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Abstract. Quantifying surface–atmosphere exchange rates of particles is important for understanding the role
of suspended particulate matter in radiative transfer, clouds, precipitation, and climate change. Emissions of
coarse-mode particles with a diameter greater than 0.5 µm provide giant cloud condensation nuclei and ice nuclei.
These emissions are critical for understanding the evolution of cloud microphysical properties yet remain poorly
understood. Here we introduce a new method that uses lidar retrievals of the elastic backscatter and Doppler
velocity to obtain surface number emissions of particles with a diameter greater than 0.53 µm. The technique
is applied to study particle number fluxes over a 2-month period from 1 June to 10 August 2022 during the
TRACER campaign at an urban site near Houston, TX, USA. We found that all the observed fluxes were positive
(upwards), indicating particle emission from the surface. The fluxes followed a diurnal pattern and peaked near
noon local time. Flux intensity varied through the 2 months with multi-day periods of strong fluxes and multi-
day periods of weak fluxes. Emission particle number fluxes peaked near ∼ 100 cm−2 s−1. The daily averaged
emission fluxes correlated with friction velocity and were anticorrelated with surface relative humidity. The
emission flux can be parameterized as F = 3000 u∗4, where u∗ is the friction velocity in m s−1 and the emission
flux F is in cm−2 s−1. The u∗ dependence is consistent with emission from wind-driven erosion. Estimated values
for the mass flux are in the lower range of literature values from non-urban sites. These results demonstrate that
urban environments may play an important role in supplying coarse-mode particles to the boundary layer. We
anticipate that quantification of these emissions will help constrain aerosol–cloud interaction models that use
prognostic aerosol schemes.

1 Introduction

Atmospheric particulate matter plays an important role in
modulating atmospheric processes and causes changes in di-
rect radiative forcing, warm and cold cloud microphysical
structure, and precipitation initiation (Andreae and Rosen-
feld, 2008; Levin and Cotton, 2009). Atmospheric particu-
late matter spans sizes between ∼ 3 nm for newly formed
particles and up to tens of microns for large dust parti-
cles and bioaerosol such as pollen. Particles with a diam-
eter > 1 µm are usually referred to as coarse-mode parti-

cles. Coarse-mode particles are predominantly produced by
mechanical processes such as windblown dust, sea spray,
and bioaerosols (Horvath et al., 1990; Seinfeld and Pandis,
2016; Andreae and Rosenfeld, 2008) where emissions are
controlled by wind speeds. Examples are the production of
dust from eroding soils (Kok et al., 2012) and the produc-
tion of aerosol from agitated ocean surfaces (Vignati et al.,
2010). Coarse-mode particles play an important role in the
atmosphere by providing giant (> 1 µm, Yin et al., 2000) and
ultra-giant (> 10 µm, Johnson, 1982) cloud condensation nu-
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clei, which in turn may influence warm rain initiation (Fein-
gold et al., 1999; Yin et al., 2000; Cheng et al., 2009). Fur-
thermore, concentrations of particles greater than 0.5 µm in
diameter have been shown to correlate with ice-nucleating
particle concentrations (Georgii, 1959; DeMott et al., 2010),
which in turn influences first ice initiation in mixing phase
clouds. Knowledge of concentration and emission fluxes is
critical for understanding aerosol–cloud–climate interactions
on a global scale.

Characterization of the atmospheric coarse-mode parti-
cle concentration is challenging. Low number concentra-
tions, often far less than 10 cm−3 (Hussein et al., 2018;
Moran-Zuloaga et al., 2018; Perring et al., 2015), necessitate
large flow rates in particle counters to obtain good count-
ing statistics. Aerosol inlets in airborne platforms have 50 %
cut sizes in the 1–10 µm diameter range and thus can artifi-
cially truncate the sampling of the coarse mode (Blomquist
et al., 2001). New ground-based inlets may extend this sam-
pling range. However, quantitative characterization of trans-
mission efficiency remains difficult due to instrumental con-
straints (Bullard et al., 2017).

Characterization of the emission and deposition rates for
supermicron particles is also challenging. The eddy covari-
ance technique is one method to study turbulent particle
transport across a dividing plane. This technique uses the co-
variance of vertical motion with particle number or mass and
uses this quantity to derive emission fluxes. A few studies
used the eddy covariance technique to measure the sea spray
aerosol flux from bubble bursting (Nilsson et al., 2001; Nor-
ris et al., 2012). Eddy covariance has also been used to study
deposition velocities for supermicron particles (Gallagher et
al., 1997). However, most measurements in that regime have
been performed using other techniques (Farmer et al., 2021,
and references therein).

Light detection and ranging (lidar) is a remote sensing
method that uses light in the form of a pulsed laser that can
be used to measure the spatial distribution of aerosol optical
properties. The absence of inlets and the potential for high-
resolution spatial sampling makes this technique attractive to
characterize (aerosol) fluxes. Several prior studies used ei-
ther a Doppler lidar alone or a Doppler lidar colocated with
a second lidar to estimate latent heat fluxes (Lareau, 2020;
Behrendt et al., 2020), aerosol backscatter flux (Pal et al.,
2010), or mass flux (Engelmann et al., 2008; Wang et al.,
2021). Pal et al. (2010) suggested that fluctuations in elas-
tic backscatter correspond to fluctuations in aerosol number
concentration. These authors, however, did not further ex-
plore the possibility of retrieving aerosol number fluxes from
these data.

Here we use data from a Doppler lidar to obtain the
backscatter flux using the eddy covariance technique from
Doppler vertical velocity and attenuated backscatter at
z= 105 m. Building upon prior studies, we relate backscat-
ter to particle number concentration by calibrating the li-
dar retrievals against ground-based aerosol size distribution

measured by an optical particle counter and radiosonde-
interpolated relative humidity at the lidar sample height.
Based on this calibration, aerosol number fluxes for parti-
cles with diameter D> 0.53 µm are retrieved. Fluxes over a
2-month period are analyzed. Implications for particle emis-
sion sources and ice nucleation particle number concentra-
tions are discussed.

2 Methods

2.1 TRACER

The main goal of the TRacking Aerosol Convection in-
teractions ExpeRiment (TRACER) campaign was to study
aerosol–cloud interactions during deep convection over the
Houston area. The US Department of Energy (DOE) At-
mospheric Radiation Measurement (ARM) deployed the
Aerosol Mobile Facility (AMF) at the La Porte site in Hous-
ton, TX, between 1 October 2021 and 30 September 2022.
The AMF deployment collected a variety of in situ meteo-
rological and aerosol data as well as data using multiple re-
mote sensing platforms. Figure 1 provides an overview of
the measurement site. The AMF was located at the La Porte
municipal airport in the southeastern region of the Houston
metropolitan region. An intensive observation period (IOP)
took place between 1 June and September 2022.

