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Abstract. This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and
PM2.5, and Ox (meaning NO2+O3) measured in 10 Canadian cities during the last 2 to 3 decades. We also
investigated associated driving forces in terms of emission reductions, perturbations due to varying weather
conditions and large-scale wildfires, as well as changes in O3 sources and sinks. Two machine learning methods,
the random forest algorithm and boosted regression trees, were used to extract deweathered mixing ratios (or
mass concentrations) of the pollutants. The Mann–Kendall trend test of the deweathered and original annual
average concentrations of the pollutants showed that, on the timescale of 20 years or longer, perturbation due to
varying weather conditions on the decadal trends of the pollutants are minimal (within±2%) in about 70 % of the
studied cases, although it might be larger (but at most 16 %) in the remaining cases. NO2, CO and SO2 showed
decreasing trends in the last 2 to 3 decades in all the cities except CO in Montréal. O3 showed increasing trends in
all the cities except Halifax, mainly due to weakened titration reaction between O3 and NO. Ox , however, showed
decreasing trends in all the cities except Victoria, because the increase in O3 is much less than the decrease in
NO2. In three of the five eastern Canadian cities, emission reductions dominated the decreasing trends in PM2.5,
but no significant trends in PM2.5 were observed in the other two cites. In the five western Canadian cities,
increasing or no significant trends in PM2.5 were observed, likely due to unpredictable large-scale wildfires
overwhelming or balancing the impacts of emission reductions on PM2.5. In addition, despite improving air
quality during the last 2 decades in most cities, an air quality health index of above 10 (representing a very
high risk condition) still occasionally occurred after 2010 in western Canadian cities because of the increased
large-scale wildfires.
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1 Introduction

Criteria air pollutants can harm human health and the natural
environment. According to Health Impacts of Air Pollution
in Canada 2021 report (Health Canada, 2021), it is estimated
that air pollution of NO2, O3 and PM2.5 caused 15 300 deaths
per year, corresponding to 42 deaths per 100 000 population
in Canada in 2016. To protect human health and the environ-

Published by Copernicus Publications on behalf of the European Geosciences Union.



7774 X. Yao and L. Zhang: Identifying decadal trends in deweathered concentrations of criteria air pollutants

ment, the Canadian Council of Ministers of the Environment
(CCME) developed the Canadian Ambient Air Quality Stan-
dards (CAAQS) for PM2.5, O3, SO2 and NO2. CAAQS are
supported by four color-coded management levels with each
management level being determined by the amount of a pol-
lutant within an air zone, from which recommendations on
air quality management actions are provided. Following this
standard, multiphase mitigation measures have been imple-
mented to largely reduce anthropogenic air pollutant emis-
sions in recent decades (ECCC, 2023a). Air quality in Cana-
dian urban atmospheres meets CAAQS very well in recent
years, as reported in Air Quality Canadian Environmental
Sustainability Indictors (ECCC, 2023b).

Nevertheless, the World Health Organization (WHO,
2021) updated the global air quality guidelines (AQG) on
NO2, SO2, CO, O3 and PM2.5 in 2021, based on accumulated
strong evidence that air pollution can affect public health
even at very low concentrations. In the WHO 2021 AQG,
NO2 annual average concentration is set as 10 µg m−3, equiv-
alent to ∼ 5 ppb at annual average temperatures of 6–10 °C
across Canada; annual average and 24 h average PM2.5 con-
centrations are set as 5 and 15 µg m−3, respectively; and peak
season mean 8 h O3 concentration is set as 60 µg m−3. An ur-
gent issue for all areas of the world is to overcome challenges
to further lower ambient NO2, O3 and PM2.5 concentrations
in order to meet the WHO 2021 AQG (Dabek-Zlotorzynska
et al., 2019; Griffin et al., 2020; Xu et al., 2019; Jeong et al.,
2020; Al-Abadleh et al., 2021; Wang et al., 2021; Zhang et
al., 2022; Bowdalo et al., 2022).

In search of the most efficient mitigation measures for cri-
teria pollutants, the effectiveness of existing measures on
air pollution reduction needs to be first examined. For this
purpose, long-term trends in concentrations of the criteria
air pollutants need to be quantified, and the driving forces
of the trends, besides anthropogenic emission reductions,
should be identified. Several studies have investigated the
decadal trends of some criteria pollutants in Canada in the
past decade. For example, Chan and Vet (2010) reported up-
ward trends in O3 mixing ratio from 1997–2006 at dozens of
sites in Canada. Xu et al. (2019) and Zhang et al. (2022) also
found increasing trends in O3 mixing ratio from 1996–2016
at multiple sites in Windsor, Ontario, which was attributed
to the reduced titration effect of NO with O3. They also re-
ported that the 95th percentile O3 mixing ratio exhibited a
decreasing trend and attributed the decrease to anthropogenic
emission reductions. Mitchell et al. (2021) reported that the
99th percentile O3 mixing ratios exhibited a decreasing trend
from 2000–2018 at urban and regional sites in Nova Sco-
tia, but such a trend was not found for low-to-moderate per-
centile O3 mixing ratios. Bari and Kindzierski (2016) found
no significant trends in PM2.5 mass concentration, although
they did find decreasing trends in organic carbon and elemen-
tal carbon from 2007–2014 in Edmonton. Jeong et al. (2020)
reported a 34 % decrease in PM2.5 mass concentration from
2004–2017 in Toronto and attributed the decrease to the re-

duced coal-fired power plant emissions. Wang et al. (2022a)
reported significant decreasing trends in organic and elemen-
tal carbon in PM2.5 from 2003–2019 at seven urban sites in
Canada. Studies on other criteria pollutants are very limited
(Feng et al., 2020; Jeong et al., 2020).

O3 mixing ratios, especially at high levels, are strongly
affected by meteorological conditions; thus, trends on the
decadal scale can be perturbed by varying weather conditions
from year to year (Simon et al., 2015; Xing et al., 2015; Ma et
al., 2021; Lin et al., 2022). Interannual variations of weather
conditions also have a strong impact on the decadal trends of
other criteria pollutants (Lin et al., 2022). Air quality models
are useful tools to analyze emission-driven air quality trends
and meteorological impacts (Foley et al., 2015; Astitha et
al., 2017; Vu et al., 2019), but most modeling results suffer
from large uncertainties which could exceed changes in an-
nual means of simulated pollutant concentrations. Machine
learning techniques such as the random forest (RF) algorithm
and boosted regression trees (BRTs) have been demonstrated
to be powerful tools to decouple impacts of emission changes
and perturbations from varying weather and/or meteorologi-
cal conditions, enabling the derivation of deweathered trends
in air pollutant concentrations (Grange et al., 2018; Grange
and Carslaw, 2019; Ma et al., 2021; Mallet, 2021; Shi and
Brasseur, 2020; Wang et al., 2020; Munir et al., 2021; Lovric
et al., 2021; Lin et al., 2022). The advantages and limita-
tions of the RF algorithm and BRTs have been described
in detail in earlier studies (Grange et al., 2018; Grange and
Carslaw, 2019). Briefly, the BRT method is fast to train and
make predictions but suffers heavily from overfitting, which
may result in unreliable predictions. The RF method can con-
trol the overfitting but yields a poor prediction for outliers
for large percentiles. Thus, using two methods with differ-
ent strengths and weaknesses, although their predictions are
similar in many ways, can constrain methodology uncertain-
ties and better evaluate perturbations due to varying weather
conditions than using only one method, as has been demon-
strated in our earlier study (Lin et al., 2022).

