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Sect. S1 

Meteorological processes play a dominant role in the transport, mixing, and chemical 

reactions of pollutants. Therefore, their simulation accuracy significantly affects 

emission inversion. To evaluate the performance of WRF simulations quantitatively, we 

utilized the surface meteorological measurements from 400 stations with 3-hour 

intervals, including temperature at 2 m (T2), relative humidity at 2 m (RH2), and wind 

speed at 10 m (WS10), and planetary boundary layer height (PBLH) measured by 

sounding from 84 stations with 12-hour intervals in this study. These surface and 

sounding data were obtained from the National Climate Data Center (NCDC) integrated 

surface database (http://www.ncdc.noaa.gov/oa/ncdc.html, last access: 25 May 2022) 

and the website of the University of Wyoming 

(http://weather.uwyo.edu/upperair/sounding.html, last access: 25 May 2022), 

respectively. The observed PBLH were calculated through the bulk Richardson number 

method with sounding data. Here, three basic statistical measures, mean bias, root-

mean-square error (RMSE), and correlation coefficient (CORR), are applied to evaluate 

the results (Table S3). The results showed that the WRF model satisfactorily reproduced 

T2, RH2, WS10, and PBLH (Figure S11), with small biases of -0.5 °C, -5.3%, 0.3 m/s, 

and -42.4 m, respectively.  

 

Sect. S2 

The prior NMVOC emissions were found to be overestimated relative to the top-down 

constraints from TROPOMI HCHO retrievals. The results of the top-down inversion 

may be susceptible to uncertainties related to the inversion configuration and 

observational data. Particularly, background error settings affect the relative weighting 

of prior and observation to posterior emissions, which may potentially introduce 

considerable uncertainty into the spatial patterns and magnitudes of the NMVOC 

emission inversion. Another critical concern pertains to HCHO retrieval errors. 

Correcting the low TROPOMI HCHO column biases would result in elevated posterior 



emissions, while the opposite holds true. Due to the spatiotemporal variability in 

retrieval errors, directly incorporating observations into an inversion system remains a 

challenging task. Based on the biases outlined in Vigouroux et al. (2020), one sensitivity 

experiment (SENS1) addressed the existing biases in TROPOMI HCHO by reducing 

measurements by 25% (<2.5×1015 molec cm-2) in clean regions and increasing them by 

30% (>=8×1015 molec cm-2) in polluted regions. Figure S1 shows that bias-corrected 

HCHO columns resulted in a slight decrease in NMVOC emissions in the low-pollution 

regions of western China, whereas emissions increased in the high-pollution regions of 

eastern and central China, particularly in the SCB and the vicinity of the YRD. In 

comparison to the EMDA experiment, the posterior emissions from SENS1 increased 

by 12.8% (decreased by 43.9% compared to prior emissions), indicating that the 

existing retrieval error in HCHO measurements likely exerts an influence on the 

estimation of NMVOC emissions, especially in heavily polluted regions. The results 

highlight the significance of a thorough data validation for the HCHO column product. 

However, the emissions increase in the SENS1 has slightly deteriorated the 

performance of O3 simulations. 

To investigate the impact of background error on emission inversion, the other 

sensitivity experiment (SENS2) was conducted, doubling the background error to 80%. 

Compared with the base inversion, the SENS2 produced a noticeable increase in 

posterior NMVOC emissions in southwestern China, especially in Tibet. In contrast, 

emissions in eastern China exhibited a slight decrease (Figure S2). This can be expected, 

as the inversion is more inclined to deviate from the a priori due to decreased confidence. 

However, at a national scale, the difference between the two posterior emissions was 

nearly negligible. The substantial disparities over the Tibetan Plateau between the two 

inversions can be attributed to the horizontal HCHO inhomogeneity caused by 

mountain terrain and the relatively low signal-to-noise ratio in the TROPOMI satellite 

data in the background atmosphere (Cheng et al., 2023), resulting in the inclusion of 

more outliers in the inversion (Su et al., 2020). Nevertheless, the discrepancies in 

NMVOC emission estimates amounted to a mere 0.2%, suggesting that the posterior 



emission estimates were not largely affected by the background error setting. This can 

be primarily attributed to the superiority of the ‘two-step’ inversion strategy employed 

within the RAPAS system.  

 

Sect. S3 

Figure S4 shows the spatial distribution of temporally averaged prior and posterior NOx 

emissions, along with their differences in emissions for August 2022. Higher emissions 

were predominantly concentrated in central and eastern China, especially in the NCP, 

Yangtze River Delta (YRD), and PRD, all of which are significant industrial or high-

density urban areas. Lower emissions were primarily occurred across Northwest and 

Southern China. Compared with the prior emissions, posterior NOx emissions exhibited 

a significant decrease in the NCP, YRD, and parts of Central China. Furthermore, it was 

observed that most key urban areas tended to have their emissions overestimated in the 

prior inventory, while their surrounding areas had their emissions underestimated. 

Owing to the absence of precise emission location data, spatial proxies like population 

density, GDP, and road networks, are utilized for allocating total emissions across 

residential, industrial, and transportation emission sectors, which introduces 

uncertainties in spatial disaggregation. Overall, the total national NOx emissions 

decreased by 10.2% to 47.3 Gg in the posterior emissions. This disparity arises from 

uncertainties in the prior inventory and changes in China's NOx emissions reduction 

from 2020 to 2022. 