2.2 Meteorology data

The Eddy Correlation Flux Measurement System (ECOR)
provides measurements of the latent and sensible heat flux,
as well as the friction velocity (Sullivan et al., 2021). The
instrument uses a Windmaster 3D sonic anemometer (Gill
Instrument, Saltmarsh Park, 67 Gosport Street, Lymington,
Hampshire. SO41 9EG, United Kingdom) and infrared gas
analyzer (LI 7500 and LI 7700) to measure high-frequency
correlations between vertical velocity, air temperature, and
water vapor density, resulting in vertical flux data at 30 min
time resolution. The ECOR sensor height is ∼ 3 m. Latent
and sensible heat flux values from the ECOR are used to
calculate the saturation ratio flux (Supplement). The ARM
Surface Meteorology Systems provided surface wind, pres-
sure, temperature, relative humidity, visibility, and precipita-
tion measurements at 1 min time resolution and at a sampling
height of 8 m. For upper-air observation data, ARM provided
interpolated sonde data containing relative humidity, specific
humidity, temperature, horizontal wind, potential tempera-
ture, and dew point temperature on a fixed time–height grid.
The data have 332 levels with a 1 min time resolution from
the surface to a maximum of about 40 km. It is based on four
launches per day.
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Figure 1. (a) The location of the AMF (green location marker) with a red polygon representing the flux footprint area. Map data: © Google,
CNES/Airbus, Houston–Galveston area council, Landsat/Copernicus, Maxar Technologies, Texas General Land Office, US Geological Sur-
vey, USDA/FPAC/GEO, 2023. The white arrow gives the prevailing wind direction during the campaign. (b) Picture of the AMF setup.
(c) Wind rose diagram for wind direction and speed during the sampling period.

2.3 Optical particle spectrometer

The AMF housed an optical particle counter (Grimm model
11-D, GRIMM Aerosol Technik GmbH & Co.KG, Dorfs-
traße 9, Ainring, 83404, Germany). The size distribution is
binned into 31 equidistant channels ranging from 0.29 to
31.15 µm. Data are reported at 6 s of time resolution. The in-
strument includes a temperature and relative humidity sensor
inside the optical block to monitor the thermodynamic state
of the sample flow. The sample is dried to a relative humid-
ity between 17 % and 40 % using a single-tube Nafion dryer:
MD-700 by Perma Pure (1001 New Hampshire Ave, Lake-
wood, New Jersey 08701, USA).

2.4 Doppler lidar

2.4.1 Instrument

The DOE ARM program maintains a network of coherent
Doppler lidar instruments, which are manufactured by Halo
Photonics (Brockamin, Leigh, Worcestershire United King-
dom WR6 5LA GB). The Doppler lidar transmits at a wave-
length of 1.548 µm, with ∼ 150 ns (22.5 m) pulse width and
< 100 µJ pulse energy at a rate of 15 kHz, providing time-
and range-resolved measurements of attenuated backscat-
ter and radial velocity (Newsom and Krishnamurthy, 2020;

Newsom et al., 2017). When operated in vertical fixed-point
mode, the system measures vertical velocity at 1 Hz temporal
and 30 m vertical spatial resolution. The lowest acceptable
range gate is 105 m. The primary scattering mechanism is
atmospheric aerosol. To date, the main application of this in-
strument has been the observation of turbulence within the
boundary layer (Newsom et al., 2015; Williams and Qiu,
2023). When operated in hemispheric scanning mode, the in-
strument yields 2D wind fields as a function of height. The
DOE ARM program collected the lidar data. The instruments
are operated by DOE personnel, and data are distributed
through publicly accessible archives (Newsom and Krishna-
murthy, 2021; Shippert et al., 2022). Data in the archive have
undergone a first pass of data processing. The vertical fixed-
point data files, which are primarily used here, contain at-
tenuated backscatter coefficients, signal-to-noise ratios, and
vertical velocities at approximately 1 s intervals.

2.4.2 Relationship between particle size distribution and
lidar backscatter

The lidar backscatter is attenuated by the two-way transmis-
sion through the atmosphere. The true backscatter can be
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found via (Platt and Collins, 2015)

β (r)=
βatt (r)

1− 2LR
∫ r2
r1
βatt (r)dr

, (1)

where β(r) is the true backscatter coefficient, βatt(r) is the
measured attenuated backscatter coefficient, LR is the lidar
ratio defined in Eq. (2), and the integration is carried out be-
tween ranges r1 and r2. In Eq. (1) it is assumed that the lidar
ratio does not vary with range. The true backscatter coeffi-
cient and attenuated backscatter coefficient are equal in the
first range gate. The lidar ratio represents the ratio of the
extinction cross-section and 180◦ backscatter cross-section
and varies between 5 and ∼ 100 sr. Its value depends on the
wavelength, aerosol refractive index, aerosol size distribu-
tion, aerosol hygroscopicity, and the presence of absorbing
gases in the atmosphere. Most prior studies have focused
on systems with wavelengths 355, 532, and 1064 nm. Con-
sequently, there is limited information about values for LR
for wavelength > 1 µm. However, the lidar backscatter and
lidar ratio can be estimated from the aerosol size distribution,
aerosol hygroscopicity, and Mie theory.

αmie =

∫
∞

0

πD2

4
Qext (λ,m,D)

dN
dlnD

dlnD (2)

βmie =

∫
∞

0

πD2

4
Qback (λ,m,D)

dN
dlnD

dlnD (3)

Here, αmie is the extinction coefficient derived from Mie the-
ory, βmie is the aerosol lidar backscatter coefficient derived
from Mie theory, D is the particle diameter (m), Qext and
Qback are the extinction and backscatter efficiencies deter-
mined from Mie theory, dN/dlnD is the aerosol size distri-
bution in units of spectral density, λ is the wavelength (of the
lidar), andm= n+ki is the complex aerosol refractive index
with a real (n) and imaginary (k) component. The integration
is performed over the entire size distribution. The Mie so-
lution assumes that the particles are spherical. The modeled
lidar ratio is

LR=
αmie

βmie
. (4)

The effects of scattering and extinction by molecules are not
considered here.

At elevated relative humidity particles may swell and take
up water. The refractive index of the mixed particle can be
obtained from the volume-weighted average of the refractive
indexes of the dry aerosol and water (Shettle and Fenn, 1979)
and the water content estimated using the aerosol hygroscop-
icity parameter (Petters and Kreidenweis, 2007):

m=mw+ (maer−mw)
(
k

aw

1− aw
+ 1

)−1

, (5)

where m is the refractive index of the wet particle, mw is
the refractive index of pure water,maer is the refractive index

of the dry aerosol particle, aw =RH/100 % is water activ-
ity neglecting the Kelvin effect, and κ is the hygroscopicity
parameter. The refractive indices m= n+ ki include a real
(n) and imaginary (k) component. Equation (5) is derived by
combining Eq. (6) in Shettle and Fenn (1979) and Eq. (1) in
Carrico et al. (2010).

Figure 2 illustrates the change in optical properties with
RH as modeled via Eqs. (1)–(5) and using the average
size distribution measured by the OPC on 2 August 2022.
A few notable trends can be summarized as follows. The
backscatter coefficient βmie varies ∼ ±50 % between 0 %
and 80 % RH. However, most of the variability is within
±20 %. The function only weakly depends on the assumed
hygroscopicity parameter. For real refractive indices n> 1.5,
the backscatter coefficient can decrease with increasing RH.
Increasing the RH increases this scattering cross-section due
to hygroscopic growth. However, the backscatter decreases
due to a decrease in the refractive index. For aerosols with
a larger refractive index, the latter effect can dominate in
the 40 %–90 % RH range. The modeled lidar ratio varies be-
tween ∼ 20 and 80 sr. Under dry conditions, the main con-
trolling factor of the lidar ratio is the refractive index. Larger
values of n amplify backscatter and thus result in a lower
lidar ratio. Larger values of k amplify extinction and thus
increase the lidar ratio. The lidar ratio can increase up to a
factor of 2 with increasing RH, consistent with previous sim-
ilar numerical simulations (Ackermann, 1998; Zhang et al.,
2022).

