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Abstract. Non-methane volatile organic compounds (NMVOC), serving as crucial precursors of O3, have a sig-
nificant impact on atmospheric oxidative capacity and O3 formation. However, both anthropogenic and biogenic
NMVOC emissions remain subject to considerable uncertainty. Here, we extended the Regional multi-Air Pol-
lutant Assimilation System (RAPAS) using the ensemble Kalman filter (EnKF) algorithm to optimize NMVOC
emissions in China in August 2022 by assimilating TROPOspheric Monitoring Instrument (TROPOMI) HCHO
retrievals. We also simultaneously optimize NOx emissions by assimilating in situ NO2 observations to address
the chemical feedback among VOCs–NOx–O3. Furthermore, a process-based analysis was employed to quantify
the impact of NMVOC emission changes on various chemical reactions related to O3 formation and depletion.
NMVOC emissions exhibited a substantial reduction of 50.2 %, especially in the middle and lower reaches of
the Yangtze River, revealing a prior overestimation of biogenic NMVOC emissions due to an extreme heat wave.
Compared to the forecast with prior NMVOC emissions, the forecast with posterior emissions significantly
improved HCHO simulations, reducing biases by 75.7 %, indicating a notable decrease in posterior emission
uncertainties. The forecast with posterior emissions also effectively corrected the overestimation of O3 in fore-
casts with prior emissions, reducing biases by 49.3 %. This can be primarily attributed to a significant decrease
in the RO2+NO reaction rate and an increase in the NO2+OH reaction rate in the afternoon, thus limiting O3
generation. Sensitivity analyses emphasized the necessity of considering both NMVOC and NOx emissions for
a comprehensive assessment of O3 chemistry. This study enhances our understanding of the effects of NMVOC
emissions on O3 production and can contribute to the development of effective emission reduction policies.

Published by Copernicus Publications on behalf of the European Geosciences Union.



7482 S. Feng et al.: Constraining non-methane VOC emissions with TROPOMI HCHO observations

1 Introduction

Since the Chinese government implemented the Air Pollu-
tion Prevention and Control Action Plan in 2013, there has
been a notable reduction in NOx emissions (Zheng et al.,
2018). However, despite these advancements, the issue of O3
pollution persists and, in certain cases, has shown signs of
worsening (Ren et al., 2022). The increase in O3 concen-
tration can be attributed not only to adverse meteorological
conditions but also predominantly to unbalanced joint con-
trol of non-methane volatile organic compounds (NMVOCs)
and nitrogen oxides (NOx ; Li et al., 2020). NMVOCs are vi-
tal precursors of O3 and have a substantial impact on atmo-
spheric oxidation capacity, thereby altering the lifetimes of
other pollutants. Accurately quantifying NMVOC emissions
holds significant importance in investigating their impact on
O3 chemistry and in formulating emission reduction policies.

Anthropogenic NMVOC emissions have traditionally
been estimated using a bottom-up method. However, the ac-
curacy and timeliness of these estimations face challenges
owing to the scarcity of local measurements for emission fac-
tors, the incompleteness and unreliability of activity data, and
the diverse range of species and technologies involved (Cao
et al., 2018; Hong et al., 2017). Furthermore, uncertainties
arise in model-ready NMVOC emissions due to spatial and
temporal allocations using various “proxy” data for differ-
ent source sectors (Li et al., 2017a). Li et al. (2021) reported
substantial discrepancies among emission estimates in vari-
ous studies, ranging 23 % to 56 %. Biogenic NMVOC emis-
sions are typically estimated using models like the Model
of Emissions of Gases and Aerosols from Nature (MEGAN;
Guenther et al., 2012) and the Biogenic Emission Inventory
System (BEIS; Pierce et al., 1998). NMVOC emissions re-
sult from the multiplication of plant-specific standard emis-
sion rates by dimensionless activity factors. Nonetheless,
apart from inaccuracies in the distribution of plant functional
types, empirical parameterization, especially concerning re-
sponses to temperature and drought stress, can introduce sub-
stantial uncertainties (Angot et al., 2020; Seco et al., 2022;
Jiang et al., 2018). Warneke et al. (2010) determined isoprene
emission rates through field measurements and conducted a
comparison to MEGAN and BEIS estimates, revealing a no-
table tendency for MEGAN to overestimate emissions while
BEIS consistently underestimated them. Similarly, Marais et
al. (2014) found that MEGAN’s isoprene emission estimates
were 5–10 times higher than the canopy-scale flux measure-
ments obtained from African field campaigns.

A top-down approach utilizing observed data has been de-
veloped for estimating VOC emissions. For instance, tech-
niques based on aircraft- and ground-based field measure-
ments such as the source–receptor relationships algorithm
with Lagrangian particle dispersion model (Fang et al.,
2016), mixed layer gradient techniques (Mo et al., 2020),
eddy covariance flux measurements (Yuan et al., 2015), and
the box model (Wang et al., 2020) have been employed to

