for South China (22–31° N, 106–118° E;
green box in Fig. 10a–c) and North China (33–40° N, 111–
123° E; pink box in Fig. 10a–c). Figure 10 displays the dif-
ference in the 2-month mean 2 m air temperature (Fig. 10a),
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Figure 10. The changes in (a) the 2 m air temperature, (b) the downward visible direct flux at the surface and (c) the cloud fraction from
February–March 2019 to February–March 2020. Scatterplots between the daily difference in surface O3 measurements and (d) the 2 m air
temperature, (e) the downward visible direct flux at the surface and (f) the cloud fraction in February–March between 2020 and 2019 over
South China (green dots) and North China (pink dots). The green and pink open squares in (d–f) mark the predicted average change in surface
MDA8 O3 in South China and North China, respectively, based on the linear regression against the change in meteorological variables.

downward visible direct flux at the surface (Fig. 10b) and
cloud fraction (Fig. 10c) in February–March between 2020
and 2019 as well as the scatterplot between the daily differ-
ence in measured surface O3 concentration and 2 m air tem-
perature (Fig. 10d), downward visible direct flux at the sur-
face (Fig. 10e) and cloud fraction (Fig. 10f) over both South
China (green dots in Fig. 10d–f) and North China (pink dots
in Fig. 10d–f). We found that the 2 m air temperature in-
creased by ∼ 2.3 °C in South China and that the daily dif-
ferences in surface O3 concentration and 2 m air temperature
are well correlated, with a positive correlation coefficient of
0.612. Therefore, the temperature increase contributed to the
significant aggravated surface O3 pollution in South China.
The enhanced solar radiation at the surface could also pro-
mote the production of O3 via photochemical reactions. The
correlation coefficient between the daily difference in sur-
face O3 concentration and downward visible direct flux at
the surface is as high as 0.740 in South China (Fig. 10e).
The reason for the increase in temperature and solar radia-
tion at the surface is the lower cloud fraction. By analyzing
the GEOS-FP data, we found the cloud fraction decreased
by ∼ 5 % (Fig. 10c), and the downward visible direct flux
at the surface increased by 5 Wm−2 (Fig. 10b) over South

China. The lower cloud fraction increases the downward so-
lar radiation at the surface during the lockdown period, lead-
ing to a higher surface air temperature. The change in cloud
fraction is negatively correlated with the change in surface
O3 in South China, with a correlation coefficient of −0.619
(Fig. 10f).

In North China, the 2 m air temperature also increased by
1.8 °C, but the measured surface MDA8 O3 decreased by 3 %
(Fig. 8f). Figure 10d shows the daily difference in MDA8 O3,
and the 2 m air temperature over North China also has a high
correlation coefficient of 0.731. However, the intercept of the
linear regression line is negative, indicating that surface O3
could decrease even though the temperature increases. This
negative intercept is caused by the net effects of factors,
other than temperature, including chemistry, emissions and
other meteorological factors. It is a challenge to quantify the
contributions of each individual factor because these factors
are thermodynamically or dynamically related. The predicted
average changes in surface MDA8 O3 in South China and
North China are marked by the open green and pink squares,
respectively, in Fig. 10d based on the linear regression. Be-
cause of the different intercepts, the predicted MDA8 O3 in
South China increases by ∼ 9.0 µgm−3, while it decreases
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Figure 11. Same as Fig. 10 but for (a, c) relative humidity and (b, d) wind speed.

by 2.2 µgm−3 in North China, although the average tem-
perature increased in both South and North China. Contrary
to South China, the change in solar radiation at the surface
and cloud fractions is poorly correlated with the change in
surface O3 concentrations in North China (Fig. 10e and f),
mainly due to a more important role of emission change in
regulating the surface O3 in North China.

The impacts of relative humidity and wind speed on the
surface O3 change are also investigated (Fig. 11). The rel-
ative humidity increased, on average, by ∼ 5.1 % in North
China and decreased by ∼ 3.0 % in South China. The strong
correlation (R=−0.675) between the change in relative hu-
midity and surface O3 in South China indicates that the de-
crease in relative humidity also contributes to the increase
in surface O3 pollution in South China, but the correlation
between them in North China is very low. The wind speed
also changed in opposite directions in South China and North
China, but we cannot identify any significant impact of wind
speed on the surface O3 pollution since the correlation coeffi-
cients are low in both South China and North China. In sum-
mary, the significant increase in surface O3 pollution during
the lockdown period in South China could be primarily at-
tributed to the higher temperature, enhanced solar radiation
at the surface and decreased relative humidity.

4 Summary

A significant reduction in primary air pollutants has been
identified by surface and satellite observations during the
COVID-19 pandemic in China (Bauwens et al., 2020;
Miyazaki et al., 2020), which is in contrast to the increase
in surface O3. In this study, we analyzed the reasons for
the enhanced surface O3 pollution from two perspectives:
anthropogenic emissions reduction and inter-annual meteo-
rological variations. We constrain the NOx emissions based
on the TROPOMI NO2 product using both the mass balance
and 4D-Var methods. The VOC emissions were also updated
based on the TROPOMI HCHO product via the mass balance
approach. We analyzed the contributions from emissions re-
duction and meteorological variations to surface O3 increases
through a series of sensitivity simulations using the GEOS-
Chem model.