This study attempts to deduct the perturbations due to
varying weather conditions on the observed mixing ratios
(or mass concentrations) of some criteria air pollutants in
Canada during the past 2 to 3 decades and thereby inves-
tigates their emission-driven trends. We used the RF algo-
rithm and BRTs to generate the deweathered mixing ratios
(or concentrations) of NO2, SO2, CO, O3, Ox and PM2.5 dur-
ing the past decades in 10 cities equally distributed in eastern
and western Canada. Considering that the machine learning
methods may suffer from a weakness in accurately predicting
large percentile concentrations of the studied criteria air pol-
lutants, we also applied our previously developed identical-
percentile autocorrelation analysis method to better quantify
the perturbations due to extreme events such as large-scale
wildfires on large percentile PM2.5 concentrations (Yao and
Zhang, 2020; Lin et al., 2022). The Mann–Kendall (M–K)
trend test was then employed to resolve the trends in the
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deweathered mixing ratios (or mass concentrations). Pearson
correlation analysis was further conducted for the deweath-
ered and original mixing ratios (or mass concentrations) of
the air pollutants against the corresponding provincial-level
emissions. City-level emissions were used in the analysis in
cases with large differences between air pollutant concen-
trations and provincial-level emissions. In addition, the Air
Quality Heath Index (AQHI, https://weather.gc.ca/airquality/
pages/index_e.html, last access: 2 July 2024), a health pro-
tection tool designed in Canada to advise the public to adjust
outdoor activities based on air pollution levels, was also an-
alyzed with particular attention to the trends with AQHI be-
ing above 7 and 10, respectively. This study provides a thor-
ough assessment of the emission-driven trends in the stud-
ied criteria pollutants on the timescale of 2 to 3 decades
across Canadian urban atmospheres, knowledge from which
is much needed in developing future emission control poli-
cies of the concerned pollutants.

2 Methodology

2.1 Monitoring sites and data sources

Ten major cities, including five in eastern Canada (Halifax,
Québec, Montréal, Toronto and Hamilton) and five in
western Canada (Winnipeg, Calgary, Edmonton, Vancouver
and Victoria), from the National Air Pollution Surveillance
(NAPS) program are selected for investigating decadal
trends of the monitored criteria pollutants (Table S1 in
the Supplement). The NAPS program has long-term air
quality data of a uniform standard across Canada (Dabek-
Zlotorzynska et al., 2011, 2019; Jeong et al., 2020; Yao and
Zhang, 2020; Wang et al., 2021, 2022a). The NAPS program
includes both continuous and time-integrated measurements
of gaseous and particulate air pollutants. Continuous data are
available as hourly concentrations and are quality-assured
as specified in the Ambient Air Monitoring and Quality As-
surance/Quality Control Guidelines (https://open.canada.ca/
data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b,
last access: 2 July 2024).

Multiple monitoring sites exist in most cities, but only one
urban background site was selected in each city mentioned
above based on the following criteria: with the most complete
dataset of the five selected criteria pollutants (NO2, CO, SO2,
O3 and PM2.5), with the longest data record, and with valid
data in each year (Table S1). In cases with a data gap longer
than a year, e.g., in Québec, Halifax and Calgary, data at a
nearby urban background site (within 1 km) were then used
to fill the gap. If no site within 1 km is available, then the data
gap is left unfilled. SO2, CO, NOx and PM2.5 emission data
at the provincial level in Canada are obtained from https:
//www.canada.ca/en/environment-climate-change/services/
environmental-indicators/air-pollutant-emissions.html
(last access: 2 July 2024). City-level air pollutant
emissions from various registered facilities since

2002 were obtained from https://www.canada.ca/en/
services/environment/pollution-waste-management/
national-pollutant-release-inventory.html (last access:
2 July 2024).

Besides the monitored criteria pollutants described above,
AQHI is also calculated in this study at 3 h resolution using
the following formula (Stieb et al., 2008; To et al., 2013):

AQHI= (100/10.4)×[(e0.000537×O3 − 1)

+ (e0.000871×NO2 − 1)+ (e0.000537×PM2.5 − 1)],

in which O3 and NO2 represent their respective 3 h aver-
age original mixing ratios (in ppb), and PM2.5 represents
its 3 h average original concentration (in µg m−3). The cal-
culated AQHI is rounded to the nearest positive integer.
AQHI between 1–3 represents excellent air quality that is
safe for outdoor activities. Outdoor activities may be reduced
at AQHI between 4–6 for certain members of the popula-
tion with some health issues. AQHI values between 7 and
10 and > 10 correspond to high and very high health risk
conditions, respectively. Note that four alternative AQHI-
Plus amendments have been proposed for wildfire seasons,
and the AQHI-Plus values are always larger than the corre-
sponding AQHI values (Yao et al., 2020). One of AQHI-Plus
amendments has been implemented in late 2016 in British
Columbia. The AQHI-Plus amendments are not used in this
study since it is not implemented across the whole of Canada.

2.2 Statistical analysis

In this study, two popular machine learning packages, in-
cluding the “rmweather” R package (Grange et al., 2018)
and the “deweather” R package (Carslaw and Ropkins, 2012;
Carslaw and Taylor, 2009), were used to perform the RF al-
gorithm and the BRTs, respectively. Besides the monitored
hourly average mixing ratio (or mass concentration) of a
pollutant, temporal variables (hour, day, weekday, week and
month) and meteorological parameters (wind speed, wind
direction, ambient temperature, relative humidity and dew
point) are also needed as additional independent inputs to the
machining learning process. The hourly meteorological data
were obtained from the meteorological observational station
at a nearby airport in each city, which are accessible from
the NOAA Integrated Surface Database (ISD) by using the
“worldmet” R package (Carslaw, 2021). The meteorologi-
cal data from the nearest airport in every city should reflect
synoptic weather conditions, which have been used in exist-
ing machine learning studies (Vu et al., 2019; Mallet, 2021;
Wang et al., 2020; Dai et al., 2021; Ma et al., 2021). Ad-
ditional meteorological parameters such as boundary layer
height, total cloud cover, surface net solar radiation, surface
pressure, total precipitation and air mass clusters have also
been used in some studies to improve the performance of the
machine learning methods (Hou et al., 2022; Shi et al., 2021;
Lin et al., 2022). These additional meteorological parameters
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Figure 1. Performance evaluation of the predicted NO2 hourly mixing ratios by BRTs and the RF algorithm against those observed in Halifax
during 1996–2017. Red lines represent linear regression, and the color bar reflects data number density. Note that different observational data
sets are shown between (a) and (b) because the inputs for the two packages (BRTs and RF) are randomly divided into two groups for training
and testing.

were not included in the present study but could be included
in future analyses. Nevertheless, good performance can still
be achieved in the present study mainly because of the multi-
decade length of the datasets, as demonstrated by an example
shown in Fig. 1. Note that the inputs for the two packages
were randomly divided into two groups, and the user cannot
control the division, i.e., the training dataset that used 80 %
of the data and a testing dataset that used the remaining 20 %.
Thus, the testing datasets were different between the RF al-
gorithm and the BRTs. Note that all input parameters and
output variables, i.e., the predicted hourly average mixing ra-
tio (or mass concentration) of a pollutant, for testing were the
same as those used for learning. Moreover, the training and
testing were conducted for every pollutant at every site.

Five statistical metrics, including coefficient of determi-
nation (R2), root mean square error (RMSE), mean bias
(MB), mean fractional bias (MFB) and mean fractional er-
ror (MFE), were calculated to evaluate the performance of
the two machine learning methods. In the literature, criteria
and goal values have not been set for the statistical metrics
for the purpose of evaluating machine learning prediction
performance. Alternatively, the criteria and goal values for
MFE and MFB proposed by the United States Environmen-
tal Protection Agency (US EPA) are adopted here, which are
MFE ≤ 75% and MFB ≤±60% for the criteria value and
MFE≤ 50% and MFB≤±30% for the goal value (US EPA,
2007).