complement or verify bottom-up results. However, these ap-
proaches do not comprehensively consider the complex non-
linear chemical reactions and transport processes that VOCs
undergo in the atmosphere. Formaldehyde (HCHO) and gly-
oxal (CHOCHO) in the atmosphere serve as crucial oxidiza-
tion intermediates for various VOCs (Hong et al., 2021; Liu
et al., 2012). Satellite-based observations can readily de-
tect their presence in the form of vertical column density
(VCD) from space, making them widely utilized for esti-
mating NMVOC emissions. A commonly used approach as-
sumes that the observed HCHO/CHOCHO columns are lo-
cally linearly correlated with VOC emission rates (Palmer
et al., 2006; Liu et al., 2012). However, this approach does
not consider the spatial offset resulting from chemistry re-
actions and transport processes. Chaliyakunnel et al. (2019)
conducted a Bayesian analysis to derive an optimal esti-
mate of VOC emissions using HCHO measurements over
the Indian subcontinent. Their results indicated that biogenic
VOC emissions modeled by MEGAN v2.1 were overesti-
mated by approximately 30 %–60 %, whereas anthropogenic
VOC emissions derived from the REanalysis of the TRO-
pospheric chemical composition (RETRO) inventory were
underestimated by 13 %–16 %. Cao et al. (2018) employed
the GEOS-Chem model and its adjoint, incorporating tropo-
spheric HCHO and CHOCHO column data from the GOME-
2A and Ozone Monitoring Instrument (OMI) satellites as
constraints, to quantify Chinese NMVOC emissions. They
demonstrated a low bias in the MEGAN model, in contrast
to the significant overestimation shown in Bauwens et al.
(2016), especially in southern China.

Several investigations have been conducted to explore the
implications of inverted VOC emissions on surface O3. For
instance, using the Eulerian box model, Zhou et al. (2023)
employed concurrent VOC measurements to constrain an-
thropogenic VOC emissions. This led to improved simula-
tions of VOCs and O3, with a reduction in high emissions
by 15 %–36 % in the Pearl River Delta (PRD) region. Local
model biases in simulating the oxidation of NMVOCs and O3
are closely related to uncertainties in NOx emissions (Wolfe
et al., 2016; Chan Miller et al., 2017). To tackle these critical
questions, Kaiser et al. (2018) applied an adjoint algorithm to
estimate isoprene emission over the southeast US by down-
wardly adjusting anthropogenic NOx emissions by 50 % to
rectify NO2 simulations. Their findings indicated that iso-
prene emissions from MEGAN v2.1 were overestimated by
an average of 40 %, slightly lower than the 50 % reduction in
Bauwens et al. (2016). Souri et al. (2020) simultaneously op-
timized NMVOC and NOx emissions utilizing Ozone Map-
ping and Profiler Suite (OMPS-NM) HCHO and OMI NO2
retrievals in east Asia. They found that predominantly an-
thropogenic NMVOC emissions from the mosaic Asian an-
thropogenic emission inventory (MIX-Asia) 2010 increased
over the North China Plain (NCP), whereas predominantly
biogenic NMVOC emissions from MEGAN v2.1 decreased
over southern China after the adjustment. Unfortunately, the
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posterior simulations exacerbated the overestimation of O3
levels in northern China.

Most studies regarding the inversion of NMVOC emis-
sions or its impact on O3 neglected the uncertainties asso-
ciated with NOx-dependent production or loss of NMVOC
oxidation and O3. An iteratively nonlinear joint inversion
of NOx and NMVOCs using multi-species observations
is expected to minimize the uncertainties in their emis-
sions and is well-suited to address the intricate relationship
among VOCs–NOx–O3. In this study, we extended the Re-
gional multi-Air Pollutant Assimilation System (RAPAS)
with the ensemble Kalman filter (EnKF) assimilation algo-
rithm to enhance the optimization of NMVOC emissions
over China, utilizing the TROPOspheric Monitoring Instru-
ment (TROPOMI) HCHO retrievals with high spatial cover-
age and resolution. To more accurately quantify the impact
of NMVOC emissions on O3, NOx emissions were simulta-
neously adjusted using nationwide in situ NO2 observations.
Process analysis was subsequently employed to quantify var-
ious chemical pathways associated with O3 formation and
loss. Through a top-down constraint on both types of emis-
sion, this study aims to offer a more scientific insight into
the consequences of optimizing NMVOC emissions on O3
and to contribute to the development of appropriate emission
reduction policies.

2 Data and methods

2.1 Data assimilation system

The RAPAS system (Feng et al., 2023) has been developed
based on a regional chemical transport model (CTM) and
on ensemble square root filter (EnSRF) assimilation mod-
ules (Whitaker and Hamill, 2002), which are employed to
simulate atmospheric compositions and infer anthropogenic
emissions by assimilating surface observations, respectively
(Feng et al., 2022, 2020). The inversion process follows a
two-step procedure within each inversion window, in which
the emissions are inferred first and then input into the Com-
munity Multiscale Air Quality Modeling System (CMAQ)
to simulate initial conditions of the next window. Mean-
while, the optimized emissions are transferred to the next
window as prior emissions. The two-step inversion strategy
facilitates error propagation and iterative emission optimiza-
tion, which have proven the superiority and robustness of our
system in estimating emissions (Feng et al., 2023). In this
study, we extended the data frame to include the assimila-
tion of TROPOMI HCHO retrievals to optimize NMVOC
emissions. Concise descriptions of the forecast model, data
assimilation approach, and experimental settings follow.