The modeled βmie is primarily sensitive to changes in
aerosol number concentration and to a lesser extent the shape
of the size distribution of particles in the 1<D< 10 µm di-
ameter range. Figure 3 shows a statistical analysis of the re-
lationship between the aerosol size distribution and optical
properties for 2 August 2022. The assumed refractive in-
dex is m= 1.55+ 0i. The value was picked arbitrarily due
to a lack of knowledge of the refractive index of the aerosol
and is used for illustration purposes. The aerosol size dis-
tribution shown in Fig. 3a (red fitted line) shows a coarse
mode with a mode diameter ∼ 1 µm. Figure 3b shows that
particles 2<D< 6 µm contribute most of the signal to the
total backscatter coefficient. Figure 3c shows the correla-
tion of the integrated number concentration for particles
D> 3 µm against the total βmie. Linear regression of these
data (R2

= 0.98) can be used to relate an observed β to
aerosol number concentration. The regression yields an inter-
cept value that corresponds to the βmie that is not explained
by particles D> 3 µm. As indicated in Fig. 2a, the modeled
βmie depends weakly on RH. This implies a dependence of
the regression slope on RH. Indeed, the example in Fig. 3d
shows a slightly smaller slope for the assumed RH= 80 %.
The regression analysis can be applied to arbitrary lower size
cuts for the integrated number concentration. One would ex-
pect the strength of the correlation to decrease if smaller
size particles were included. For example, the correlation
for number concentration with D> 0.01 µm and total βmie is
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Figure 2. Change in aerosol optical properties with relative humidity as a function of refractive index and hygroscopicity. (a) Change in βmie
as a function of relative humidity. Color indicates the assumed refractive index. Solid and dashed lines correspond to κ = 0.3 and κ = 0.6,
respectively. The gray shading indicates ±20 % variability. (b) Lidar ratios as a function of relative humidity.

likely small, since Aitken- and accumulation-mode particles
insignificantly contribute to the backscatter. However, num-
ber concentrations within the coarse mode will be strongly
autocorrelated if the shape of the coarse-mode distribution is
unchanged. In this case, the numbers ofD> 1 µm,D> 3 µm,
and D> 7 µm will all yield a strong correlation with the to-
tal βmie. Figure 3c tests the extent to which the correlation
degrades for different lower size thresholds. This example
shows R2> 0.75 even for a lower threshold Dlo = 0.53 µm
but essentially no correlation for Dlo< 0.5 µm. The degra-
dation of the correlation is evident as larger scatter in Fig. 3e
and f compared to Fig. 3a. Although the details change due to
day-to-day variability of the shape of the size distribution, the
assumed refractive index, and the assumed hygroscopicity,
the overall trends in Fig. 3b–f are repeatable. It is proposed
that the empirical regressions shown in Fig. 3d–f, combined
with a sensible Dlo, can be used to retrieve aerosol number
concentration N (D>Dlo) from measured lidar backscatter
coefficients.

Optical models like the one given by Eqs. (1)–(5) have
been used successfully to relate OPC size distributions and
backscatter for lidar returns from polar stratospheric clouds
and cirrus clouds (Cairo et al., 2011; Snels et al., 2021). Here,
however, the aerosol refractive index, the aerosol hygroscop-
icity, the contribution from molecular absorption to extinc-
tion, and the particle aspherical shape are unknown. Further-
more, the Doppler lidar backscatter is obtained via factory
calibration (Newsom and Krishnamurthy, 2020). A back-of-
the-envelope comparison of aerosol optical depth inferred
from lidar backscatter against aerosol optical depth from
the AErosol RObotic NETwork (AERONET) at a nearby
site shows that the lidar backscatter correlates strongly with
aerosol optical depth, but its value may be biased high. Com-
bined, these uncertainties are too large to rely on the opti-
cal model alone to relate observed inverted backscatter to
particle number concentration. Instead, this work relies on
empirical correlations between the lidar-observed attenuated
backscatter at z= 105 m (the lowest range gate) stratified by

relative humidity and surface-based particle number concen-
tration. Note that the two-way attenuation of the backscatter
close to the ground is minimal and attenuated backscatter at
z= 105 m approximately equals the true backscatter.

Figure 4 summarizes the campaign average correlation be-
tween the lidar-observed attenuated backscatter at z= 105 m
and particle number concentrations Dlo> 0.53, Dlo> 1.03,
and Dlo> 3.25 µm. The height z= 105 m is the lowest range
gate to the surface that has complete time coverage above the
signal-to-noise ratio. The shown correlations are analogous
to those shown from the model in Fig. 3c. For the regression
analysis, a lower threshold in number concentration was im-
posed (N > 2, 0.5, and 0.02 cm−3 forDlo> 0.53,> 1.03, and
Dlo> 3.25 µm, respectively). Below this threshold the corre-
lations are poor, and the regression analysis obscured the in-
tercept value. The correlations show the same pattern as the
model. An intercept of the regression line for N = 0 cm−3

indicates the portion of the backscatter that is not explained
by particles with D>Dlo. The change in the slope with RH
is relatively small and shows a slight decrease in backscatter
at 50 %<RH< 65 %, which is qualitatively comparable to
the trends in Fig. 2a. The Pearson correlation coefficients are
similar for the three shown cutoff sizes. Moving the lower
size threshold to the lowest diameter measured by the OPC
(Dlo> 0.28 µm) results in poor correlations (R2< 0.2) for all
RHs. This consistency with the model simulations in Fig. 3d
is satisfying. The R2 values decrease with increasing RH.
At RH > 90 %, the correlation is poor (0.2<R2< 0.5). This
suggests either increasing interference of other backscatter-
ing particles at higher RH or increasing uncertainty due to
uncertainty in the RH value itself. Specifically, the compar-
isons between the interpolated sonde product and the ground-
based meteorological station suggest that the precision of the
interpolated sonde RH is not better than±7 % in absolute RH
units (supporting information). Furthermore, the R2 values
decrease with height, suggesting interference from backscat-
ter attenuation and/or decorrelation of the aerosol at height
z with those at the surface. In summary, the results in Fig. 4
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Figure 3. Statistical analysis of 1 d of aerosol size distributions. (a) Average aerosol size distribution measured by the OPC. The gray shading
indicates the interquartile range. The red line shows a lognormal fit to the coarse mode. (b) Average size-resolved modeled βmie, expressed
as spectral density. The gray shading indicates the interquartile range. (c) Pearson correlation coefficient between N (Ddry>Dlo), the OPC
integrated number of particles with diameter exceeding a lower threshold Dlo, and βmie at RH= 0 %. (d) Correlation between integrated
βmie (all sizes) and measured number concentration > 3 µm. Each point corresponds to a 30 min time average. Solid lines indicate a linear
fit. Colors indicate the assumed relative humidity. (e) Same as panel (d) but for number concentration > 1 µm. (f) Same as panel (d) but for
number concentration > 0.53 µm.

suggest that backscatter fluctuations are indicative of parti-
cle number concentration if backscatter exceeds the value of
the intercept, if a threshold Dlo> 0.53 µm is selected, and if
RH< 90 %.