Figure 1 shows predictions against observations of NO2
mixing ratio in Halifax using the testing datasets during
1996–2017, as an example for evaluating the performance
of the two machine learning methods (P value < 0.01 for
all the correlation). MFB and MFE values were far below

their respective goal values for both RF algorithm and BRTs
set by US EPA. R2 and RMSE were 0.86 and 5.1, respec-
tively, for both methods. MB is −0.04 for RF algorithm and
0.1 for BRTs. The values of these metrics indicated that the
predictions reproduced the observations well. However, the
two machine learning methods overall underpredicted NO2
mixing ratios to a small extent based on the regression lines
slightly below the 1 : 1 line. The underestimation was mainly
due to sporadic, large values in the measurement of NO2
mixing ratio, which did not provide sufficient samples for
the machine learning methods to learn and yield good pre-
dictions. For all the pollutants in all the cities investigated
in this study, the machine learning predictions generally met
the goal values set by the US EPA, except for PM2.5 in some
western Canadian cities such as Calgary and Edmonton with
the predictions only meeting criteria values because of the
perturbation from large-scale wildfires.

Following the approach described in earlier studies (Hou
et al., 2022; Lin et al., 2022), the two machine learning meth-
ods were run for 1000 times with meteorological variables
randomly resampled from the entire datasets during the study
period. The average model prediction from the 1000 model
runs represents the meteorologically normalized pollutant
concentration at a particular time. We also tested averaging
2000 and 3000 model predictions, which produced consistent
results with those of using 1000 model predictions. Thus, av-
eraging 1000 model predictions was used for meteorological
normalization in this study.

As mentioned above, the machine learning methods suffer
from a weakness in accurately predicting high concentration
values for large percentiles. We thus applied the identical-
percentile autocorrelation analysis method developed in our
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previous study to quantify the perturbations due to extreme
events such as large-scale wildfires on the large percentile
concentration values (Yao and Zhang, 2020; Lin et al., 2022).
This method has five steps for data processing and analysis.
The first step is to construct a long-term average data series
at hourly resolution covering 365 d by averaging the corre-
sponding hourly data from all the years of the study period.
The second step is to pair a data series at any given year to the
long-term average data series, and if there were any data gaps
(missing hours) in the former data series, data for these hours
in the latter series were also removed so that the two data se-
ries have exactly the same size. The third step is to rearrange
all the hourly data from the smallest to the largest value in
each of the data series generated in step 2 and then conduct
correlation analysis between the pair of data series. Inflec-
tion points in the large and small percentile zone were first
visibly identified/guessed and referenced as upper and lower
inflection points, respectively. The pair of data between the
lower and upper inflection points were correlated repeatedly
by varying values of the two inflection points in search of the
highest R2 values. The fourth step is to predict the large per-
centile values exceeding the upper inflection point using the
regression equation with the highest R2 generated in step 3.
The final step is to obtain the perturbations due to extreme
events on the large percentile concentrations by subtracting
the observed values from the predicted values.

Figure 2 shows three examples calculating the pertur-
bations due to varying weather conditions and large-scale
wildfires on the large percentile concentrations of PM2.5 in
1998, 1999 and 2019 in Edmonton. Large-scale wildfires oc-
curred in 1998 and 2019 (Fig. S1), but there is no record in
1999. In 1998, data points outside the 4.5th–94th percentile
range were screened out through steps 1–3, and the remain-
ing data points were used to obtain a regression equation,
which shows [PM2.5]data in 1998 = [PM2.5]long-term average ×

3.9–18 (R2
= 0.96, P < 0.01) (Fig. 2a). [PM2.5]data in 1998

and [PM2.5]long-term average represent the same identical per-
centile values of PM2.5 in reorganized data series of 1998
and the long-term average through steps 1–3, respectively.
The similar definition is applicable for [PM2.5]data in 1999
and [PM2.5]data in 2019 presented below. In 1999, data points
within the 4.5th–99.7th percentile range resulted in a regres-
sion equation of [PM2.5]data in 1999 = [PM2.5]long-term average
× 3.1–15 (R2

= 0.97, P < 0.01) (Fig. 2c). In 2019, data
points within the 5.4th–96th percentile range resulted in
[PM2.5]data in 2019 = [PM2.5]long-term average × 2.2–12 (R2

=

0.94, P < 0.01) (Fig. 2e). Note that step 3 is critical to obtain
these excellent correlations (Fig. 2a, c and e) as compared
with those without step 3 (Fig. 2b, d and f).

The perturbation due to the extreme weather conditions or
the extreme events on the 100th percentile PM2.5 value, i.e.,
the maximum value in this study, at a particular year (y) can

be calculated as

[PM2.5]perturbation at 100th,y = [PM2.5]predicted at 100th,y

− [PM2.5]observed at 100th,y,

[PM2.5]predicted at 100th,y = [PM2.5]long-term average at 100th
×ky + by ,

where [PM2.5]observed at 100th,y represents the 100th per-
centile PM2.5 value observed in y year, and ky and by rep-
resent the slope and intercept, respectively, of the regression
equation with the highest R2 in the y year generated through
steps 1–3. Similarly, the perturbation inherent from the large
percentile values from the final upper inflection point (mth)
to 100th percentile in a particular year can be calculated as

[PM2.5]perturbation at≥mth, y = [PM2.5]predicted at≥mth, y

− [PM2.5]observed at≥mth, y,[PM2.5]predicted at mth,y

= [PM2.5]long-term average at mth× ky + by .

The calculated values from [PM2.5]perturbation at≥mth,y to
[PM2.5]perturbation at 100th,y in the y year were averaged
as [PM2.5]perturbation average,y . The perturbation contribution
to the corresponding original annual average equals to
[PM2.5]perturbation average,y× (1 m %) in y year, and the values
were 3.0 µg m−3 in 1998, 0.2 µg m−3 in 1999 and 1.7 µg m−3

in 2019 in Edmonton, corresponding to strong, minimal and
moderate perturbations, respectively, from large wildfires.

The M–K trend test is a non-parametric test applicable
to any type of data distribution and is employed to resolve
the trends in the time series of the deweathered and original
annual average concentration of each pollutant. Qualitative
trends revolved by the M–K trend test include (1) an increas-
ing or decreasing trend with a P value of < 0.05 and (2) no
significant trend including a probably increasing or decreas-
ing trend, a stable trend, and a no-trend with all the other
conditions (Aziz et al., 2003; Kampata et al., 2008; Yao and
Zhang, 2020). The extracted trends and associated driving
factors are discussed in detail below.

3 Results

3.1 Trends in deweathered and original NO2 mixing
ratios

Figure 3a and b show decadal variations in the original an-
nual averages of NO2 mixing ratios in the 10 Canadian cities.
The BRT-deweathered and RF-deweathered hourly averages
of NO2 mixing ratios are shown in Fig S2, in which the
deweathered results were also interpreted in terms of in-
creased or reduced emissions of NOx . The decadal trends
resulted from annual averages of BRT-deweathered, RF-
deweathered and original NO2 mixing ratios are listed in Ta-
ble 1.

The deweathered and original annual average NO2 mix-
ing ratios in any of the 10 cities both showed consistent de-
creasing trends in the last 2–3 decades (P < 0.05 through

https://doi.org/10.5194/acp-24-7773-2024 Atmos. Chem. Phys., 24, 7773–7791, 2024



7778 X. Yao and L. Zhang: Identifying decadal trends in deweathered concentrations of criteria air pollutants

Figure 2. Correlations between hourly PM2.5 concentration in a single year and 22-year average PM2.5 concentration in each hour of the
year in Edmonton. Panels (a), (c), and (e) show percentile series of PM2.5 in 1998, 1999, and 2019, respectively, against the corresponding
22-year average series. Panels (b), (d), and (f) show time series of PM2.5 in 1998, 1999, and 2019, respectively, against the corresponding
22-year average series. Blue straight dashed lines in (a), (c) and (e) represent the regression curves within linear ranges and their extensions
out of the ranges; vertical arrows represent the distance between the predicted values from the regression curve. Blue straight lines and dark
blue dashed lines in (b), (d) and (f) represent the regression curves and 1 : 1 lines, respectively.