2.1.1 Atmospheric transport model

The Weather Research and Forecasting (WRF v4.0) model
(Skamarock and Klemp, 2008) and the CMAQ (v5.0.2; Byun

and Schere, 2006) were applied to simulate meteorologi-
cal conditions and atmospheric chemistry, respectively. WRF
simulations were conducted with a 27 km horizontal reso-
lution, covering the entire mainland of China on a grid of
225× 165 cells (Fig. 1). The CMAQ was run over the same
domain but with the removal of three grid cells on each
side of the WRF domain. The vertical settings in WRF and
CMAQ were the same as in Feng et al. (2020). To account
for the rapid expansion of urbanization, we updated under-
lying surface information for urban and built-up land using
the MODIS Land Cover Type product (MCD12C1) Version
6.1 from 2022. Chemical lateral boundary conditions for NO,
NO2, HCHO, and O3 were extracted from the output of the
global CTM (i.e., the Whole Atmosphere Community Cli-
mate Model, WACCM) with a resolution of 0.9°× 1.25° at
6 h intervals (Marsh et al., 2013). Meanwhile, boundary con-
ditions for the other NMVOCs were obtained directly from
background profiles. In the first data assimilation (DA) win-
dow, initial chemical conditions (excluding NMVOCs) were
also derived from the WACCM outputs, whereas in sub-
sequent windows, they were derived through forward sim-
ulation using optimized emissions from the previous win-
dow. Table S1 in the Supplement lists the detailed physical
and chemical configurations. To assess the impact of up-
dated NMVOC emissions on O3 production efficiency, we
further decoupled the contribution of the primary chemical
processes from the O3 levels using the CMAQ integrated re-
action rate (IRR) analysis.

2.1.2 EnKF assimilation algorithm

The emissions are constrained using the ensemble square
root filter (EnSRF) algorithm introduced by Whitaker and
Hamill (2002). This approach fully accounts for temporal
and geographical variations in both the transportation and
the chemical reactions within the emission estimates. During
the forecast step, the background ensembles are derived by
applying perturbation to the prior emissions. The perturbed
samples are typically drawn from Gaussian distributions with
a mean of zero and a standard deviation equal to the prior
emission uncertainty in each grid cell. Ensemble runs of the
CMAQ were subsequently performed to propagate the back-
ground errors with each ensemble sample of state vectors.

In the analysis step, the ensemble mean Xa of the an-
alyzed state is regarded as the best estimate of emissions,
which is obtained by updating the background ensemble
mean through the following equations:

Xa
=Xb

+K(y−HXb), (1)

K= P bH T (HP bH T
+R)−1, (2)

where y is the observational vector; H represents the obser-
vation operator mapping model space to observation space;
the expression y−HXb quantifies the disparities between
simulated and observed concentrations; P bH T illustrates
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Figure 1. Model domain and observation network (a) and number
of TROPOMI HCHO data retrievals during August 2022 in each
grid (b). The dashed red frame delineates the CMAQ computational
domain; black squares denote surface meteorological measurement
sites; navy triangles indicate sounding sites (Text S1 in the Supple-
ment); and red and blue dots represent air pollution measurement
sites, where red dots are used for assimilation and blue dots for in-
dependent evaluation.

how uncertainties in emissions relate to uncertainties in sim-
ulated concentrations; and the Kalman gain matrix K, de-
pendent on background error covariance P b and observation
error covariance R, determines the relative contributions to
the updated analysis.

State variables for emissions include NOx and NMVOCs.
To reduce the degree of freedom in the analysis and avoid
the difficulty associated with estimating spatiotemporal vari-
ations in background errors for individual species, we focus
on optimizing the lumped total NMVOC emissions. Dur-
ing the forecast step, we differentiate individual NMVOC
species emissions from the total NMVOC emissions using
bottom-up statistical information. For a consistent compari-

son between simulations and observations, model-simulated
NO2 was diagnosed at the time and location of surface NO2
measurements, whereas model-simulated HCHO was hori-
zontally sampled to align with TROPOMI HCHO VCD re-
trievals, and subsequently integrated vertically.

In this study, the DA window was set to 1 d and daily
TROPOMI HCHO columns were utilized as observational
constraints in our inversion framework. The ensemble size
was set to 50 to strike a balance between computational cost
and inversion accuracy. To reduce the impact of unrealistic
long-distance error correlations, the Gaspari–Cohn function
(Gaspari and Cohn, 1999) was utilized as covariance local-
ization to ensure the meaningful influence of observations on
state variables within a specified cutoff radius while mitigat-
ing their negative impacts on distant state variables. The opti-
mal localization scale is interconnected with factors such as
the assimilation window, the dynamic system, and the life-
time of chemical species. Given an average wind speed of
2.8 ms−1 (Table S2 in the Supplement) and a DA window of
1 d, the localization scales for NO2 and HCHO, both charac-
terized as highly reactive species with lifespans of just a few
hours, were set to 150 and 100 km, respectively.

2.2 Observation data and errors

Considering the availability of HCHO data, we utilized
daily offline retrievals of tropospheric HCHO columns from
Sentinel-5P (S5P) L3 TROPOMI data obtained through the
Google Earth Engine (De Smedt et al., 2018). The S5P satel-
lite follows a near-polar sun-synchronous orbit at an altitude
of 824 km with a 17 d repeating cycle. It crosses the Equator
at 13:30 local solar time (LST) on the ascending node. The
spatial resolution at nadir was refined to 3.5km× 5.5 km on
6 August 2019. Following the recommendations in the S5P
HCHO product user manual, we filtered the source data to
exclude pixels with a qa_value less than 0.5 for HCHO col-
umn number density and 0.8 for aerosol index (AER_AI).
The remaining high-quality pixels with minimal snow/ice or
cloud interference are averaged to 27 km grids. Figure 1b
illustrates the coverage and number of TROPOMI HCHO
data retrievals in August 2022 after processing. Although
the distribution of filtered data exhibits spatial nonunifor-
mity, most grid cells have observational coverage for over
half of the time, particularly in the southern region of China
where NMVOC emissions are higher. Based on validation
against a global network of 25 ground-based Fourier trans-
form infrared spectroscopy (FTIR) column measurements
(Vigouroux et al., 2020), TROPOMI overestimates HCHO
emissions by 25 % (< 2.5× 1015 molec.cm−2) in clean re-
gions and underestimates by 30 % (= 8× 1015 molec.cm−2)
in polluted regions. Therefore, we set the measurement er-
ror to 30 %. To evaluate the effect of observational data re-
trieval errors in emission estimates, we conducted a sen-
sitivity experiment in which HCHO columns were empiri-
cally bias-corrected according to the error characteristics de-
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scribed above (Fig. S1 in the Supplement). The posterior
emissions increased by 12.8 % compared to those in the base
experiment (EMDA), indicating that the existing retrieval er-
ror in HCHO measurements likely exerts an influence on the
estimation of NMVOC emissions. The representation error
can be disregarded because the model resolution significantly
surpasses that of the TROPOMI pixels.