2.4.3 Derivation of backscatter flux

Backscatter flux is obtained using the eddy covariance tech-
nique,

Fβ =<w
′β ′ >, (6)

where w′ and β ′ are the instantaneous fluctuations of ver-
tical velocity and attenuated backscatter and <> indicates
the time average. The measured backscatter coefficients are
thresholded at a signal-to-noise ratio of −17 dB, which cor-
responds to a velocity precision of 20 cm s−1 (Newsom and
Krishnamurthy, 2020). The backscatter coefficient data show
occasional spikes, possibly due to the transit of larger ob-
jects through the beam including birds. These spikes were
removed using the following despiking algorithm. A low-
pass filter with a cutoff frequency of 0.01 Hz and a fourth-
order Butterworth filter function are applied to the backscat-
ter coefficient. Values outside the 0.01 and 0.99 quantiles of
the ratio of filtered and measured backscatter are considered

spikes and replaced with the value from the filtered data,
which approximately corresponds to the average ±100 s of
the removed data point. This ensures continuity in the data
during the spike event.

The Doppler lidar operates in fixed-point vertical orien-
tation in contiguous blocks ∼ 780 s in length with vertical
velocity and backscatter reported at ∼ 1 Hz frequency. This
is followed by ∼ 120 s breaks while the instrument plan po-
sition indicator scans. The temporal spacing between con-
secutive timestamps is 1.025± 0.15 s. Here each contiguous
block is used to derive a particle flux. First, the despiked
backscatter data were detrended using a linear fit (Behrendt
et al., 2020). Despiking removes spurious peaks from the
data, while detrending subtracts both the mean and possi-
ble linear trends from the time series. Both are needed to
compute accurate fluxes. Figure 5 shows an example of a
contiguous block showing detrended and despiked vertical
velocity and backscatter data. The corresponding signal vari-
ances are σ 2

w = 0.79 m2 s−2 and σ 2
β = 0.093 Mm−2 sr−2, re-

spectively. The calculated backscatter flux is Fβ =<w′β ′ >
= 1.6× 10−5 s−1 sr−1.

The lidar vertical velocity and backscatter data contain un-
correlated random noise stemming from a finite number of
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Figure 4. Panels (a–l): correlation of aerosol number concentration between the lidar-observed backscatter at z= 105 m and particle number
concentrations Dlo> 3.25 µm (a–d), Dlo> 1.03 (e–h), and Dlo> 0.53 (i–l). The data are stratified by ambient relative humidity of 45 %–
50 % (a, e, i), 55 %–60 % (b, f, j), 65 %–70 % (c, g, k), and 75 %–80 % (d, h, l). Panel (m) shows the slope of the regression line as a function
of cutoff diameter Dlo and relative humidity using intervals [RH, RH+ 5 %]. Panel (n) shows the Pearson correlation coefficient R2 for the
regression as a function of cutoff diameter Dlo and relative humidity using intervals [RH, RH+ 5 %].

scatterers in the sampling volume and low photon counting
statistics (Lenschow et al., 2000). The variance from uncor-
related noise can be separated from the signal using vari-
ous methods. One common approach is the autocovariance
method (Lenschow et al., 2000; Wulfmeyer et al., 2016).
First, the autocovariance function Ax(τ ) of the time series
is computed via

Ax (τ )= cov(xt ,xt+τ ) , (7)

where xt is the time series of interest, τ is the lag time, and
cov is the covariance function. Ax(0) equals the variance of
xt . Next Ax(τ ) from the data is fit to a model of the form

Amodel (τ )= ν− kτ
(

2
3

)
, (8)

where ν and k are fitted parameters. The fit is obtained for
lags up to the first zero crossing of Ax(τ ). The model extrap-
olated to zero lag Amodel(0) equals the noise-free variance.

The variance attributed to noise is

δ2
x = Ax (0)−Amodel (0) . (9)

Finally, the integral timescale, I , is obtained from the fit
parameters via

I =
2
5

(v
k

) 3
2
. (10)

Figure 6 shows an example of the autocovariance method
applied to the contiguous data block shown in Fig. 5. The
autocovariance (Eq. 7, black lines) is largest for lag zero
and decreases for larger lag times. The model (Eq. 8, red
lines) shows that the decrease with increasing lag is well-
modeled using the 2/3 power-law relationship. The derived
noise variances, taken from the difference between the cal-
culated covariance and model at lag time zero (Eq. 9),
are δ2

= 0.161 m2 s−2 and δ2
= 0.052 Mm−2 sr−2 for verti-

cal velocity and backscatter data, respectively. The integral
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Figure 5. Example 780 s contiguous block of detrended and de-
spiked (a) vertical velocity (w′) and (b) backscatter data (β ′).

Figure 6. Autocovariance function for the data shown in Fig. 5.
(a) Vertical velocity and (b) backscatter data. Black: Ax (τ ), red:
Amodel(τ ).

timescales derived from Eq. (10) are I = 21 and I = 24 s, for
vertical velocity and backscatter data, respectively. The con-
tribution of the noise variance to the total variance, evaluated
as δ2/σ 2 is ∼ 0.2 and ∼ 0.56 for the vertical velocity and
backscatter data, respectively. This indicates that significant
noise is present in the data. The derived integral timescales
for the two series are similar. For lags >∼ 50 s, the autocor-
relation for both time series is minimal. The example in Fig. 6
illustrates how δ2 and I were determined for each contiguous
flux segment.

Spectral analysis is used to estimate the frequency where
noise overwhelms the signal. Figure 7 shows the spectral de-
composition of the variance of vertical velocity S(w) and
backscatter S(β) data. The spectra for S(β) are flat for fre-
quencies larger than 0.035 Hz, which indicates white noise.
Integrating

∫
S(β)df from 0.035 Hz to the Nyquist fre-

quency equals the noise variance δ2
β derived from the auto-

covariance analysis. Conversely, the spectra for S(w) do not

flatten. Thus, the transition to white noise cannot be used to
determine the noise limit. An estimate of the noise variance
δ2
w can be found by integrating

∫
S(w)df from 0.05 Hz to the

Nyquist frequency. The visual depiction and the magnitude
of these thresholds are similar for other contiguous segments.
This suggests that derived backscatter fluxes for frequencies
>∼ 0.035 Hz are not well-resolved due to noise in the lidar
signal.

2.4.4 Quality control and uncertainties

1. Random noise error. The random noise error in the flux
Fβ is approximated for each contiguous segment using
Eq. (A22) in Wulfmeyer et al. (2016):

σnoise ∼=

√
< β ′2 >

δ2
w

N
+<w′

2
>
δ2
β

N
, (11)

where σnoise is the uncertainty in the flux due to random
noise, and δ2

w and δ2
β are noise variances derived from

the autocovariance analysis.

2. Limit of detection (LOD). An alternative method to
identify fluxes that are dominated by noise is the lag
method (Spirig et al., 2005; Emerson et al., 2018; Is-
lam et al., 2022). First, a lag is applied to the vertical
velocity data. If the lag is sufficiently large, the com-
puted <w′β ′ > has contributions only from statistical
noise. This can be taken as the limit of detection for the
flux. The lag should be chosen to be sufficiently large to
ensure that the autocovariance is zero, i.e., some mul-
tiple of the integral timescale. The median value of the
integral timescale of the flux was ∼ 11 s and the 99th
percentile is 63 s. We consider a lag of 200 s sufficient
to evaluate the limit of detection using this method.

