

Supplement of

The water-insoluble organic carbon in $PM_{2.5}$ of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum

Yangzhi Mo et al.

Correspondence to: Gan Zhang (zhanggan@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1 Text S1. Water soluble inorganic ions measurements

3 anions (Cl⁻, NO₃⁻ and SO₄²⁻) and 4 cations (Na⁺, K⁺, Ca²⁺ and NH₄⁺) were analyzed with ionchromatography (761 Compact IC, Metrohm, Switzerland). Anions were separated on a Metrohm Metrosep A sup5-250 column with 3.2 mM Na₂CO₃ and 1.0 mM NaHCO₃ as the eluent and 35 mM H₂SO₄ for a suppressor. Cations were measured using a Metrohm Metrosep C4-150 column with 2 mM sulfuric acid as the eluent. The injection loop volume for anion and cation was 100 μ L. The water-soluble ions analyses were duplicated for several filter samples, and the overall relative standard deviations were generally less than 4%.

9

11

10 Text S2. Calculation of MAC for particulate light-absorbing OC

MAC can be compared with MAE only after considering the particulate effect (ζ) and in the small-particle
limit (diameter << λ) (Sun et al., 2007):

14

15
$$MAC(\lambda) = MAE(\lambda) \times \xi(\lambda)$$
 (S1)

16
$$\xi(\lambda) = \frac{9n}{(n^2 - k(\lambda)^2 + 2) + 4n^2k(\lambda)^2}$$
 (S2)

where *n* and *k* represent the real and imaginary parts of the complex refractive index (m = n + ik), respectively. In this study, we assume a constant *n* value of 1.55 (Lu et al., 2015), and the wavelengthdependent *k* is calculated as:

20
$$k(\lambda) = \frac{\rho \times \lambda \times \text{MAE}(\lambda)}{4\pi \times \left(\frac{OA}{OC}\right)}$$
 (S3)

where ρ is the density of particle and was fixed to 1.2 g/cm³. The OA/OC ratios are 1.51, 1.91, 2.30 for WIOC, HULIS and non-HULIS, respectively (Kiss et al., 2002).

23

24

27 **Table S1.** Summary of concentration and light absorption of extractble organic carbon components in PM_{2.5}

- 28 from ten Chinese cities
- 29

		Warm seasons	Cold seasons	Annual
Component	Unit	rang ($avg^a \pm std^b$)	rang (avg \pm std)	$avg \pm std$
WIOC	µgC/m ³	$1.455.25~(2.29\pm0.95)$	$1.9312.9~(4.87\pm2.89)$	3.65 ± 2.53
HULIS-C		$1.374.31~(2.46\pm0.77)$	$2.107.64~(4.63\pm1.49)$	3.60 ± 1.62
Non-HULIS-C ^c		$1.28{-}5.61~(2.36\pm1.16)$	$1.557.96~(4.09\pm1.51)$	3.27 ± 1.60
EX-OC ^d		4.19–12.8 (7.11 ± 2.38)	$6.2525.2~(13.6\pm5.22)$	10.5 ± 5.23
Abs ₃₆₅ , wioc	Mm- ¹	$1.27 - 7.69 (2.76 \pm 1.77)$	$2.78 - 38.5 (10.4 \pm 8.69)$	6.80 ± 7.44
Abs _{365, HULIS}		$1.04{-}6.05~(2.96\pm1.4)$	$2.27{-}17.2~(8.72\pm3.75)$	5.99 ± 4.08
Abs _{365, non-HULIS}		$0.532.72~(1.25\pm0.68)$	$1.11{-}8.50~(3.76\pm2.27)$	2.57 ± 2.11
Abs _{365, EX-OC}		$3.24{-}16.1\ (6.98\pm3.54)$	$6.42{-}55.4~(22.9\pm13.0)$	15.4 ± 12.6
WIOC/EX-OC	%	$15.448.7~(32.5\pm6.97)$	$19.8{-}57.5~(34.2\pm8.12)$	33.4 ± 7.55
HULIS-C/EX-OC		$25.245.4~(35.1\pm5.29)$	$19.247.6~(35.3\pm6.32)$	35.2 ± 5.77
Non-HULIS-C/EX-OC		$21.143.8~(32.4\pm5.92)$	$23.436.6~(30.5\pm4.34)$	31.4 ± 5.17
Abs _{365, WIOC} /Abs _{365, EX-OC}		$20.3{-}50.6~(38.4\pm9.06)$	$29.469.6~(42.5\pm10.1)$	40.5 ± 9.73
Abs365, HULIS-C/Abs365, EX-OC		$32.255.1\;(42.8\pm6.54)$	$22.5{-}57.9~(40.5\pm7.90)$	41.6 ± 7.28
Abs _{365, non-HULIS-C} / Abs _{365, EX-OC}		$9.51-26.8(18\pm4.43)$	$6.80 - 30.4 (17.0 \pm 5.58)$	17.5 ± 5.02