To address the chemical feedback among VOCs–NOx–
O3, we also simultaneously optimized NOx emissions by
assimilating in situ NO2 observations. The extensively cov-
ered high-precision monitoring network can provide suffi-
cient constraints for emission inversion (Fig. 1a). Hourly
averaged surface NO2 observations were obtained from na-
tional air quality control stations from the Ministry of Ecol-
ogy and Environment of the People’s Republic of China
(https://air.cnemc.cn:18007/, last access: 5 May 2023). In
cases where multiple stations were located within the same
grid, a random site was chosen for validation while the re-
maining sites were averaged to mitigate the impact of error
correlation (Houtekamer and Zhang, 2016) for assimilation.
In total, 1276 stations were chosen for assimilation and an
additional 425 independent stations were selected for veri-
fication (Fig. 1a). The observation error covariance matrix
R incorporates contributions from both measurement errors
and representation errors. The measurement error is defined
as ε0 = 1.0+ 0.005×50, where 50 represents the observed
NO2 concentration. Following the approach of Elbern et al.
(2007) and Feng et al. (2018), the representative error is de-
fined as εr = γ ε0

√
1l/L, where γ is a tunable parameter

(here, γ = 0.5), 1l is the grid spacing (27 km), and L is
the radius (here, L= 0.5) of the observation’s influence area.

The total observation error (r) was defined as r =
√
ε2

0 + ε
2
r .

The observation errors are assumed to be uncorrelated, such
that R is a diagonal matrix.

2.3 Prior emissions and uncertainties

The prior anthropogenic NOx and NMVOC emissions for
China were obtained from the most recent Multi-resolution
Emission Inventory for China from 2020 (MEIC, http://
www.meicmodel.org/, last access: 8 May 2023; Zhang et
al., 2009). For anthropogenic emissions outside China, we
utilized the mosaic Asian anthropogenic emission inventory
(MIX) for base year 2010 (Li et al., 2017b). The daily emis-
sion inventory, which was arithmetically averaged from the
combined monthly emission inventory, was employed as the
first guess. Ship emissions were derived from the shipping
emission inventory model (SEIM) for 2017, which was cal-
culated based on the observed vessel automatic identification
system (Liu et al., 2017). Biomass burning emissions were
retrieved from the Global Fire Emissions Database version
4.1 (GFED v4, https://www.globalfiredata.org/, last access:
8 May 2023; van der Werf et al., 2017; Mu et al., 2011).
Biogenic NOx and NMVOC emissions were calculated using

the Model of Emissions of Gases and Aerosols from Nature
(MEGAN) developed by Guenther et al. (2012).

As previously mentioned, the optimized emissions are
transferred to the next DA window as prior emissions for
iterative inversion. For biogenic emissions, they are decom-
posed into hourly scales, based on the daily varying temporal
profiles in MEGAN as model inputs. Daily emission varia-
tions will largely dominate the uncertainty in emissions. Tak-
ing into account compensation for model errors and avoiding
filter divergence, we consistently applied an uncertainty of
25 % to each model grid of NOx emissions at each DA win-
dow, as in Feng et al. (2020). NMVOC emissions typically
exhibit greater uncertainties compared to NOx emissions (Li
et al., 2017b). Based on model evaluation, the uncertainty
in NMVOC emissions was set to 40 % (Kaiser et al., 2018;
Souri et al., 2020; Cao et al., 2018). A sensitivity experi-
ment involving a doubling of the prior uncertainty (80 %) re-
vealed that the differences in posterior NMVOC emissions
amounted to a mere 0.2 % (Fig. S2 in the Supplement). The
implementation of a two-step inversion strategy allows for
the timely correction of residual errors from the previous as-
similation window in the current window, thus ensuring that
the RAPAS system has relatively low dependence on prior
uncertainty settings. This study also addresses uncertainties
in emissions for CO, SO2, primary PM2.5, and coarse PM10
to consider the chemical feedback between different species
following Feng et al. (2023).

3 Experimental design

During the summer of 2022, southern China experienced se-
vere heat wave conditions. The combination of high tem-
peratures and drought had a pronounced effect on vegeta-
tion growth and NMVOC emissions, thereby influencing O3
production (Wang et al., 2023). Consequently, we opted to
focus on August 2022, as it presented an ideal period for
testing the capabilities of our DA system. Before implement-
ing the emission inversion, a relatively perfect initial field
is generated at 00:00 UTC on 1 August 2022 by conduct-
ing a 5 d simulation with 6 h interval 3D-Var data assimi-
lation. Subsequently, daily emissions are continuously up-
dated over the entire month of August (EMDA). Addition-
ally, we designed a sensitivity experiment (EMS) to illustrate
the significance of optimizing NOx emissions in quantify-
ing VOC–O3 chemical reactions. In this experiment, NOx
emissions were not optimized. To validate the posterior emis-
sions of NOx and NMVOCs in EMDA, we compared two
parallel forward simulation experiments, denoted CEP and
VEP, corresponding to prior and posterior emission scenar-
ios, respectively, against NO2 and HCHO measurements. To
investigate the impact of optimizing NMVOC emissions on
the secondary production and loss of surface O3, a forward
simulation experiment (CEP1) was conducted with the prior
NMVOC emissions and the posterior NOx emissions. An-
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other forward modeling experiment (CEP2) used the poste-
rior emissions of EMS to evaluate its performance. All exper-
iments employ identical meteorological fields, as well as the
same gas-phase and aerosol modules. Table 1 summarizes
the different emission inversion and validation experiments
conducted in this study.