3. Sample statistics. The error associated with the limited
number of eddies sampled within a flux segment can be
estimated using Eq. (9) In Lareau (2020):

σsample = 2
IFβ

T

[
Fβ −

(
σ 2
w − δ

2
w

)(
σ 2
β − δ

2
β

)]
, (12)

where σsample is the uncertainty due to sample statis-
tics, IFβ is the integral timescale of the flux, T is the
sampling period (780 s), σ 2

w and σ 2
β are the total vari-

ances of vertical velocity and backscatter, respectively,
and δ2

w and δ2
β are the noise variances of vertical ve-

locity and backscatter, respectively. Note that the inte-
gral timescales of the individual parameters w and β
are similar (mean I ∼ 22 and 26 s, respectively), but the
integral timescale of the flux <w′β ′ > is shorter (mean
I ∼ 11 s).

4. Deviation from ensemble average. The flux error due
to the departure of the observation from the domain-
averaged flux is estimated via (Lareau, 2020; Lenschow
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Figure 7. Spectral decomposition of the total variance for (a) vertical velocity and (b) backscatter for the contiguous data segment shown in
Fig. 5. The integral

∫
Sdf equals the total variance. The red line corresponds to the frequency cutoff such that the integral from the frequency

cutoff to the Nyquist frequency corresponds to the noise variance δ2 derived from the autocovariance analysis in Fig. 6.

et al., 1994)

σensemble ∼= 2
IFβ

T
Fβ . (13)

5. Flux loss correction. Horst (1997) proposed correcting
fluxes for sensors with a reduced frequency response
by applying a cospectral transfer function to the ogive
of the kinematic heat flux, computing the flux loss, and
then correcting the observed flux for the missing contri-
bution. This correction is built on the assumption that
cospectra for fluxes of different scalar quantities are
similar.

Fcorr = Fβ

[
1+

(
2πnm

τc < u >

zm

)a]
(14)

Here, Fβ is the measured flux, nm = 0.085 and α = 7/8
are constants for neutral and unstable conditions, τc is
the characteristic time constant of the sensor, < u > is
the mean wind speed at the sample height, and zm is the
measurement height. For stable stratification, α = 1 and
nm = 2− 1.915/(1+ 0.5 z/L), where z/L is the stabil-
ity parameter, z is the measurement height, and L is
the Obukhov stability length calculated from the surface
ECOR data using the expression in Launiainen (1995).
For unstable conditions z/L< 0. Figure 7 and similar
analyses for other flux segments suggest that the cut-
off frequency for instrument noise is ∼ 0.035 Hz. The
relationship between the 3 dB cutoff frequency and the
90/10 response time of an instrument is estimated from
the resistor–capacitor circuit analog of a low-pass filter.
In that system the characteristic response time is given

by a simple analytical solution τc = 0.35/f , where f
is the 3 dB cutoff frequency (Andrews, 1999). Using
0.035 Hz as the cutoff frequency yields an estimate of
τc ∼ 10 s. For unstable conditions, typical ratios for
Fcorr/Fβ are ∼ 1.3–1.5.

6. Stationarity. A key assumption underlying the measure-
ment of eddy correlation flux is stationarity. Strictly,
stationarity implies that the temporal derivatives of the
mean field approach zero during the flux detection pe-
riod, i.e., dw/dt = 0, dT/dt = 0, and dβ/dt = 0. Sta-
tionarity is rarely fully satisfied. Here we use the fol-
lowing metric to characterize stationarity (Foken and
Wichura, 1996). The flux segment is divided into 5 min
intervals. Then the relative difference between the flux
of the entire segment and the mean of the fluxes from
the 5 min flux legs is evaluated. Values less than 30 %
are stationary. The stationarity metric, hereafter referred
to as ξ , is reported alongside the <w′β ′ > data.

7. Turbulence intensity. Reduced turbulence causing lim-
ited air mixing may result in a low bias of retrieved
fluxes. At surface sites, the friction velocity u∗ can be
used to identify periods of limited air mixing (Papale
et al., 2006; Barr et al., 2013). It is unclear if a u∗

criterion can be applied to lidar data at z= 105. We
therefore evaluated the turbulent kinetic energy (TKE)
at z= 105 m from the colocated hemispheric scanning
Doppler lidar. TKE can be used as a screening crite-
rion to determine if the sample is inside the turbulent
mixed layer (Vakkari et al., 2015). We use a criterion of
TKE< 10−5 cm−2 s−3 to flag periods wherein reduced
turbulence may potentially have biassed the flux. The
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threshold was picked qualitatively as an indication of
the presence of turbulence based on Fig. 4a in Vakkari
et al. (2015). As will be discussed later, our conclusions
are not sensitive to this threshold.

8. Precipitation. Precipitation may bias the measured
Doppler velocity from lidar and can produce spurious
backscatter returns (Aoki et al., 2016). Some of these
may be removed by the despiking algorithm. Neverthe-
less, the flux data where any precipitation was measured
during a flux segment were flagged and removed in sub-
sequent data analysis.

9. Flux footprint. The flux footprint parameterization by
Kljun et al. (2015) was used to calculate the footprint.
An advantage of this model is that it can be used out-
side surface layer conditions and for non-Gaussian tur-
bulence. Variations in lateral velocity and turbulence
fluxes are considered. This parameterization is suitable
for measurement heights > 20 m. Friction velocity used
in this parameterization was obtained from the scanning
Doppler lidar deployed at TRACER. Planetary bound-
ary layer height was obtained from the North American
Mesoscale Forecast System (NAM) model. Coniglio et
al. (2013) compared different PBL schemes with ra-
diosonde observations and came up with the conclusion
that the NAM model produced the smallest mean ab-
solute error. Hence the NAM model was used in this
study. The surface temperature from the surface meteo-
rological station at the site was used as the temperature
at z= 105 m due to the lack of high-resolution temper-
ature data at that height. However, the calculated flux
footprints are not sensitive to the choice of temperature
variable.

2.4.5 Example backscatter flux data

Figure 8 demonstrates the application of the various data
quality control and uncertainties metrics. Figure 8a shows
a 3 d time series of the noise-thresholded and despiked
backscatter curtain for broader context. The backscatter
shows values more than 100 Mm−1 sr−1 during nighttime
(UTC) at z∼ 400 m (pink colors), likely due to the pres-
ence of low clouds. Since our analysis focuses on z= 105
only, no additional cloud screening was performed on the
dataset. Backscatter signals up to 1500 m are retrieved at ap-
proximately noon local time. Figure 8b shows the derived
backscatter flux with stable conditions identified via z/L> 0
being grayed out. Superimposed in red is the limit of detec-
tion (LOD) derived for each contiguous segment using the
lag analysis. The observed fluxes significantly exceed the
values from the LOD analysis. Note that the LOD fluxes can
be positive or negative. In contrast, the observed Fβ values
are all positive (indicating particle emission from the sur-
face). Figure 8c shows that most flux values are from data
that pass the stationarity test, i.e., abs(ξ )< 0.3. Figure 8d

shows flux-loss-corrected hourly averaged flux values dur-
ing unstable conditions only. The gray shading comprises the
cumulative uncertainty of σnoise, σsample , and σensemble and
remains small relative to the absolute value of the retrieved
backscatter flux. Taking the combined data quality and un-
certainty metrics into account, the data in Fig. 8 show that
the backscatter fluxes are statistically significant.