M–K trend test). The BRT-deweathered and RF-deweathered
annual averages highly correlated with the original values
with R2 > 0.95 and P < 0.01 (Table 1). The slopes of zero-
intercept regression equations between the deweathered and
original annual average NO2 mixing ratios were mostly
within 0.98–1.04, indicating ≤ 4% differences between the
deweathered and original annual values. These results indi-

cated that the perturbation due to varying weather conditions
only exerted minor influences on the original annual aver-
ages. The only exception is the RF-deweathered annual aver-
ages in Halifax (with a slope of 1.08); however, this may not
suggest that the perturbation due to varying weather condi-
tions was as high as 8 % since the BRT-deweathered annual
averages in the same city showed a slope of only 1.03, indi-
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Table 1. Regression of (BRTs and RF) deweathered against original annual average NO2 mixing ratios, annual decreasing rate (ppb yr−1),
and overall decreasing percentage (%) of deweathered and original NO2 mixing ratios (P < 0.05 for all the decreasing trends), with cor-
relation (R2) of deweathered and original NO2 mixing ratios against provincial total NOx emissions and transportation NOx emissions
(P < 0.05, except those marked with “–” for which p > 0.05), as well as percentage decreases (%) of the provincial total NOx emissions
and transportation NOx emissions (P < 0.05 for all the decreasing trends, except increasing trends in NOx emission from 1990–2010 in
Winnipeg and Calgarya) in 10 Canadian cities during the last decades (b since 1990; bold font numbers represent cases with smaller deceas-
ing percentages in NO2 mixing ratios than in corresponding provincial emissions; italic numbers represent R2 > 0.8; and italic bold numbers
represent an increasing trend).

City Regression of Annual decreasing rate Correlation (R2) of mixing Percentage
deweathered (ppb yr−1) and overall ratios against provincial decreases (%)

against original decreasing percentage (%) total and transportation of provincial
mixing ratio (P < 0.05) NOx emissions (P < 0.05) total and
(P < 0.01) transportation

emissions

BRTs RF BRTs RF Original BRTs RF Original

Halifax y = 1.03× x y = 1.08× x 0.49, 62 0.45, 58 0.55, 50 0.83, 0.84 0.84, 0.85 0.86, 0.87 54, 56
(1996–2017)

Montréal y = 0.99× x y = 1.04× x 0.34, 44 0.32, 42 0.34, 39 0.90, 0.85 0.91, 0.86 0.87, 0.82 47, 52
(1995–2019)

Québec y = 0.98× x y = 1.02× x 0.44, 51 0.39, 45 0.46, 46 0.97, 0.97 0.97, 0.98 0.95, 0.95 47, 52
(1996–2019)

Toronto y = 1.02× x y = 1.04× x 0.67, 40 0.64, 39 0.74, 37 0.96, 0.96 0.97, 0.98 0.94, 0.94 52, 52
(2004–2019)

Hamilton y = 1.00× x y = 1.02× x 0.53, 42 0.55, 44 0.54, 42 0.95, 0.97 0.95, 0.96 0.92, 0.93 58, 57
(1996–2019)

Winnipeg y = 0.99× x y = 1.00× x 0.37, 57 0.34, 57 0.34, 50 0.90, 0.93 0.91, 0.94 0.85, 0.89 43, 43
(1984–2018)

Edmonton y = 1.02× x y = 1.00× x 0.45, 41 0.47, 40 0.53, 45 0.57, 0.73 0.54, 0.73 0.63, 0.73 10, 29
(1994–2019)

Calgary y = 1.00× x y = 1.01× x 0.60, 31 0.60, 32 0.61, 33 – – – −11, −5a

(1986–2007)

Vancouver y = 1.00× x y = 1.01× x 0.36, 49 0.36, 47 0.37, 49 0.63, 0.75 0.63, 0.74 0.54, 0.66 23, 27b

(1986–2019)

Victoria y = 1.01× x y = 1.02× x 0.31, 0.49 0.31, 0.45 0.31, 0.51 0.58, 0.69 0.58, 0.69 0.54, 0.65 23, 33b

(1993–2019)

cating that the uncertainties in the slope associated with the
RF-deweathered averages can be as large as 5 % (8 % minus
3 %) because of its poor prediction for large outlier values.

The annual decreasing rates in the deweathered and origi-
nal NO2 mixing ratios in the studied cities varied from 0.31
to 0.74 ppb yr−1, and the overall percentage decreases ranged
from 37 % to 62 % during the last 2 to 3 decades (Table 1).
Our results suggested that varying weather conditions likely
played a negligible role in the annual decreasing rates of NO2
mixing ratio in two eastern (Montréal and Hamilton) and
four western (Winnipeg, Calgary, Vancouver and Victoria)
Canadian cities, as can be seen from the very close annual
decreasing rates between the deweathered and original an-
nual average mixing ratios, despite methodology uncertain-
ties in generating deweathered mixing ratios as mentioned
above. In the remaining four cities, the annual decreasing

rates were always larger in the original than the deweath-
ered annual average NO2 mixing ratio, with the largest dif-
ferences in Toronto (0.07–0.10 ppb yr−1), followed by Hal-
ifax (0.06–0.10 ppb,yr−1), Edmonton (0.06–0.08 ppb yr−1)
and Québec (0.02–0.07 ppb yr−1), suggesting that varying
weather conditions contributed appreciably to the annual de-
creasing rate. The annual decreasing rates were highly city-
dependent, but there were no significant differences between
eastern and western cities (P > 0.05). With continuously de-
creasing NO2 mixing ratios in the last decades (Fig. 3), an-
nual average NO2 fell to below 10 ppb by 2019 in half of
the studied cities (Halifax, Montréal, Québec, Winnipeg and
Victoria), meeting the WHO 2021 guideline. Additional ef-
forts are still needed to lower the NO2 level in the rest of the
cities, especially in Toronto and Edmonton in which annual
average NO2 values were still as high as 15 ppb in 2019.
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Figure 3. Trends of original annual average NO2 (a, b) and PM2.5 (c, d) in five eastern (a, c) and five western (b, d) Canadian cities.

NO2 in urban atmospheres was mainly formed by the rapid
titration reaction of NO with O3, with NO largely released
from anthropogenic emissions, especially the transport sec-
tor (Pappin et al., 2016; Casquero-Vera et al., 2019; Dabek-
Zlotorzynska et al., 2019; Feng et al., 2020; Griffin et al.,
2020; Al-Abadleh et al., 2021). The correlations between
the annual average NO2 mixing ratios and corresponding
provincial NOx emissions were thereby analyzed below (Ta-
ble 1). Note that the online air pollutant emission inventory in
Canada reports the emissions since 1990 (ECCC, 2021), so
the correlation analysis only covers the period of 1990–2019.
Strong correlations (R2

= 0.82–0.98) were obtained in all of
the five eastern Canadian cities. The overall decreasing per-
centages of the deweathered and original NO2 mixing ratios
in Halifax and Québec were roughly the same as those of
the provincial grand total NOx emissions and transportation
NOx emissions, but in Montréal, Toronto and Hamilton the
former decreasing percentages were smaller than the latter
ones. In contrast, the overall decreasing percentages in NO2
mixing ratio in the five western Canadian cities were substan-
tially larger than the corresponding decreasing percentages
of the provincial grand total NOx emissions and transporta-

tion NOx emissions, and the correlations (R2
= 0.54–0.94)

between NO2 mixing ratio and provincial emission were not
as good as those in eastern cities. The extreme case occurred
in Calgary, where NO2 mixing ratio decreased by 31 %–
33 % during 1990–2007 when the grand total NOx emissions
and transportation NOx emissions in Alberta increased by
11 % and 5 %, respectively, noting that a much shorter pe-
riod of data was used in this than other cities. The city-level
NOx emissions recorded from various facilities in Calgary
increased from 68 t in 2002 to 262 t in 2007 (Table S2), which
cannot explain the decrease in NO2 mixing ratios.