4 Results

4.1 Inverted emissions

Figure 2 shows the spatial distribution of temporally av-
eraged prior and posterior NMVOC emissions along with
the differences in NMVOC emissions. Hotspots of prior
NMVOC emissions were prevalent across much of cen-
tral and southern China. However, posterior NMVOC emis-
sions were predominantly concentrated in the NCP, Yangtze
River Delta (YRD), PRD, and Sichuan Basin (SCB), ar-
eas characterized by high levels of anthropogenic activity.
High emissions are also located in parts of central and south-
ern China with a warm climate favorable for emitting bio-
genic NMVOCs. Employing TROPOMI HCHO observa-
tions as constraints led to widespread decreases of approx-
imately 60 %–70 % over these areas, indicating substantial
biogenic NMVOC emissions. In northwestern China, there
was a moderate increase in NMVOC emissions.

Potential significant TROPOMI retrieval errors in polluted
regions could exacerbate the emission decreases (Text S2
in the Supplement). Additionally, uncertainties in MEGAN
parameterization have significant implications for NMVOC
emission estimations, particularly concerning the responses
of vegetation in MEGAN to temperature and drought stress
(Angot et al., 2020; Jiang et al., 2018). Zhang et al. (2021)
highlighted that the temperature-dependent activity factor
noticeably increases with rising temperatures in MEGAN.
P. Wang et al. (2021) pointed out that the lack of a drought
scheme is one of the factors causing the overestimation of
isoprene emissions in MEGAN. Opacka et al. (2022) op-
timized the empirical parameter in the MEGAN v2.1 soil
moisture stress algorithm, resulting in significant reductions
in isoprene emissions and providing better agreement be-
tween modeled and observed HCHO temporal variability in
the central US. During the study period, China experienced
severe heat wave conditions, which may have further hin-
dered MEGAN’s ability to effectively capture the impacts of
high temperatures and drought on vegetation, thus resulting
in significant overestimation in NMVOC emissions (Wang
et al., 2022). Ultimately, the biogenic NMVOC emissions
decreased by 53.7 %, which was higher than the 43.4 % de-
crease in anthropogenic NMVOC emissions (Fig. S3 in the
Supplement). Overall, the large magnitude of emission de-
crease of 50.2 % in our inversion is comparable to studies in
southern China (Bauwens et al., 2016; Zhou et al., 2023),
the southeastern US (Kaiser et al., 2018), Africa (Marais
et al., 2014), India (Chaliyakunnel et al., 2019), Amazonia

(Bauwens et al., 2016), and parts of Europe (Curci et al.,
2010) but opposite to the large-scale emission increase over
China in Cao et al. (2018). For NOx (Fig. S4 in the Supple-
ment), the nationwide total emissions decreased by 10.2 %,
with the main reductions concentrated in the NCP and YRD,
in parts of central China, and in most key urban areas.

Table 2 shows the changes in emissions of biogenic
NMVOCs across different land cover types (Fig. S5 in the
Supplement) after inversion. The most significant reduction
in biogenic emissions occurred within woody savannas, ac-
counting for 26.9 % of the overall reduction, followed by
savannas and croplands, accounting for 21.2 % and 17.2 %,
respectively. Among all vegetation types, the broadleaf ev-
ergreen forests, recognized as the primary source of iso-
prene emission (H. Wang et al., 2021), presented the great-
est uncertainty, with NMVOC emissions experiencing a sig-
nificant reduction of 66.2 %. Standard emission rates in
MEGAN are derived from leaf- or canopy-scale flux mea-
surements and extrapolated globally across regions sharing
similar land cover characteristics based on very limited ob-
servations (Guenther et al., 1995). This methodology intro-
duces biases due to the large variability in emission rates
among plant species.

4.2 Evaluations for posterior emissions

The NOx emissions were first evaluated by indirectly com-
paring the forward simulated NO2 concentrations with mea-
surements. As shown in Fig. S6 in the Supplement, the
CEP with prior emissions exhibited positive biases in east-
ern China and negative biases in western China. However,
when posterior emissions were used in the VEP, a substan-
tial improvement in simulation performance was observed.
Biases were limited to within ±3 µgm−3, and correlation
coefficients exceeded 0.7 across the entire region. Figure 3
presents the simulated HCHO VCDs using prior and pos-
terior NMVOC emissions, along with their associated bi-
ases. Both experiments showed high VCDs over central
and eastern China, especially in the YRD and SCB. How-
ever, the CEP displayed substantial overestimation across
most of mainland China, with the largest bias reaching
12×1015 molec.cm−2 in central China. Conversely, the VEP
demonstrated notable improvements in both the magnitude
and spatial distribution of simulated HCHO columns af-
ter the inversion compared to TROPOMI retrievals. More
than 84 % of the areas exhibited biases of less than 1×
1015 molec.cm−2, and no significant spatial variation was
observed. Overall, the biases in simulated HCHO VCDs de-
creased by 75.7 % after the inversion. These results empha-
size the efficiency of our system in reducing uncertainty in
both NOx and NMVOC emissions.
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Table 1. The assimilation, sensitivity, and validation experiments conducted in this study.