The updated NOx emissions from the 4D-Var and mass
balance approaches share a similar spatial pattern. How-
ever, the NOx emissions from 4D-Var are lower than those
from the mass balance method over North China by ∼ 10 %
but larger over central China by ∼ 40 %. The evaluation
of the simulations with the updated emissions against the
TROPOMI NO2, in situ measurements of surface NO2 and
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O3 indicates that the NOx emissions from the 4D-Var inver-
sion leads to better model performance than that from the
mass balance approach. The updated anthropogenic VOC
emissions using the mass balance method are evaluated by
comparing the GEOS-Chem HCHO and TROPOMI HCHO.
However, the updated VOC emissions may still suffer from
large uncertainties because of the low retrieval accuracy of
TROPOMI HCHO (Vigouroux et al., 2020), large biogenic
sources of VOC emissions and limited representativeness of
HCHO for the whole VOC species.

The anthropogenic NOx emission decreased by ∼ 30 %
over East China during February–March 2020 compared to
the same period in 2019. Over North China, NOx emission
reduction leads to a ∼ 8 % increase in the mean MDA8 sur-
face O3, while the VOC emissions decline causes O3 to de-
crease by ∼ 3 %. The average contribution of meteorological
variations to the surface O3 change is less than 1 % in North
China. However, in South China, the inter-annual meteoro-
logical variation dominates the surface O3 increase, causing
a ∼ 30 % increase, while the NOx and VOC emission reduc-
tion has nearly no impact on O3. Overall, the impact of inter-
annual meteorological variations between 2019 and 2020 is
almost 30 times larger than the impact of emissions on the
enhanced surface O3 pollution in China.

The significant increase in surface O3 in South China
could be attributed to the higher temperature, enhanced solar
radiation at the surface and decreased relative humidity dur-
ing the lockdown period. The lower cloud fraction increases
the downward solar radiation at the surface during the lock-
down period, leading to a higher surface air temperature. We
cannot identify any significant impact of wind speed on the
surface O3 pollution.

Appendix A: NOx emission reduction in China from
2010 to 2019

The default anthropogenic NOx emission over East Asia in
GEOS-Chem is MIX 2010 (Li et al., 2017). To generate the
anthropogenic NOx emission in 2019, we calculated the ra-
tio of mean TROPOMI tropospheric NO2 VCD in February–
March 2019 to GEOS-Chem simulated NO2 VCD with the
default MIX 2010 emission as the scaling factor (Fig. A1).
The scaling factors in regions where mean TROPOMI tro-
pospheric NO2 VCD in February–March 2019 is less than
0.1 DU are set to 1. From 2010 to 2019, the anthropogenic
NOx emission has declined significantly as a result of the
clean air actions of the Chinese government (Zheng et al.,
2018).

Appendix B: Applying the TROPOMI NO2 averaging
kernel in the observation operator

To optimize the NOx emissions and minimize the cost func-
tion (Eq. 1) with the 4D-Var method, the GEOS-Chem ad-

Figure A1. The scaling factor of anthropogenic NOx emissions
from year 2010 to 2019.

joint needs to compute the derivative of the cost function with
respect to the model parameters to be optimized, which are
the scaling factors of the anthropogenic NOx emissions in
this study. An essential step is to calculate the adjoint forc-
ing F , which is the derivative of the cost function with re-
spect to the modeled NO2 concentration shown as Eq. (B1):

F =
∂J

∂c
= S−1

obs[H (c)− s]
∂H (c)
∂c

. (B1)

For each single TROPOMI NO2 observation, the adjoint
forcing component f and cost function component j are
computed as Eqs. (B2) and (B3):

f =
Mgcvgc−Mobsvobs

eobsMobs
Mgc, (B2)

j =
0.5f (Mgcvgc−Mobsvobs)

Mgc
. (B3)

Here,Mgc is the GEOS-Chem air mass factor applying the
GEOS-Chem NO2 vertical profiles and TROPOMI NO2 av-
eraging kernel. Mobs is the TROPOMI air mass factor. vgc
and vobs are the tropospheric NO2 VCD from the GEOS-
Chem model and TROPOMI observation, respectively. The
product of the air mass factor and NO2 VCD is the NO2 slant
column density. eobs is the standard error in the TROPOMI
tropospheric NO2 VCD.

We calculated the GEOS-Chem air mass factor Mgc as
Eq. (B4) following Qu et al. (2019).