3.2 Trends in deweathered and original mixing ratios of
CO and SO2

As mentioned earlier, CO and SO2 in Canadian cities well
met the CAAQS in recent years. The original annual average
mixing ratios of CO and SO2 in the 10 cities generally met
the WHO 2021 air quality guidelines in the last decade, ex-
cept SO2 in Hamilton (Fig. S4). Thus, the analysis results on
deweathered and original mixing ratios of SO2 and CO in the
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nine cities and CO in Hamilton were only briefly summarized
below, leaving SO2 in Hamilton to be discussed separately.

The annual averages of the deweathered CO mixing ra-
tios were reasonably consistent with the original annual av-
erages in five cities, e.g., the slopes of the deweathered
mixing ratios against the original ones varied from 0.97 to
1.03 in Montréal, Hamilton, Winnipeg, Edmonton, Vancou-
ver and Victoria, although somewhat large differences be-
tween the deweathered and original mixing rations were seen
in Québec with a slope of 1.12 (RF vs. original) and Toronto
with a slope of 0.92 (BRTs vs. original). The original and
deweathered annual averages of CO decreased by ≥ 82% in
the last 2 to 3 decades in six cities, including Halifax (90 %–
92 %), Calgary (90 %–91 %), Winnipeg (84 %–88 %), Ed-
monton (86 %–86 %), Toronto (83 %–86 %) and Vancouver
(82 %–83 %) (Table S3), followed by 66 %–70 % in Hamil-
ton and less than 60 % in Québec (56 %–58 %) and Vic-
toria (57 %–59 %). Large percentage decreases in baseline
CO mixing ratios across North America were reported be-
fore (Zhou et al., 2017). The deweathered and original an-
nual averages of CO mixing ratio significantly correlated
with the corresponding provincial grand total emissions and
transportation emissions of CO (R2

= 0.68–0.96, P < 0.01)
in these nine cities. The overall percentage decreases in CO
mixing ratio in Québec and Victoria were approximately the
same as those in the corresponding provincial transportation
emissions of CO; however, the former percentage decreases
were evidently larger than the latter ones in the other seven
cities mentioned above. In Montréal, no significant trends
were obtained in the deweathered and original CO mixing
ratios during 1995–2010 (P > 0.05), despite the fact that the
provincial total CO emissions and transportation CO emis-
sions decreased by 37 % and 53 %, respectively, during the
same period.

The deweathered and original annual average mixing ra-
tios of SO2 decreased by 89 %–97 % in the last 2 to 3 decades
in four cities, including Winnipeg (95 %–97 %), Vancou-
ver (90 %–95 %), Toronto (89 %–95 %) and Halifax (90 %–
93 %), followed by 79 %–86 % in Montréal, 78 %–85 % in
Québec, 73 %–82 % in Victoria, 62 %–64 % in Calgary and
52 %–55 % in Edmonton (Table S4). Large percentage de-
creases in SO2 mixing ratio have been reported in rural
atmospheres across North America during the last 2 to 3
decades (Xing et al., 2015; Feng et al., 2020). Since 1990, the
overall decreasing percentages in SO2 mixing ratio in Hali-
fax, Toronto, Calgary and Vancouver were evidently larger
than those of the corresponding provincial grand total SO2
emissions. In Montréal, Québec, Winnipeg and Edmonton,
the percentage decreases in SO2 mixing ratio were close to
those in the corresponding provincial grand total SO2 emis-
sions during the same periods. Although SO2 mixing ratio
in Victoria decreased by 73 %–82 % during 1999–2019, the
corresponding provincial grand total SO2 emission did not
decrease much during the same period. However, the city-
level SO2 emissions from registered facilities in Victoria de-

creased from 217 t in 2002 to near zero in 2019 (Table S2),
supporting the decreases in SO2 mixing ratios. Note that
the differences between the two deweathered mixing ratios
of SO2 were enlarged to some extent in comparison with
other pollutants, e.g., with the differences being 10 %–12 %
for SO2 but only 2 %–5 % for NO2 (as presented above), in
Montréal, Toronto and Winnipeg. The increased uncertain-
ties led to the difference between the RF-deweathered and
original SO2 mixing ratios being up to 16 % in Winnipeg,
based on the slope of 1.16 listed in Table S4. The differ-
ence between the BRT-deweathered and original SO2 mixing
ratios was, however, only 4 %, suggesting that the perturba-
tion due to varying weather conditions might be within 4 %–
16 %. Again, the RF algorithm suffers from a weakness in
predicting large outlier values.

In Hamilton, the annual average of the deweathered SO2
mixing ratios were highly consistent with those of the origi-
nal data as indicated by the close to 1.0 slopes. The deweath-
ered and original annual averages of SO2 mixing ratios de-
creased by 23 %–28 % during 1996–2019, which were sub-
stantially smaller than the 81 % decrease of the correspond-
ing provincial grand total SO2 emissions during the same
period. Such a large discrepancy indicates that the reduc-
tion in SO2 emission in Hamilton likely substantially lagged
behind the average provincial level. This is indeed the case
since SO2 emissions from registered facilities in Hamilton
(Table S2) fluctuated around 8.67± 1.75× 103 t yr−1 dur-
ing 2002–2009 and then increased to 1.14±0.13×104 t yr−1

during 2010–2018. This also caused the weak correlations
between annual average SO2 mixing ratio in this city and
provincial total SO2 emission (R2

= 0.42–0.57, P < 0.05).
In addition, the original annual average SO2 mixing ratio
increased from 3.2–3.5 ppb in 2016–2017 to 4.8–5.0 ppb in
2018–2019 when provincial total SO2 emission changed lit-
tle. Thus, reducing local SO2 emissions in Hamilton is criti-
cal to further lower SO2 mixing ratio in this city in order to
meet the CAAQS and the WHO 2021 guideline, despite the
existence of other factors such as regional transport (Zhou et
al., 2017; Ren et al., 2020).

3.3 Trends in deweathered and original O3 and Ox
mixing ratios

The original annual averages of O3 and Ox are shown in
Fig. S5 and the analysis results of deweathered and original
annual averages are listed in Table S5. Increasing trends in
the deweathered and original annual average O3 mixing ratio
were obtained in nine cities during the last 2 to 3 decades,
with Halifax as an only exception that showed no signifi-
cant trend (P > 0.05) during 2000–2017. Theoretically, the
increasing trends in the O3 mixing ratios could be caused by
the enhanced tropospheric photochemical formation of O3
and/or the weakened titration reaction between O3 and NO
due to the substantial reduction of NO emissions (Simon et
al., 2015; Zhou et al., 2017; Sicard et al., 2020; Mitchell et
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al., 2021; Wang et al., 2022b) (more discussion in Sect. 4.2
below). In contrast, the decreasing trends in the deweathered
and original annual average Ox mixing ratios were generally
obtained, except in Victoria where there was no significant
trend (P > 0.05) during 2000–2017. The opposite long-term
trends between O3 and Ox suggested that the increase in O3
is much less than the decrease in NO2, which does not sup-
port the hypothesis of the enhanced tropospheric formation
of O3.

The deweathered and original annual average O3 mixing
ratios increased by 10 ppb in Edmonton from 1981–2019,
8 ppb in Hamilton from 1996–2019 and Calgary from 1986–
2014, and < 7 ppb in the other cities (Fig. S5, Table S5).
The increased O3 mixing ratio was likely caused by the re-
duced titration reaction between O3 and NO, considering the
reduced photochemical formation of O3 in the troposphere
(Simon et al., 2015; Xing et al., 2015). Varying weather con-
ditions likely exerted a negligible influence on the decade
increases in O3 mixing ratio in Edmonton, Hamilton, Cal-
gary and Vancouver on the basis of the almost identical in-
creases in deweathered and original annual averages. How-
ever, the comparison between deweathered and original an-
nual averages also showed that varying weather conditions
did cause an increase of 2 ppb out of the total of 7 ppb in-
crease in the original annual average O3 in Winnipeg from
1985–2018, and 1 ppb increase in Montréal from 1997–2010
and in Toronto from 2003–2019. In contrast, varying weather
conditions likely caused a 1 ppb decrease in Québec from
1995–2019 and in Victoria from 1999–2019.