Exp. type Exp. name NMVOC emissions NOx emissions

Assimilation EMDA MEIC 2020 and MEGAN for August (the
first DA window); optimized emissions of
the previous window (other DA windows)

MEIC 2020 and MEGAN for August (the
first DA window); optimized emissions of
the previous window (other DA windows)

Sensitivity EMS Same as EMDA MEIC 2020 and MEGAN for August

Validation CEP MEIC 2020 and MEGAN for August MEIC 2020 and MEGAN for August
VEP Posterior emissions of EMDA Posterior emissions of EMDA
CEP1 Same as CEP Posterior emissions of EMDA
CEP2 Posterior emissions of EMS Same as CEP

Figure 2. Spatial distribution of the time-averaged (a) prior emissions (MEIC 2020 + MEGAN), (b) posterior emissions, (c) absolute
difference (posterior minus prior), and (d) relative difference in NMVOCs over China.
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Table 2. Prior and posterior biogenic NMVOC emissions, as well as the differences in different land cover types.

Land cover type Prior Posterior Difference
mmolmonth−1 mmolmonth−1 mmolmonth−1 (%)

Evergreen needleleaf forests 955.7 549.3 −406.4 (−42.5)
Evergreen broadleaf forests 13 985.1 4728.2 −9256.8 (−66.2)
Deciduous needleleaf forests 46.6 48.8 2.2 (4.7)
Deciduous broadleaf forests 8335.5 3487.4 −4848.1 (−58.2)
Mixed forests 8731.0 3961.7 −4769.4 (−54.6)
Closed shrublands 9.7 3.7 −6.0 (−61.5)
Open shrublands 21.3 8.6 −12.8 (−59.8)
Woody savannas 39 327.2 16 925.2 −22402.0 (−57.0)
Savannas 28 319.7 10 629.4 −17690.3 (−62.5)
Grasslands 16 912.7 14 269.6 −2643.1 (−15.6)
Permanent wetlands 286.1 115.4 −170.8 (−59.7)
Croplands 25 537.8 11 215.5 −14322.2 (−56.1)
Cropland–natural vegetation mosaics 10 894.7 4289.8 −6605.0 (−60.6)
Sparsely vegetated 1814.7 1644.0 −170.6 (−9.4)

4.3 Implications for surface O3

Figure 4 shows the spatial distribution of the mean bias
(BIAS), root mean square error (RMSE), and correlation
coefficient (CORR) for simulated O3 concentrations in the
CEP1 and VEP experiments compared to assimilated ob-
servations. Beyond the northwestern region of China, the
CEP1 exhibited significant overestimation throughout the en-
tire area, with a BIAS of 20.5 µgm−3. In the VEP, the mod-
eled O3 chemical production was alleviated, especially in the
southern regions of China where NMVOC emissions signifi-
cantly decreased. Overall, observation-constrained NMVOC
emissions resulted in a 49.3 % decrease in the BIAS, bring-
ing it down to 10.4 µgm−3. Additionally, the RMSE showed
noticeable improvement due to the assimilation of HCHO
observation, reducing the value from 30.9 to 23.3 µgm−3.
Despite a significant reduction in NMVOC emissions af-
ter inversion, notable overestimations persisted in northern
provinces such as Liaoning, Hebei, Shanxi, and Shaanxi.
This may be attributed to limited NMVOC constraints re-
sulting from insufficient observations during the study pe-
riod (Figs. 1b and 3d). The remaining discrepancies between
simulations and observations can be attributed to the com-
bined results of intricate urban–rural sensitivity regimes and
O3 photochemistry reactions, which may not be compre-
hensively represented by the CMAQ, masking any potential
improvement expected from the constrained emissions (See
Sect. 4.4). The CORR was comparable between the CEP1
and VEP experiments, reflecting the fact that the CMAQ ef-
fectively simulated the temporal variation in O3 concentra-
tions. The biases at the independent sites were similar to
those at the assimilated sites (Fig. S7 in the Supplement).
In comparison to CEP1, the decreasing ratios in BIAS and
RMSE in the VEP were 46.7 % and 23.4 %, respectively.

Figure 5 shows the time series of simulated and observed
hourly O3 concentrations and their RMSEs, verified against
surface monitoring sites. The VEP achieved better repre-
sentations of diurnal O3 variations compared with those in
the CEP1, especially excelling in reproducing elevated O3
concentrations at noon. Constraining the NMVOC emis-
sions also led to better model simulations in terms of RMSE
throughout the entire study period. The time-averaged BIAS
and RMSE decreased from 20.6 and 37.3 µgm−3 to 10.6
and 31.0 µgm−3, respectively. We also evaluated the sim-
ulation results for seven key cities (i.e., Beijing, Shanghai,
Guangzhou, Wuhan, Chongqing, Yinchuan, and Changchun,
which represent key cities in North, East, South, Central,
Southwest, Northwest, and Northeast China, respectively),
and the biases in the VEP with posterior emissions all
showed a significant reduction (Fig. S8 in the Supplement).
Overall, the assimilation of HCHO column observations ef-
fectively reduced NMVOC emission uncertainties and conse-
quently improved simulations of HCHO and O3. These im-
provements hold promise for further research into the im-
plications of emission optimizations on regional O3 photo-
chemistry.