Mgc =

∑
i∈trop.c

gc
i 1p

gc
i w

gc
i∑

i∈trop.c
gc
i 1p

gc
i

(B4)

Here, cgc
i is the GEOS-Chem NO2 mixing ratio at the ver-

tical layer i and 1pgc
i is the pressure difference between the

GEOS-Chem vertical layer i and i+ 1. wgc
i is the scatter-

ing weight at the GEOS-Chem vertical layer i, which is cal-
culated by the linear interpolation of the scattering weights
at the vertical coordinate of the model TM5 used for the
TROPOMI NO2 retrieval. The scattering weight at the TM5
vertical layer l (wTM5

l ) is computed as the product of the
TROPOMI air mass factor and the TROPOMI averaging
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kernel at the TM5 vertical layer l (ATM5
l ) using Eqs. (B5)

and (B6) (Eskes and Boersma, 2003; Palmer et al., 2001):

wTM5
l =

MobsA
TM5
l

Mgeo
, (B5)

Mgeo = secθ0+ secθ, (B6)

where Mgeo is the geometric air mass factor and θ0 and θ are
the solar zenith angle and viewing zenith angle, respectively.

Appendix C: Validation of the TROPOMI NO2
observation operator

We validated the observation operator by comparing the sen-
sitivity of the cost function with respect to the emission scal-
ing factor from GEOS-Chem adjoint and a finite difference
estimation as shown in Eq. (C1). We shut down the trans-
port and excluded a priori the term from the cost function for
the validation so that the gradient of the cost function com-
ponent in each grid cell to the local emission scaling factor
equals the gradient of total cost function to the emission scal-
ing factor in the same grid cell.

∂J (lnσ )
∂ lnσ

≈
J (ln(σ + 0.05))− J (ln(σ − 0.05))

ln(σ + 0.05)− ln(σ − 0.05)
(C1)

Figure C1 compares the cost function sensitivities calcu-
lated from the GEOS-Chem adjoint and the finite difference
method for the nested grids with the spatial resolution of
0.25°× 0.3125°. The spatial pattern and the magnitude of the
cost function sensitivities from the two methods match with
each other, with a correlation coefficient of 0.97. The statis-
tics show that the agreement between the adjoint sensitivities
and finite difference sensitivities in this study is compara-
ble to that in Wang et al. (2020a), although we constrain the
NOx emission at a much finer resolution of 0.25°× 0.3125°
than in their study (2°× 2.5°).

Figure C1. Comparison of adjoint sensitivities and finite difference sensitivities. (a) Scatterplot of the adjoint sensitivity of the cost function
with respect to the logarithm of the NOx emission scaling factor versus the finite difference sensitivities. The color scheme for panel (a)
encodes the number of samples (the legend on the right of panel (a)). (b) Map of finite difference sensitivity. (c) Map of adjoint sensitivity.

Atmos. Chem. Phys., 24, 7793–7813, 2024 https://doi.org/10.5194/acp-24-7793-2024



Z. Lu et al.: Aggravated surface O3 pollution primarily driven by meteorological variations in China 7809

Appendix D: Validation of HCHO simulations

It is not practical to validate the VOC emissions species by
species in this study. We compare the GEOS-Chem simu-
lation of HCHO with TROPOMI data for a rough valida-
tion of the VOC emissions. Overall, the GEOS-Chem Base-
line (2019) and 2020 Adjoint simulations agree well with
TROPOMI HCHO in February–March of 2019 and 2020,
respectively (Fig. D1). The correlation coefficients for the
two comparisons are 0.878 and 0.874, and the MBEs are
−0.036 and −0.042 DU, respectively. This good agreement
also supports our assumption of ignoring the change in VOC
emissions from 2010 to 2019, since the anthropogenic VOC
emission used for Baseline (2019) is equivalent to MIX
2010. However, Fig. D1 shows that GEOS-Chem tends to
overestimate the HCHO VCD over urban regions and un-
derestimate it over rural regions, which indicates the parti-
tion of total emissions may overestimate the anthropogenic
emissions and underestimate the biogenic emissions, at least
for HCHO. A more comprehensive evaluation for various
species and emission sectors would be helpful for further im-
provement of the VOC emissions used in the model.

Figure D1. Comparison of tropospheric HCHO VCD from TROPOMI and GEOS-Chem. (a) TROPOMI HCHO in February–March 2019.
(b) GEOS-Chem HCHO from Baseline (2019). (c) Scatterplot between panel (a) and panel (b). (d) TROPOMI HCHO in February–March
2020. (e) GEOS-Chem HCHO from 2020 Adjoint. (f) Scatterplot between panel (d) and panel (e). The emissions and meteorology configu-
rations for the GEOS-Chem Baseline (2019) and 2020 Adjoint simulations are listed in Table 1.
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Data availability. The TROPOMI NO2 and HCHO product is
available at the NASA Goddard Earth Sciences Data and In-
formation Services Center (for NO2: https://daac.gsfc.nasa.gov/
datasets/S5P_L2__NO2____HiR_1/summary, KNMI, 2019a and
for HCHO: https://daac.gsfc.nasa.gov/datasets/S5P_L2__HCHO_
__HiR_1/summary, KNMI, 2019b). The ground O3 and NO2 mea-
surements are available at the China National Environmental Mon-
itoring Centre (http://www.cnemc.cn/en/, CNEMC, 2014).
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