30

31 ^a avg: average

32 ^b std: standard deviation

^c The concentration of non-HULIS-C is calculated by the difference between WSOC and HULIS-C

^d The concentration of extractable organic carbon (EX-OC) is the sum of WSOC and WIOC.

35

36

41	Table S2. The person correlation coefficients (r) of concentrations and Abs ₃₆₅ of WIOC with water soluble
42	ions in cold and warm seasons.

	Concentratio	ns of WIOC	Abs ₃₆₅ of WIOC		
	Warm seasons	Cold seasons	Warm seasons	Cold seasons	
\mathbf{K}^+	0.04	0.61**	0.25	0.48^{*}	
Cl-	0.46	0.92**	0.63**	0.90^{**}	
NO ₃ -	0.38	0.29	0.53*	0.18	
SO4 ²⁻	0.44	0.69**	0.51*	0.63**	
$\mathrm{NH_{4}^{+}}$	0.51^{*}	0.51*	0.59*	0.49^{*}	

45 * Significance at p < 0.05 level

46 ** Significance at p < 0.01 level

60 Figure S1. Source profiles for five sources resolved by the positive matrix factorization (PMF) model.

Figure S2. PMF-predicted versus measured values of (a) concentrations and (b) Abs₃₆₅ of WIOC.

S5

Figure S3. (a) The correlation of mass absorption efficient (MAE₃₆₅) of WIOC to relative contribution of 100 coal combustion (brown dots) and aging processes (blue dots). (b) The relationship between the MAE₃₆₅ of 101 WIOC and relative contribution of biomass burning. (c) The relationship between relative contribution of 102 coal combustion and light absorption contribution of WIOC to EX-OC at 365 nm. 103

99

98

- 105
- 106
- 107

References: 108

Kiss, G., Varga, B., Galambos, I., Ganszky, I. (2002), Characterization of water-soluble organic matter 109 isolated from atmospheric fine aerosol, Journal of Geophysical Research-Atmospheres, 110 107(D21).https://doi.org/10.1029/2001jd000603 111

- Lu, Z.F., Streets, D.G., Winijkul, E., Yan, F., Chen, Y.J., Bond, T.C., Feng, Y., Dubey, M.K., Liu, S., Pinto, 112
- J.P., Carmichael, G.R. (2015), Light Absorption Properties and Radiative Effects of Primary Organic 113 4868-Aerosol Emissions, Environmental Science k Technology, 49(8), 114 4877.https://doi.org/10.1021/acs.est.5b00211 115
- Sun, H.L., Biedermann, L., Bond, T.C. (2007), Color of brown carbon: A model for ultraviolet and visible 116 absorption organic carbon Geophysical light by aerosol, Research Letters, 117 34(17).https://doi.org/10.1029/2007g1029797 118
- 119
- 120
- 121