As crucial O3 precursors, the abundance of NMVOCs
plays a significant role in modulating O3 production. Here
we employed the IRRs to elucidate changes related to
O3 production and loss stemming from constrained NOx
and NMVOC emissions at the surface. Figure 6 illustrates
comparisons of the simulated maximum daily 8 h average
(MDA8) surface O3 levels and net reaction rates before and
after the inversion. The CEP1 exhibited an overestimation of
O3 levels, with a BIAS of 22.6 % compared to observed O3
concentrations. This overestimation corresponded to the high
net chemical rates of O3 in these areas (Fig. S9 in the Sup-
plement). After inversion, O3 net rates decreased in most re-
gions. Consequently, the VEP experiment yielded results that
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Figure 3. Simulated HCHO vertical column densities using prior (a) and posterior (b) NMVOC emissions, along with their biases (c and d)
versus TROPOMI measurements. All model results were sampled at TROPOMI overpass time.

closely aligned with observations, with a BIAS of 9.2 %. Re-
ferring to Fig. 6e and f, differences in production rates of O3
closely track the changes in the NMVOC emissions (Fig. 2).
The discrepancies in specific regions may be attributed to
the complex nonlinear relationships associated with O3 and
its precursors, which depend on prevailing chemical regimes
and regional transport. Additionally, changes in O3 produc-
tion predominantly drive the overall decrease in O3 concen-
trations, outweighing changes in O3 loss.

Figure 7 shows the differences in the six principal path-
ways responsible for O3 loss and formation when compar-
ing simulations employing prior and posterior emissions. The
reactions of HO2+NO and RO2+NO are treated as the
pathways leading to O3 formation, whereas O3 loss involves

reactions including NO2+OH, O3+HO2, O3+NMVOCs,
and O1D+H2O (Wang et al., 2019). Our analysis was fo-
cused on the time frame from 12:00 to 18:00 according to
China standard time (CST). The differences were computed
by subtracting the simulation with posterior emissions from
that with prior emissions. Following emission, NMVOCs un-
dergo rapid oxidation by atmospheric hydroxyl (OH) radi-
cals. Due to the substantial decrease in NMVOC emissions,
there was a reduction in the production of hydroperoxy rad-
icals (HO2) and organic peroxy radicals (RO2; Fig. S10 in
the Supplement). Consequently, this reduction in HO2/RO2
levels, coupled with their reaction with NO, resulted in di-
minished O3 production (Fig. 7a and b). A strong correla-
tion was observed between changes in O3 production via the
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Figure 4. Spatial distribution of mean bias (BIAS; a and b), root mean square error (RMSE; c and d), and correlation coefficient (CORR;
e and f) for simulated O3 using prior (a, c, and e, CEP1) and posterior (b, d, and f, VEP) emissions versus assimilated observations.

RO2+NO reaction and NMVOC emissions (Fig. 2), con-
sistent with the findings of Souri et al. (2020). Typically, in
NMVOC-rich environments, a decrease in NMVOC emis-
sions boosts OH concentrations. Consequently, we noted an
enhancement in the NO2+OH reaction in the eastern and
central regions of China. In response to heightened HOx
concentrations over these areas, increased O3 loss through
the O3+HOx pathway was observed. Furthermore, we de-
tected a substantial decrease in O3 loss through reactions
with NMVOCs, especially in southern China where substan-
tial isoprene emissions are prevalent. This reduction was pri-
marily attributable to the decrease in NMVOC and O3 levels.

While the NMVOC+O3 reaction proceeds at a substantially
slower rate than that of NMVOC + OH, this specific chem-
ical pathway remains significant in oxidizing NMVOCs and
forming HOx in forested areas (Paulson and Orlando, 1996).
The difference in O1D+H2O is primarily driven by the de-
crease in O3 photolysis. Although the rate of O3 loss de-
creases in some chemical pathways, overall, the rate of O3
production dominates the changes in O3 concentration.
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Figure 5. Time series comparison of hourly surface O3 concen-
trations (µgm−3) and RMSE (µgm−3) from the CEP1 and VEP ex-
periments versus all observations at 1701 monitoring sites. The blue
and red values on the graph represent the time-averaged statistics in
the CEP1 and VEP experiments, respectively.

4.4 Discussions

O3 simulations over China have a tendency to be overesti-
mated in studies involving chemical transport modeling. For
example, by intercomparing 14 state-of-the-art CTMs with
O3 observations within the framework of the Model Inter-
comparison Study for Asia (MICS-Asia) III, Li et al. (2019)
identified a substantial overestimation of annual surface O3
in east Asia, ranging from 20 to 60 µgm−3. Notably, the
NCP exhibited substantial overestimations, with most mod-
els overestimating O3 by 100 %–200 % in May–October. De-
spite our optimization of O3 precursor emissions, the poste-
rior simulations still exhibit some degree of overestimation
(Fig. 4), suggesting that there may indeed be an effect of
systematic bias, such as meteorological fields, spatial res-
olution, model treatments of nonlinear photochemistry, and
other physical processes. The WRF can generally reproduce
meteorological conditions sufficiently in terms of temporal
variation and magnitude over China (Fig. S11 in the Sup-
plement), with small biases of −0.5 °C, −5.3 %, 0.3 ms−1,
and−42.4 m for temperature at 2 m, relative humidity at 2 m,
wind speed at 10 m, and planetary boundary layer height, re-
spectively. However, due to the relatively coarse spatial res-
olution, NO titration effects in urban areas may not be well
represented in the model, which can lead to an overestima-
tion of O3 in these areas. Additionally, model-inherent errors
arising from model structure, parameterization, and the sim-
plification or lack of chemical mechanisms inevitably affect