2.4.6 Number flux from backscatter flux

Fluctuations in elastic backscatter correspond to fluctuations
in aerosol number concentration (Pal et al., 2010). As demon-
strated in Figs. 3 and 4, the Doppler lidar is sensitive to par-
ticle number concentration D>∼ 0.5 µm. The relationship
between backscatter and particle number is

β (S)=
(
∂β

∂N

)
S
N (S)+ c (S) , (15)

where S is the saturation ratio (S =RH/100 %), β(S) is the
backscatter at saturation ratio S, N (S) is the number concen-
tration of particles larger than a specified threshold diameter,
(∂β/∂N )S is the slope, and c(S) is the intercept of the re-
gression lines shown in Fig. 4a–l. In practice, (∂β/∂N )S and
c(S) were empirically evaluated in intervals [S; S+ 0.05].
The ambient S value is obtained at the lidar height and sam-
ple time from the interpolated sonde product. The closest cal-
ibrated slopes and intercepts are used to deriveN (S) from the
observed β(S).

Figure 9 summarizes the retrieved particle number concen-
tration from lidar backscatter via Eq. (15). Here retrievals are
limited to conditions wherein RH< 90 %, there is no precip-
itation, and the observed backscatter exceeds 1.5 times the
intercept value in Eq. (15). The latter limit is necessary to
avoid retrievals where the backscatter is dominated by sig-
nals unrelated to particle number concentration. The cutoff
value was selected to filter most noise while maintaining suf-
ficient signal coverage. Increasing the value to> 1.5 does not
further improve the accuracy of the comparison between the
lidar and OPC shown in Fig. 9. The lidar-retrieved concentra-
tions are visibly noisier, which is likely due to the noise in the
backscatter data (Figs. 6 and 7) and the fact that the calibrated
slopes were obtained from the campaign average, thus not
accounting for variations in refractive index and hygroscop-
icity in the retrieval. Nevertheless, the retrieval captures the
broad trends in particle number concentration, including the
transition from lower-concentration to higher-concentration
periods on 11 June, 15 July, and 20 July. Pearson correla-
tion coefficients between the OPC and lidar-derived number
concentrations are R2

= 0.74 for the time series shown in
Fig. 9c–e. The R2 values are not identical but very similar,
which is explained by the autocorrelation of number concen-
tration within the coarse mode, i.e., because the shape of the
coarse mode is approximately constant throughout the cam-
paign. Overall, the results in Fig. 9 confirm that the variabil-
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Figure 8. The 3 d time series starting 13 June 2022. (a) Time–height noise-thresholded attenuated backscatter curtain. Colors correspond to
the log10 of the backscatter value in units of Mm−1 sr−1. The solid black line shows the cloud-base height retrieved by the ceilometer. Periods
with no cloud-base height data correspond to clear-sky conditions. (b) Black: backscatter flux at z= 105 m for each contiguous segment with
z/L < 0 (unstable conditions), gray: backscatter flux at z= 105 m for each contiguous segment with z/L < 0 (stable conditions), red: limit
of detection (LOD) computed using the lag method. (c) Stationarity metric ξ . The gray shading denotes the ±30 % threshold given by Foken
and Wichura (1996). (d) Hourly averaged fluxes for unstable conditions after the application of the flux loss correction. The gray shading
indicates the combined uncertainty derived from σnoise +σsample + σensemble.

ity in backscatter is related to changes in coarse-mode parti-
cle number concentration.

Based on the preceding paragraph, we assert that high-
frequency fluctuations in backscatter are related to high-
frequency fluctuations in number concentration. To obtain
the number flux from backscatter flux, high-frequency fluctu-
ations in relative humidity also need to be considered (Fairall,
1984). This is because hygroscopic growth increases the par-
ticle size, which in turn affects the backscatter. During pe-
riods of intense sensible and latent heat flux, there are sys-
tematic differences in relative humidity or saturation ratio in
updrafts and downdrafts, resulting in a saturation ratio flux.
This saturation ratio flux can lead to an apparent particle flux
that is not related to turbulent transport. Thus, turbulent flux
measurements require correction for false fluxes during pe-
riods of high saturation ratio flux (Fairall, 1984; Kowalski,
2001; Vong et al., 2004; Islam et al., 2022).

To derive the influence of saturation ratio fluctuations on
the lidar-derived number flux, we use an equation analogous
to Eq. (18) in Fairall (1984):

β ′ =

(
∂β

∂N

)
S
N ′+

(
∂β

∂S

)
N

S′. (16)

Therefore, the number flux can be written as

<w′N ′ >=<w′β ′ > /

(
∂β

∂N

)
S
−

(
∂β

∂S

)
N

/(
∂β

∂N

)
S
<w′S′ >, (17)

where <w′N ′ > is the eddy covariance flux of particles and
<w′S′ > is the saturation ratio flux. Evaluation of the terms
(∂β/∂S)N , (∂β/∂N )S, and <w′S′ > is provided in the Sup-
plement. Note that the saturation ratio flux depends on the la-
tent and sensible heat flux and can be either positive or nega-
tive. Furthermore,<w′N ′ > is a net flux and includes contri-
butions from surface emissions and dry deposition. The emis-
sion flux can be obtained by removing the estimated contri-
bution from particle dry deposition (Nilsson et al., 2021):

Femission =<w
′N ′ >+vd <N >, (18)

where vd is the dry deposition velocity, and <N > is the
average number concentration. Note that by our convention
positive <w′N ′ > corresponds to an upward flux. In the ab-
sence of emissions (Femission = 0), the observed <w′N ′ >
would be negative (downward), reflecting the dry deposition
process and using the convention that the deposition veloc-
ity is a positive number. Deposition velocity is a function of
particle diameter and land use type. Precise values remain
poorly constrained within data showing approximately 2 or-
ders of magnitude in scatter (Emerson et al., 2020). Here we
consider vd = 1 cm s−1 as an approximate upper bound for
particles in the 0.5 to 5 µm size range depositing on a grass-
land surface (Emerson et al., 2020).

Combining all the correction included in Eqs. (14), (17),
and (18), the emission flux can be conceptually decomposed
into four terms:

Femission = F +Fflc+FwS+Fdep, (19)

where F =<w′β ′ > /(∂β/∂N )S is the first-order conver-
sion from backscatter to number flux and Fflc is the additional
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Figure 9. (a) Attenuated lidar backscatter at z= 105. (c) Relative humidity at z= 105 m from the interpolated sonde product. Data are
presented at 30 min temporal resolution. (c) Particle number concentration for particles D> 0.53 µm measured at the surface by the OPC
(black) and retrieved from the backscatter via Eq. (15). (d) Same as (c) for D>∼ 1 µm size particles. (e) Same as (c) for D>∼ 3 µm size
particles.

flux computed from the flux loss correction due to the low-
frequency response of the Doppler lidar (Sect. 2.4). If no cor-
rection is required Fflc = 0. The sign of Fflc is the same sign
as F . The term FwS is the apparent contribution to the flux
due to variation in the saturation ratio in updrafts and down-
drafts. FwS =−(∂β/∂S)N/(∂β/∂N )S <w

′S′ > and can be
either positive or negative. The term Fdep = vd <N > is al-
ways positive.