The deweathered and original annual average Ox mix-
ing ratios decreased by 10–12 ppb in Vancouver from 1986–
2019, 10 ppb in Halifax from 2000–2019 and in Toronto from
2003–2019, 8–10 ppb in Edmonton from 1981–2019, and <

6 ppb in the other cities (Fig. S5 and Table S5). Based on the
simultaneously monitored NO mixing ratios and the method
reportedly used for estimating the primary NO2 emission
(Kurtenbach et al., 2012; Simon et al., 2015; Casquero-Vera
et al., 2019; Xu et al., 2019), the reduced primary NO2 emis-
sions likely accounted for only 1–2 ppb decrease in Ox in the
10 cities and generally acted as a minor contributor to the
decrease in Ox .

3.4 Trends in deweathered and original PM2.5 mass
concentrations

Opposite decadal trends were observed between eastern
and western Canadian cities in the deweathered and orig-
inal PM2.5 mass concentrations (Table 2, Figs. 3c and d,
and S6). In eastern Canadian cities, either decreasing or
no significant trends were obtained in the last 2 decades.
The decreasing trends (P < 0.05) were identified in the RF-
deweathered, BRT-deweathered and original annual average
PM2.5 in Montréal from 2005–2019 and in Hamilton from
1998–2019. The overall decreases were only 2 µg m−3 with
the decreasing rate of 0.22–0.25 µg m−3 yr−1 in Montréal

and 3–4 µg m−3 and 0.14–0.15 µg m−3 yr−1 in Hamilton. The
decreasing trends (P < 0.05) were also identified in the RF-
deweathered and BRT-deweathered PM2.5 in Toronto from
2000–2019 with an overall decrease of only 2 µg m−3 and
a decreasing rate of only 0.10–0.11 µg m−3 yr−1. However,
no significant trend (P > 0.05) was identified in the original
annual average PM2.5 in Toronto, implying that the perturba-
tion due to varying weather conditions likely canceled out the
mitigation effects of air pollutants. Note that there were no
decreasing trends in the provincial total primary PM2.5 emis-
sions in Quebec and Ontario during the periods when PM2.5
mass concentration decreased in the three abovementioned
cities. This was not surprising, because the major chemical
components in PM2.5 were derived mainly from secondary
sources (Dabek-Zlotorzynska et al., 2019; Jeong et al., 2020;
Wang et al., 2021). The decreasing provincial emissions of
SO2, NOx , and volatile organic emissions in Quebec and On-
tario likely have reduced the amounts of their oxidized prod-
ucts in PM2.5 (Xing et al., 2015; Yao and Zhang, 2019, 2020;
Feng et al., 2020; Jeong et al., 2020; ECCC, 2021; Wang
et al., 2021, 2022a). No significant trends (P > 0.05) were
identified in the deweathered and original PM2.5 concentra-
tions in Halifax from 2008–2018 or in Québec from 1998–
2019, which need further investigation.

In western Canadian cities, either increasing or no signif-
icant trends were extracted in the deweathered and original
annual average PM2.5 mass concentrations. Increasing trends
(P < 0.05) were identified in the RF-deweathered, BRT-
deweathered and original annual average PM2.5 in Winnipeg
from 2001–2018 with an overall increase of only 1–2 µg m−3

and an increasing rate of 0.09–0.10 µg m−3 yr−1. Increasing
trends (P < 0.05) were identified in the RF-deweathered and
original annual average PM2.5 in Victoria from 1999–2019
with an overall increase of only 1 µg m−3 and an increasing
rate of 0.07–0.08 µg m−3 yr−1, but no significant trend was
identified in the BRT-deweathered annual average PM2.5. An
increasing trend was obtained only in the RF-deweathered
annual average PM2.5 in Vancouver from 2004–2019, and
no significant trends were identified in the BRT-deweathered
and original annual average PM2.5. The inconsistency be-
tween the trends extracted from the three different annual av-
erage PM2.5 data series was mostly because of the small mag-
nitudes of the actual interannual changes and thus the trends,
which are on the same order of magnitude as the method-
ology uncertainties. Considering the decreasing trends in
NO2, CO and SO2 mixing ratios discussed above and the re-
ported decreasing trends in secondary chemical components
of PM2.5 in Western Canada (Wang et al., 2021, 2022a), the
increasing trends in the deweathered and/or original annual
average PM2.5 observed in some western Canadian cities
were likely caused by increased natural emissions, such as
from the increased large-scale wildfires in recent years.

It is noticed that a few spikes always appeared in the
BRT-deweathered PM2.5 concentrations in the five western
Canadian cities since 2010 (Fig. S6). Most of these spikes
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Table 2. Regression of (BRTs and RF) deweathered against original annual average PM2.5 mass concentrations, annual decreasing rate
(µg m−3 yr−1) and overall decrease (µg m−3) of deweathered and original PM2.5 mass concentrations, and percentage decreases (%) of the
provincial total PM2.5 emissions in 10 Canadian cities during the last decades (decreasing trends were obtained with P < 0.05 except those
marked with “–” for which P > 0.05; and bold font numbers represent cases with increasing trends).

City Regression of Annual decreasing rate (µg m−3 yr−1) Decreasing
deweathered against and overall decrease (µg m−3) percentage (%) of
original mixing ratio provincial total

(P < 0.01) PM2.5 emissions

BRTs RF BRTs RF Original

Halifax (2008–2018) y = 1.00× x y = 1.02× x – – – 27
Montréal (2005–2019) y = 1.00× x y = 1.01× x 0.24, 2 0.22, 2 0.25, 2 –
Québec (1998–2019) y = 1.00× x y = 1.01× x – – – –
Toronto (2000–2019) y = 1.00× x y = 1.01× x 0.11, 2 0.10, 2 – –
Hamilton (1998–2019) y = 1.00× x y = 1.01× x 0.15, 4 0.14, 3 0.15, 3 –
Winnipeg (2001–2018) y = 1.04× x y = 1.04× x −0.10, −2 −0.10, −2 −0.09, −1 −11
Edmonton (1998–2019) y = 1.01× x y = 1.03× x – – – −40
Calgary (1998–2014) y = 1.00× x y = 1.03× x – – – −38
Vancouver (2004–2019) y = 0.99× x y = 1.02× x – −0.08, −1 – 28
Victoria (1999–2019) y = 1.00× x y = 1.03× x – −0.08, −1 −0.07, −1 42

were associated with large-scale wildfire emissions (Lit-
tell et al., 2009; Collier et al., 2016; Landis et al., 2018;
Matz et al., 2020). For example, wildfires caused large and
rapid increases in PM2.5 mass concentration from ≤ 10
to > 400 µg m−3 in Edmonton during 10–12 August 1998
and on 30 May 2019 (Fig. S1). During these periods, the
BRT method predicts the spikes of PM2.5. However, the
RF method seemingly failed to learn the wildfire signals
and missed predicting the spikes associated with largely in-
creased natural emissions because of its inherent weakness.

To further explore the causes for the different trends in
PM2.5 between eastern and western Canadian cities, the
95th–100th percentile PM2.5 mass concentration data in each
year were averaged into annual value and were examined be-
low. The top 5 % PM2.5 exhibited decreasing trends (P <

0.05) in four eastern Canadian cities and no significant trend
(P > 0.05) in Halifax (Fig. S7). The decreasing trends fur-
ther confirmed the mitigation effects of air pollutants on
PM2.5. However, annual average PM2.5 was still as high as
8.8 µg m−3 in Hamilton in 2019; 7.0–7.7 µg m−3 in Québec,
Toronto, and Montréal; and 5.6 µg m−3 in Halifax. If keep-
ing the same decreasing rates as mentioned above, it would
take another 1 to 3 decades to lower annual average PM2.5
by 2–4 µg m−3 in order to meet the WHO 2021 guideline.