 



 

Figure S1. Spatial distribution of (a) differences in posterior emissions between the 

SENS1 and EMDA, and (b) differences in RMSE between the posterior simulations 

(SEP) of SENS1 and VEP. Compared with EMDA, SENS1 reduced the TROPOMI 

HCHO measurements by 25% (< 2.5×1015 molec cm-2) in clean regions and increased 

them by 30% (> 8×1015 molec cm-2) in polluted regions. 

 

 

Figure S2. Spatial distribution of the time-averaged (a) posterior emissions in SENS2 

and (b) differences in posterior emissions between SENS2 and EMDA (SENS2-

EMDA). SENS2 increased background error from 40% to 80% compared to EMDA. 



 

Figure S3. Spatial distribution of the time-averaged (a) prior anthropogenic emissions 

(MEIC 2020), (b) posterior anthropogenic emissions, (c) difference between prior and 

posterior anthropogenic emissions (posterior minus prior), (d) prior biogenic emissions 

(MEGAN), (e) posterior biogenic emissions, (f) difference between prior and posterior 

biogenic emissions (posterior minus prior) of NMVOCs over China. 



 

Figure S4. Spatial distribution of the time-averaged (a) prior emissions (MEIC 2020), 

(b) posterior emissions, (c) absolute difference (posterior minus MEIC), and (d) relative 

difference of NOx over China. 



 

Figure S5. Combined MODIS International Geosphere-Biosphere Programme (IGBP) 

data from the MCD12C1 product, 2020 

(https://lpdaac.usgs.gov/products/mcd12c1v061/). 1, Evergreen needleleaf forests; 2, 

Evergreen broadleaf forests; 3, Deciduous needleleaf forests; 4, Deciduous broadleaf 

forests; 5, Mixed forests; 6, Closed shrublands; 7, Open shrublands; 8, Woody savannas; 

9, Savannas; 10, Grasslands; 11, Permanent wetlands; 12, Croplands; 13, Urban and 

built-up; 14, Cropland-natural vegetation mosaics; 15, Snow and ice; 16, Sparsely 

vegetated. 



 

Figure S6. Spatial distribution of mean bias (BIAS, a and b), root mean square error 

(RMSE, c and d), and correlation coefficient (CORR, e and f) for simulated NO2 using 

prior (left, CEP) and posterior (right, VEP) emissions, respectively. 

 



 

Figure S7. Spatial distribution of mean bias (BIAS, a and b), root mean square error 

(RMSE, c and d), and correlation coefficient (CORR, e and f) for simulated O3 using 

prior (left, CEP1) and posterior (right, VEP) emissions against independent 

observations. 

 



 

Figure S8. Time series comparison of simulated and observed hourly surface O3 

concentrations (μg m-3) from CEP1 and VEP experiments over (a) Beijing, (b) Shanghai, 

(c) Guangzhou, (d) Wuhan, (e) Chongqing, (f) Yinchuan, and (g) Changchun, 

representing key cities in North China, East China, South China, Central China, 

Southwest China, Northwest China, and Northeast China, respectively.  



 

Figure S9. Differences in simulated (a) maximum daily 8-hour average (MDA8) O3 

concentrations and (b) net reaction rates between CEP1 and VEP experiments. 

 

 

Figure S10. Differences in reaction rates of VOC + OH between CEP1 and VEP 

experiments at the surface. Time period: August 2022, 12:00–18:00 CST. 



 

Figure S11. Time series of observed and simulated wind speeds at 10 m (WS10, m/s), 

temperature at 2 m (T2, ℃), relative humidity at 2 m (RH2, %), and planetary boundary 

layer height (PBLH, m) over mainland China. 

 



 

Figure S12. Time series of (a) hourly surface O3 concentrations (μg m-3) and (b) RMSE 

(μg m-3) obtained from VEP and CEP2 experiments, CEP2 was simulated using the 

posterior emissions disregarding the uncertainty in NOx emissions. 

 

 

 

 

 

 



Table S1. Configuration options of WRF/CMAQ 

 

 

Table S2. Statistics comparison of simulated and observed 10-m wind speed (WS10), 

2-m temperature (T2), 2-m relative humidity (RH2), and planetary boundary layer 

height (PBLH).  

Variable Met. 
No. of 

sites 

Mean 

Obs. 

Mean 

Sim. 
BIAS RMSE CORR 

WS10 (m/s) 400 2.5 2.8 0.3 0.5 0.73 

T2 (°C) 400 24.5 24.0 -0.5 0.6 1.00 

RH2 (%) 400 69.0 63.8 -5.3 5.5 0.99 

PBLH (m) 84 451.2 493.6 42.4 68.6 0.96 

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 

WRF CMAQ 

Parameter Scheme Parameter Scheme 

Microphysics WSM6 Horizontal/Vertical advection yamo/wrf 

Longwave RRTM Horizontal/Vertical diffusion multiscale/acm2 

Shortwave Goddard Deposition m3dry 

Boundary layer ACM Chemistry solver EBI 

Cumulus Kain-Fritsch Photolysis phot_inline 

Land-surface Noah Aerosol module AERO6 

Surface layer Revised Cloud module cloud_acm_ae6 

Urban canopy No Gas-phase chemistry CB05tucl 