3 Results

Figure 10 shows a time series of the daily averaged lidar-
retrieved emission flux for particles D> 0.53 µm. Only con-
tiguous flux segments exceeding the limit of detection dur-
ing unstable conditions are included. This excludes nighttime
periods. Furthermore, flux legs with precipitation present
and flux legs where turbulent kinetic energy was below
10−5 cm−2 s−3 were excluded. Increasing the turbulent ki-
netic energy threshold filters more data but does not alter the
overall trends shown in Fig. 10. Averaging over the entire
day reduces the random errors from noise and short sam-
pling periods (Fig. 8) and thus those errors are not further
considered here. Several days show missing fluxes (white ar-

eas). These are predominantly from days on which all the
<w′β ′ > fluxes were below the limit of detection. All of the
base flux values (F , black color), which are derived from
the backscatter flux without further correction, are positive.
This suggests that the site is dominated by emissions. Ap-
plying the flux loss correction (gold colors), which accounts
for the reduced frequency response of the lidar, increases the
base flux by∼ 30 %–50 %. The correction for saturation ratio
flux (FwS) increases the flux further. The systematic increase
is because on average <w′S′ > is negative during the day-
time. However, the correction is small. The correction shown
for dry deposition is based on an assumed vd = 1 cm s−1. In
general, this correction is small relative to the reported emis-
sion flux values. However, the contribution may be appre-
ciable during high-concentration periods. Nevertheless, the
red band in Fig. 10 is likely an overestimate, as the true de-
position velocity is likely an order of magnitude, or perhaps
2 orders of magnitude, lower than the assumed vd = 1 cm s−1

in Fig. 10 (Emerson et al., 2020).
The emission fluxes in Fig. 10 range from ∼ 10 to
∼ 100 cm−2 s−1. For an assumed boundary layer height of
1 km and a day length of 100 000 s, a sustained flux of
10 cm−2 s−1 corresponds to an increase in number concen-
tration of 10 cm−3 throughout the boundary layer due to the
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Figure 10. Temporal trend of daily averaged lidar-retrieved daytime emission flux for particles D> 0.53 µm. Colors correspond to the
contributions to the emission flux as given in Eq. (19). Here F is the first-order conversion from backscatter to number flux, Fflc is the
additional flux computed from the flux loss correction due to a low-frequency response of the Doppler lidar, FwS is the apparent contribution
to the flux due to variation in the saturation ratio in updrafts and downdrafts, and Fdep is the maximum estimated contribution of the
deposition velocity to the flux. White areas correspond to dates on which fluxes were below the detection limit or insufficient data were
available to compute flux corrections.

emission flux. Thus, the emission is significant relative to
the background concentration, which varies between 1 and
20 cm−3 (Fig. 9c). Time series like Fig. 10 can be created for
particle fluxes D> 1 and D> 3 µm. The temporal trend is
identical to the data shown in Fig. 10 because they are scaled
to the same backscatter flux. However, the magnitudes of the
flux values are reduced to 33 % and 1.5 % of the emission
flux for particles D> 0.53 µm, respectively. The flux foot-
print evaluated only for included flux segments (i.e., unsta-
ble conditions) is 3.1± 2.4 km (mean±1 standard deviation)
and includes a mix of grassland fields, asphalted surfaces,
and urban housing developments. The footprint in Fig. 1 is
an illustrative example of a simulated 2D footprint at the site.
The time series show significant autocorrelation, with multi-
day periods of higher fluxes, followed by multi-day periods
of lower fluxes. This begs the following question. What are
the sources of the emissions?

Possible candidate sources include dust emitted from the
soil or biological particles emitted from vegetation. These
sources would be expected to scale with meteorological con-
ditions. For example, windblown soil dust would be expected
to correlate with friction velocity (Kok et al., 2012). Biolog-
ical emissions might be expected to respond to relative hu-
midity (Wright et al., 2014; Yadav et al., 2022), with higher
relative humidity triggering emission. Due to the sustained
emission of coarse particles over long periods of time, it
seems unlikely that anthropogenic point sources account for
the emission. For example, hypothetical activities like traffic
as well as airport landings and takeoffs would be expected to
have a punctuated signal in the observed time series of par-
ticle flux. These would manifest in peaks with, for example,
rush hour or weekday–weekend cycles. No such periodicity
is apparent in the high-time-resolution flux data (not shown
here). Natural sources, therefore, appear to be the most likely
candidate.

Exploratory statistical analysis was performed by visually
examining scatterplots between the observed daily averaged
emission flux and potential explanatory variables, including
wind speed, wind direction, friction velocity, surface temper-
ature, surface relative humidity, latent heat flux, sensible heat
flux, flux footprint, Monin–Obukhov length, and soil mois-
ture (Supplement). Two candidate variables were identified
from this statistical analysis to result in strong emissions: low
surface relative humidity and high wind speed and friction
velocity. Note that the fluxes are obtained during the daytime
when the relative humidity is generally lowest due to surface
heating. Further note that the Pearson correlation coefficient
for a linear relationship between friction velocity and flux is
poor. However, the relationship is fully consistent with that
of a power law.

Figure 11 summarizes the dependency of the daily aver-
aged emission flux on surface-derived friction velocity. In
this analysis, only the first three terms on the right-hand side
of Eq. (19) are included. Corrections for the deposition flux
are not considered because the value is negligible for the ex-
pected typical value of vd = 0.1 cm s−1. The largest observed
emission flux coincides with high friction velocity and low
relative humidity. The emission flux scales approximately
with u∗4, which is consistent with windblown dust emissions
(e.g., Fig. 37 and discussion in Kok et al., 2012). Indeed, the
emission flux can be parameterized as F = 3000 u∗4, where
u∗ is the friction velocity in m s−1 and the emission flux F
is in cm−2 s−1. It is important to note that the comparison
to windblown desert dust is only an analogy, as the emis-
sion mechanisms are likely different from the saltation pro-
cess occurring in sandy areas. We further note that no rela-
tionship was found between fluxes and soil moisture. Thus,
the anticorrelation with relative humidity may or may not be
coincidental. It is possible that days with sustained winds
also had low relative humidity. However, it is also plausi-
ble that low relative humidity aided the lofting of the dust,
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Figure 11. Variation of the daily averaged emission flux with
surface-derived friction velocity. Colors show data stratification by
relative humidity. The solid line illustrates an example of a power-
law dependency of the emission flux.

especially from dust situated on asphalted and other urban
surfaces. Longer-term studies will be needed to understand
the emission mechanisms and important parameters that in-
fluence emissions.