the O3 simulations. For example, Li et al. (2018) reported
that heterogeneous reactions of nitrogen compounds could
weaken the atmospheric oxidation capacity and thus reduce
surface O3 concentration by 20–40 µgm−3 for polluted re-
gions over China. These reactions have not been fully in-
corporated in CMAQ chemical mechanisms. However, there
is still a lack of reasonable and effective algorithms for ad-
dressing model errors through assimilation (Houtekamer and
Zhang, 2016). O3 concentration and NOx (VOC) emissions
are positively correlated in NOx- (VOC-)limited regions and
negatively correlated in VOC- (NOx-)limited regions (Tang
et al., 2011). Therefore, the uncertainty in NOx emissions
can affect the model diagnosis of O3–NOx–VOC sensitivity,
thereby introducing substantial model errors in the HCHO
yield from VOC oxidation. In the base inversion experiment
(EMDA), we simultaneously assimilated NO2 and HCHO
observations to optimize NOx and NMVOC emissions. To
evaluate the impact of optimized NOx emissions on O3–
VOC chemistry, EMS disregarded the uncertainty in NOx
and focused on optimizing NMVOC emissions. Compared
to the EMDA, in areas where NOx is significantly overes-
timated, NMVOC emissions in the EMS have correspond-
ingly decreased (Fig. 8b). This might be due to the fact
that under high NOx conditions, HCHO production occurs
promptly, thereby compensating for the substantial amount
of HCHO already present in the atmosphere by reducing
emissions (Chan Miller et al., 2017). Figure S12 in the Sup-
plement shows comparisons of concentrations and RMSE
between the simulations using posterior emissions from EMS
and EMDA experiments. Compared to VEP, CEP2 showed a
larger RMSE, highlighting the necessity for simultaneous op-
timization of NOx emissions when evaluating the impact of
NMVOC emission optimization on O3. Additionally, CEP2
using prior NOx emissions exhibited lower O3 levels over
parts of NCP and YRD as well as over some urban areas
(Fig. 8c) but with larger biases and RMSEs (Fig. 8d). The
reduction in NMVOC emissions contributed to a partial de-
crease in O3 concentration. More significantly, these areas
typically align with VOC-limited mechanisms (Wang et al.,
2019; W. Wang et al., 2021). Therefore, the overestimation of
NOx emissions (Fig. S4) excessively inhibits O3 accumula-
tion due to the titration effect, thereby disrupting the evalua-
tion of NMVOC contributions to O3. This substantial dispar-
ity also seriously affects O3 source apportionment, precursor-
sensitive area delineation, and emission reduction policy for-
mulation.

5 Summary and conclusions

In this study, we extended the RAPAS assimilation system
with the EnKF assimilation algorithm to optimize NMVOC
emissions using TROPOMI HCHO retrievals. Taking the
MEIC 2020 for anthropogenic emissions and MEGAN v2.1
output for biogenic sources as a priori emissions, NMVOC
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Figure 6. Comparisons of (a, b) simulated maximum daily 8 h average (MDA8) O3 concentrations, (c, d) net reaction rates, and (e, f)
differences in production and loss rates between CEP1 and VEP experiments at the surface. Surface MDA8 O3 values (circles) from the
national air quality control stations were overlaid in (a) and (b).

emissions over China in August 2022 were inferred. Im-
portantly, we implicitly took the chemical feedback among
VOCs–NOx–O3 into account by simultaneously adjusting
NOx emissions using nationwide in situ NO2 observations.
Furthermore, we quantified the impact of NMVOC emission
inversion on surface O3 pollution using the CMAQ-IRR.

The application of TROPOMI HCHO observations as
constraints led to a substantial reduction of 50.2 % com-
pared to the prior emissions for NMVOCs in August 2022.
A domain-wide significant decrease was found over areas
of central and southern China with abundant forests, espe-
cially with the broadleaf evergreen forests, implying a con-
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Figure 7. Differences in six major pathways of O3 production and loss between the CEP1 and VEP experiments at the surface. Time period:
August 2022, 12:00–18:00 CST. PO3 and LO3 represent the pathways of O3 formation and loss, respectively.

siderable overestimation of biogenic NMVOC emissions.
Observation-constrained emissions significantly improved
the performance of surface NO2 and HCHO column simu-
lations, reducing biases by 97.4 % and 75.7 %, respectively.
This highlights the effectiveness of RAPAS in reducing un-
certainty in NOx and NMVOC emissions. Isolating the im-
pact of NOx emission changes, the posterior NMVOC emis-

sions significantly mitigated the overestimation in prior O3
simulations, resulting in a 49.3 % decrease in surface O3 bi-
ases. This is mainly attributed to a substantial decrease in the
RO2+NO reaction rate (a major pathway for O3 production)
and an increase in the NO2+OH reaction rate (a major path-
way for O3 loss) during the afternoon, resulting in a decrease
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Figure 8. Spatial distribution of (a) posterior emissions in the EMS experiment, (b) differences in posterior emissions between EMS and
EMDA, and differences in (c) simulated O3 concentrations and (d) RMSE between CEP2 and VEP experiments. EMS did not optimize NOx
emissions compared to EMDA.

in the simulated MDA8 surface O3 concentrations of approx-
imately 15 µgm−3.

Sensitivity inversions demonstrate the robustness of top-
down emissions to variations in prior uncertainty settings,
yet they are sensitive to HCHO column biases, highlighting
the importance of comprehensive validation studies utilizing
available remote-sensing data and, if possible, airborne vali-
dation campaigns. Moreover, we found that, in comparison to
optimizing NMVOC emissions alone, the joint optimization
of NMVOC and NOx emissions can significantly improve
the overall performance of O3 simulations. Ignoring errors in
NOx emissions introduces uncertainty in quantifying the im-
pact of NMVOC emissions on surface O3, especially in ar-
eas where overestimated NOx emissions can unrealistically
amplify titration effects, highlighting the necessity of simul-
taneous optimization of NOx emissions.
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