No significant trends (P > 0.05) were identified in the
95th–100th percentile PM2.5 mass concentrations in the five
western Canadian cities. Note that a large standard deviation
of the 95th–100th percentile PM2.5 mass concentration was
found in some years in the five western cities, indicating a
high variability. However, this is not the case in the eastern
Canadian cities. The episodic PM2.5 events likely canceled
out the mitigation effects in the western Canadian cities.
The annual average PM2.5 were 6.6–6.8 µg m−3 in 2019 in

Winnipeg, Edmonton and Victoria, which need great addi-
tional mitigation efforts in order to reduce to a level below
5 µg m−3 in the presence of the episodes caused by natural
emissions. Note that the annual average PM2.5 was already
lower than 5 µg m−3 in Vancouver and that the annual aver-
age was 8.4 µg m−3 at the study site in Calgary in 2014. The
value slightly decreased to 7.6 µg m−3 in 2019 at another site
∼ 5 km from the study site in Calgary.

3.5 Trends in AQHI in the 10 Canadian cities

Decreasing trends in AQHI were obtained in nine cities (P <

0.05), with Calgary as an only exception (Figs. S9 and S10).
The annual average AQHI decreased by 8 %–29 % during the
last 2 decades to the levels of 1.8 to 3.0 during 2017–2019
in the nine cities. In Calgary, the annual averages AQHI nar-
rowed around 3.4±0.2 during 1998–2010. In the five eastern
cities, AQHI above 10 occurred at < 0.3% frequency before
2010 but none after 2010. AQHI between 7–10 occurred at
< 4% frequency before 2010 and below 0.5 % after 2010. In
the five western cities, AQHI above 10 occurred at < 0.3%
frequency, and AQHI between 7–10 occurred at < 2% fre-
quency during the last 2 decades. Note that AQHI above 10
still occurred at < 0.3% frequency even after 2010 because
of the large-scale wildfires. In fact, the occurrence frequen-
cies of AQHI between 7–10 and above 10 were a bit higher
after 2010 (< 0.3%) than before 2010 in Vancouver and Vic-
toria due to the increased wildfire events in the most recent
decade.

On seasonal average, AQHI above 10 occurred most in
summer (from June to August) in most cities, e.g., Victo-
ria (1.1 %), Vancouver (0.8 %), Edmonton (0.7 %) and Win-
nipeg (0.1 %) in 2018. AQHI above 10 also occurred in win-
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ter (from December to February next year) and spring (from
March to May) in some cities, e.g., Edmonton (0.3 % in the
spring of 2019 and 0.1 %–0.3 % in the winter of 2012–2013)
and Winnipeg (0.1 % in the spring of 2018).

4 Discussion

4.1 Perturbations due to varying weather conditions on
the decadal trends

Perturbations due to varying weather conditions on the
decadal trends of the studied pollutants are presented in de-
tail in Sect. 3 above, and key findings are briefly summarized
here. The perturbations are defined as the percentage differ-
ences between the trends of the original and deweathered an-
nual average concentrations. In ∼ 70% of the study cases
covering all the selected criteria pollutants in the 10 cities,
the perturbation due to varying weather conditions had an in-
fluence of within ±2% on the decadal trends of the original
annual averages over the 20-year period. In the remaining
cases, relatively larger perturbations were identified, but at
most 16 %, keeping in mind that a portion of the percentage
differences between the trends of the original and deweath-
ered annual average concentrations was likely caused by er-
rors inherent from BRT and RF predictions.

Specifically, in all the cases except CO in Québec (for
which the calculated perturbation is 7 % from BRTs and 12 %
from RF), at least one of the two machining leaning meth-
ods generated a perturbation smaller than 5 %. For exam-
ple, the top three largest perturbations obtained from using
one of the two machining leaning methods were all for SO2,
including 16 % from RF in Winnipeg, 14 % from BRTs in
Montréal and 13 % from RF from BRTs in Toronto; how-
ever, the corresponding perturbations from using another one
of the two machining leaning methods were quite smaller
(4 %, 0.2 % and 3 %, respectively), indicating possible large
methodology uncertainties. Thus, perturbations due to vary-
ing weather conditions should be generally small on the 2-
decade timescale in most cases.

4.2 Trend analysis of O3 net sinks and sources

As reported in literature, a large fraction of ground-level O3
at middle-to-high latitude zones comes from secondary re-
actions associated with natural sources (Barrie et al., 1988;
Van Dam et al., 2013; Cooper et al., 2005; Seinfeld and Pan-
dis, 2006; Mitchell et al., 2021). The natural signal usually
has a spring maximum related to stratosphere–troposphere
exchange as well as increasing photochemistry, among other
potential factors (Chan and Vet, 2010; Monks et al., 2015;
Strode et al., 2018; Xu et al., 2019). The contributions
from stratosphere–troposphere exchange are approximately
40 ppb, while the sinks associated with natural and anthro-
pogenic factors in the atmospheric boundary layer may de-
crease the ground-level O3 to levels lower than 40 ppb (Bar-

rie et al., 1988; Van Dam et al., 2013; Chan and Vet, 2010;
Monks et al., 2015; Mitchell et al., 2021). On the other hand,
enhanced tropospheric photochemical reactions under favor-
able meteorological conditions may increase the ground-
level O3 to levels higher than 40 ppb, causing severe O3
pollution (Monks et al., 2015; Simon et al., 2015; Seinfeld
and Pandis 2006; Xu et al., 2019). In fact, 40 ppb has been
widely used as the threshold value for assessing O3 impacts
on ecosystem health (e.g., the AOT40 index) (Avnery et al.,
2011). Thus, O3 data with mixing ratios lower and higher
than 40 ppb were analyzed separately below, with the former
case representing net O3 sinks occurring in the atmospheric
boundary layer and the latter one representing net O3 sources
occurring therein (Table 3).

In the cases with O3 mixing ratios ≥ 40 ppb, the deweath-
ered and original values, however, exhibited decreasing
trends (P < 0.05) in all of the five eastern cities and two
western cities (Victoria and Vancouver) (Figs. 4 and S8 and
Table 3). The overall decreases in O3 with mixing ratios
≥ 40 ppb were 2 ppb in Halifax from 2000–2017, in Montréal
and Québec from 1995–2019, and in Victoria from 1999–
2019 (figure not provided); 4 ppb in Toronto from 2003–
2019; 5–6 ppb in Hamilton from 1987–2019; and 12 ppb
in Vancouver from 1986–2019 (but only 2 ppb from 2000–
2019). Again, a few spikes and troughs occurred in the BRT-
deweathered values possibly because of unpredictably in-
creased and decreased emissions of O3 precursors, respec-
tively. In the cases with Ox mixing ratios ≥ 40 ppb, the de-
creasing trends were obtained in all of the 10 cities. These
results further implied that the tropospheric photochemical
formation of O3 likely reduced in 7 of the 10 cities during
the last 2 to 3 decades.

In the cases with O3 mixing ratios ≥ 40 ppb in the remain-
ing three western cities, the decreasing trends (P < 0.05)
were obtained in the BRT-deweathered and original values
and no significant trend (P > 0.05) in the RF-deweathered
values in Winnipeg; the decreasing trend was obtained only
in the original values in Calgary; and no significant trends
in the deweathered and original values in Edmonton. These
trend results implied that the responses of the fraction of O3
to emission reductions of its precursors were too weak to be
confirmed, especially in the presence of perturbation due to
varying weather conditions.

In the cases with O3 mixing ratios < 40 ppb, the trends
were almost the same as those from using the full dataset
of O3 mixing ratios. This consistency suggested that the in-
creasing trends in O3 mixing ratio in the nine Canadian cities
were mainly due to the reduced O3 sinks.