4 Discussion and implications

This work has laid out a new methodology on how coher-
ent Doppler lidar data can be used to obtain emission num-
ber fluxes. First, it was shown that Doppler lidar can be used
to measure backscatter flux using the eddy covariance tech-
nique. Implementing the current state-of-the-science uncer-
tainty analyses demonstrated that the backscatter fluxes are
statistically significant (Fig. 8). Random errors due to sig-
nal noise were present but did not dominate the signal. Next,
it was shown that lidar attenuated backscatter at z= 105 m
can be related to particle number concentration above a size
threshold using an empirical calibration between attenuated
backscatter stratified by relative humidity and particle num-
ber concentration above a certain size threshold measured
by an optical particle counter at the surface. Three thresh-
olds were considered:D> 0.53,D> 1, andD> 3 µm. It was
shown that this calibration led to a good correlation between
particle number concentration inferred from lidar backscat-
ter and particle number concentration observed at the surface
(Fig. 9). This calibration was applied to derive the particle
number emission fluxes from the backscatter flux, includ-
ing flux loss correction for bias from a reduced frequency
response by the lidar (Fig. 7 and Sect. 2, Horst 1997), cor-
rection for bias due to saturation ratio flux (Fairall, 1983),
and correction for bias due to particle deposition (Nilssen et
al., 2021). The magnitude of these corrections was shown to
be appreciable but not dominant. The largest of these cor-
rections was the flux loss correction due to a reduced fre-
quency response, which led to ∼ 30 %–50 % reduction in the
observed emission flux (Fig. 10). The temporal trend of the

flux showed strong autocorrelation with multi-day periods
of higher followed by multi-day periods of lower emission
fluxes. The emission flux was correlated with wind speed and
friction velocity and anticorrelated with surface relative hu-
midity (Fig. 11). This suggests that the emissions are due to
mechanical erosion from urban surfaces.

We are not aware of other coarse-mode particle flux
measurements in urban environments. To place these emis-
sion data in context, we compare the emission flux re-
ported here to other field measurements of emission fluxes
from eroding soils (see Fig. 37 in Kok et al., 2012). Those
measurements report mass fluxes varying between 10 and
100 000 µg m−2 s−1. The approximate mass for a 1 µm parti-
cle (roughly the mass-mode diameter of the coarse-mode dis-
tribution) is ∼ 10−6 µg. Applying this factor to the emission
number flux in Fig. 11 yields emission fluxes between 0.1
and 1 µg m−2 s−1, which is much lower than the range of dust
fluxes (Kok et al., 2012). The composition of the coarse mode
in urban environments shows contributions from road dust,
tire debris, and biological particles (Wu and Boor, 2021). We
would expect the reported emissions to emanate from dust lo-
cated on asphalted surfaces and exposed soil from grasslands
and gardens.

Significant data quality screening and averaging were ap-
plied to the dataset here. This led to the exclusion of flux
data under stable conditions (Monin–Obukhov length > 0)
and in the presence of precipitation. These data are not nec-
essarily bad. However, evaluating data under stable condi-
tions, which predominantly occurred during nighttime and
also coincided with low u∗ and TKE conditions, will require
more in-depth analysis to understand the importance and ac-
curacy of the flux loss correction and footprint expansion that
occurs in that regime. Furthermore, we mostly considered
daily average fluxes. Higher-time-resolution data are avail-
able (e.g., Fig. 8d). These data are noisier (high variability
from flux leg to flux leg) and generally show a diurnal trend
with peak fluxes occurring near local noon. Understanding
and fully quantifying these higher-time-resolution emission
patterns may be important for understanding the influence of
the emissions on cloud formation. The retrievals in this work
were limited to a single vertical level at z= 105 m. In princi-
ple, this method will be suitable to also retrieve flux profiles,
i.e., the variation of particle number flux with height. This
work did not further pursue this for several reasons. First,
the calibration of the signal against the surface optical par-
ticle counter (Fig. 4) becomes less certain when applied to
backscatter at higher altitudes. This is due to increasing un-
certainty due to elevated relative humidity (Fig. S1), the po-
tential decoupling of higher layers from surface observations,
and the loss of signal due to the two-way attenuation of the
backscatter signal. Those issues can be overcome, at least
in principle, by incorporating vertical profile measurements
of particle concentration and by applying appropriate inver-
sion to convert attenuated backscatter to backscatter. Second,
measurements at higher altitudes will require careful screen-
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ing for cloud events, boundary layer height, and boundary
layer evolution. This is illustrated in Fig. 8a, which shows
how clouds and a low signal-to-noise ratio would compli-
cate automated evaluation of a time series at z= 1000 m. In
summary, evaluation of vertical profiles may be possible in
future studies but will require additional data and a case-by-
case analysis approach. In aggregate, the applied methodol-
ogy resulted in a first-pass analysis of the data. Some of the
assumptions may be relaxed with additional analyses, result-
ing in additional information that may be derived from this
and similar datasets.

Overall, the results here are promising to obtain emis-
sion fluxes using remote sensing techniques. One advan-
tage of this approach is that the technique is relatively low-
maintenance, thus allowing long-term measurements. The
fluxes are obtained at 100 m or higher. Therefore, a high-
frequency response instrument sampling at 10 Hz is not as
critical because turbulent eddies are more coherent at higher
altitudes. Another advantage is that the flux footprint in-
creases with height, thus allowing the sampling of emissions
from an area of several square kilometers. However, the lidar-
derived number fluxes also have several limitations. The lidar
backscatter is a convolution integral property, e.g., Eq. (3),
that is sensitive to relative humidity. The relationship be-
tween backscatter and number flux will always be subject
to the limitation of the assumptions made in the analysis.
For example, a campaign-averaged calibration was used to
relate backscatter to particle number, which neglects poten-
tial variations in the shape of the coarse-mode size distri-
bution, variations in aerosol refractive index, variations in
particle shape, and variations in aerosol hygroscopicity. The
seriousness of these assumptions is difficult to evaluate be-
cause a large enough dataset is required to build the cali-
bration in Fig. 4. Future studies may consider a longer-term
dataset, subdivide the calibration into multiple time periods,
and then evaluate the influence of using different calibrations
on the retrieved number flux. Another limitation is the in-
herent noisiness of lidar backscatter data due to instrument
noise and limited photon backscatter from the control vol-
ume. This might limit the application of this technique to
regions where sufficient backscatter is available, as defined
by a high signal-to-noise ratio. The overall limit of detection
appears to exceed values of expected dry deposition fluxes
in the sampled size range. For example, the largest estimate
for the deposition flux is ∼ 10 cm−2 s−1 (Fig. 10). More re-
alistic values of the dry deposition velocity would result in
deposition fluxes of 1 or 0.1 cm−2 s−1. These values are un-
likely to be resolvable with the Doppler lidar in this config-
uration and environment. Despite these limitations, the tech-
nique may have broad applicability to evaluate surface emis-
sions from deserts, oceans, urban landscapes, and biologi-
cally active ecosystems, which all may release appreciable
coarse-mode particles through wind- and weather-driven pro-
cesses.

Data availability. Datasets used here were obtained from the At-
mospheric Radiation Measurement (ARM) user facility, US Depart-
ment of Energy (DOE), particularly from the ARM Mobile Facility
in Houston, TX (all for 1 June 2022 to 10 August 2022). They are
as follows.

– Optical particle counter (AOSOPC), https://doi.org/10.5439/
1824224 (Cromwell and Singh, 2021)

– Doppler lidar (DLFPT), https://doi.org/10.5439/1025185
(Newsom and Krishnamurthy, 2021)

– Interpolated sonde (INTERPOLATEDSONDE), https://doi.
org/10.5439/1095316 (Jensen et al., 2021)

– Surface meteorological instrumentation (MET), https://doi.
org/10.5439/1786358 (Kyrouac and Shi, 2021).

– Eddy Correlation Flux Measurement System (30ECOR), https:
//doi.org/10.5439/1025039 (Sullivan et al., 2021).

– Doppler lidar horizontal wind profiles (DL-
PROFWIND4NEWS), https://doi.org/10.5439/1178582
(Shippert et al., 2022)
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