4.3 The perturbation from large-scale wildfires on PM2.5
trend in western Canadian cities

Wildfire emissions become important contributors to air pol-
lution in North America with global warning and increased
extreme weather conditions such as heat waves and severe
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Figure 4. Deweathered hourly mixing ratios of O3 (left column) and Ox (right column) at levels ≥ 40 ppb in five eastern Canadian cities.
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Table 3. Trends in deweathered and original annual average O3 and Ox mixing ratios at levels below and above 40 ppb in 10 Canadian cities
during the last decades (∗ decreasing tends with P < 0.05; ∗∗ no trend or stable trend with P > 0.10; ∗∗∗ increasing trend with P < 0.05).

O3 Ox

≥ 40 ppb < 40 ppb ≥ 40 ppb < 40 ppb

BRTs RF Original BRTs RF Original BRTs RF Original BRTs RF Original

Halifax (2000–2017) ↓
∗

↓ ↓ –∗∗ – – ↓ ↓ ↓ ↓ ↓ ↓

Montréal (1997–2010) ↓ ↓ ↓ ↑
∗∗∗

↑ ↑ ↓ ↓ ↓ – – –
Québec (1995–2019) ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ – ↓ –
Toronto (2003–2019) ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

Hamilton (1996–2019) ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ – – –
Winnipeg (1985–2018) ↓ – ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ –
Edmonton (1981–2019) – – – ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

Calgary (1986–2014) – – ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

Vancouver (1986–2019) ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

Victoria (1999–2019) ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ – – –

droughts (Andreae and Merlet, 2001; Littell et al., 2009;
Marlon et al., 2013; Barbero et al., 2015; Abatzoglou and
Williams, 2016; Randerson et al., 2017; Mardi et al., 2021).
For example, Meng et al. (2019) estimated that wildfires ac-
counted for 17.1 % of the total population-weighted expo-
sure to PM2.5 for Canadians during 2013–2015 and 2017–
2018. The large contribution was not surprising, because
large wildfires can rapidly increase hourly PM2.5 mass con-
centration from a few µg m−3 to > 400 µg m−3 (Landis et
al., 2018 and Fig. S1). The estimated annual economic cost
attributable to PM2.5 pollution reached CAD 410 million to
USD 1.8 billion for acute health impacts and CAD 4.3 bil-
lion to CAD 19 billion for chronic health impacts in western
Canada (Landis et al., 2018; Matz et al., 2020). In the USA,
wildfire emissions were reported to account for up to 25 % of
annual primary PM2.5 emissions (Barbero et al., 2015).

Due to the wide occurrence of small-scale wildfires, most
of the emitted air pollutants from these sources and subse-
quent long-range transport can be considered natural back-
ground pollution. The key issue is to quantify the abnormally
increased contributions from large-scale wildfires to annual
average PM2.5 in each year and their perturbations on long-
term trends in PM2.5. Using the method described in Sect. 2,
the perturbation contributions in Winnipeg were estimated to
be around 0.5.± 0.4 µg m−3 in 2001–2018, with larger val-
ues of 1.1–1.3 µg m−3 associated with large-scale wildfires in
2002, 2012 and 2018 (Fig. 5a). The larger perturbation con-
tributions in 2012 and 2018 indeed led to an increasing trend
in PM2.5 from 2001–2018 in this city (Table 2). The pertur-
bation contributions were, however, smaller than 0.2 µg m−3

in 2001, 2003, 2005, 2006, 2008, 2009, 2014 and 2017, and
such small values may be related to varying weather condi-
tions rather than large-scale wildfires.

In Edmonton, the perturbation contributions were around
1.0± 0.9 µg m−3 in 1998–2019 (Fig. 5b). However, the
largest contribution was 3.0 µg m−3 in 1998, followed by

2.4 µg m−3 in 2018 and 2.1 µg m−3 in 2004, respectively,
because of large-scale wildfires. The perturbation contribu-
tions from large-scale wildfires were large enough to can-
cel out the mitigation effect of air pollutants on annual av-
erages of PM2.5 in Edmonton. In Calgary, the perturbation
contributions were around 1.2.± 0.7 µg m−3 in 1998–2013,
depending on if large-scale wildfires occurred in any partic-
ular year. For example, the perturbation contributions were
smaller than 0.2 µg m−3 in 1999, 2007 and 2013, while the
contributions reached 2.2–2.3 µg m−3 in 1998 and 2010.

In Victoria, the perturbation contributions were around
0.7± 0.2 µg m−3 in 1998–2019. The perturbation contribu-
tion in each year was, however, larger than 0.4 µg m−3, sug-
gesting that the wildfires were always important contribu-
tors. In Vancouver, the perturbation contributions largely de-
creased to 0.3.± 0.5 µg m−3 in 2004–2019. However, the
maximum value still reached 1.7 µg m−3 in 2017, followed
by 1.4 µg m−3 in 2018 and 0.5 µg m−3 in 2015. The large per-
turbation likely overwhelmed or canceled out the effects of
emission reductions on annual average PM2.5.

5 Conclusions

Through analysis of deweathered and original annual average
concentrations of selected criteria air pollutants measured in
10 major cities in Canada during the last 2 to 3 decades, we
have generated the following decadal trends for these pollu-
tants: (1) decreasing trends in NO2, CO and SO2 mainly due
to reduced primary emissions across Canada, except no sig-
nificant trend in CO in Montréal; (2) increasing trends in O3
mainly due to the reduced titration effect across Canada, ex-
cept no significant trend in O3 in Halifax; and (3) roughly op-
posite trends in PM2.5 between eastern and western Canada,
resulting from the combined effects of emission reductions
and the occurrence of large-scale wildfires.
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Figure 5. The calculated perturbation contribution to the corresponding original annual average PM2.5 concentration (left column) and the
mean and standard derivation of the calculated perturbation (right column) in five western Canadian cities.

https://doi.org/10.5194/acp-24-7773-2024 Atmos. Chem. Phys., 24, 7773–7791, 2024



7788 X. Yao and L. Zhang: Identifying decadal trends in deweathered concentrations of criteria air pollutants

The overall percentage decrease in NO2 during the last
2 to 3 decades among the 10 cities ranged from 37 % to
62 %, and the annual decreasing rates varied from 0.31 to
0.74 ppb yr−1. The overall percentage decrease in CO var-
ied from 57 % to 92 % and the annual decreasing rate ranged
from 0.010 to 0.076 ppm yr−1 between nine cities. The cor-
responding numbers for SO2 are from 23 % to 93 % and from
0.04 to 0.63 ppb yr−1 among the 10 cities. By only consider-
ing O3 mixing ratio ≥ 40 ppb, annual average O3 decreased
by 2–4 ppb in most cities during the past 2 to 3 decades but
not in Calgary and Edmonton, and no consistent decreasing
trend was identified in Winnipeg, implying that the mitiga-
tion effects of air pollutants on O3 were too weak to be con-
firmed.

The mitigation effects on PM2.5 were detected on the basis
of the identified decreasing trends in three of the five east-
ern cities regardless of using original or deweathered annual
average data, but this is not the case in the other two east-
ern cities. In the five western cities, the perturbation due to
large-scale wildfires greatly affected original annual average
PM2.5 and was large enough to cancel out the mitigation ef-
fects in some years, leading to no decreasing trends and in
some cases even increasing trends.

Excluding Calgary, the annual average AQHI showed a
significant decrease by 8 %–29 % during the last 2 decades
to levels between 1.8 and 3.0 in 2017–2019. However, large-
scale wildfire events still occasionally elevated AQHI to a
level of above 10 (very high risk) (< 0.3% frequency) in
western Canadian cities after 2010. Thus, large-scale wild-
fires have become a key factor in causing severe air pol-
lution in Canadian cities, as was seen in the most recent
very large scale wildfires occurring in Canada from the later
spring to the earlier summer in 2023 that resulted in severe
air pollution across Canada and New York through long-
range transport. Urgent work should be conducted for assess-
ing the impacts of large-scale wildfires on human health and
climate change, besides investigating their occurrence and
control mechanisms and transport pathways. In-depth studies
are also needed to explore the causes of the non-decreasing
trends in O3 with mixing ratios ≥ 40 ppb in some western
Canadian cities, results from which are critical for making
future control policies.
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