
Atmos. Chem. Phys., 24, 7261–7282, 2024
https://doi.org/10.5194/acp-24-7261-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Unveiling the optimal regression model for source
apportionment of the oxidative potential of PM10

Vy Dinh Ngoc Thuy1, Jean-Luc Jaffrezo1, Ian Hough1, Pamela A. Dominutti1,
Guillaume Salque Moreton2, Grégory Gille3, Florie Francony4, Arabelle Patron-Anquez5,

Olivier Favez6,7, and Gaëlle Uzu1

1Université Grenoble Alpes, CNRS, IRD, INP-G, INRAE, IGE (UMR 5001), 38000 Grenoble, France
2Atmo AuRA, 69500 Bron, France

3Atmo Sud, 13006 Marseille, France
4Atmo Nouvelle Aquitaine, 33692 Merignac, France

5Atmo Hauts de France, 59044 Lille, France
6INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France

7Laboratoire central de surveillance de la qualité de l’air (LCSQA), 60550 Verneuil-en-Halatte, France

Correspondence: Gaëlle Uzu (gaelle.uzu@ird.fr)

Received: 6 February 2024 – Discussion started: 19 February 2024
Revised: 26 April 2024 – Accepted: 14 May 2024 – Published: 26 June 2024

Abstract. The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to
oxidative stress is thought to be a main pathway in the health effects of PM inhalation. Exogenous ROS from PM
can be assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress
in the lungs. Here, we investigate the importance of OP apportionment methods for OP distribution by PM10
sources in different types of environments. PM10 sources derived from receptor models (e.g., EPA positive matrix
factorization (EPA PMF)) are coupled with regression models expressing the associations between PM10 sources
and PM10 OP measured by ascorbic acid (OPAA) and dithiothreitol assay (OPDTT). These relationships are
compared for eight regression techniques: ordinary least squares, weighted least squares, positive least squares,
Ridge, Lasso, generalized linear model, random forest, and multilayer perceptron. The models are evaluated on
1 year of PM10 samples and chemical analyses at each of six sites of different typologies in France to assess the
possible impact of PM source variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA
and out-of-sample apportionment accuracy vary substantially by model, highlighting the importance of model
selection according to the datasets. Recommendations for the selection of the most accurate model are provided,
encompassing considerations such as multicollinearity and homoscedasticity.

1 Introduction

Ambient particulate matter (PM) is one of the key contribu-
tors to atmospheric pollution and is responsible for approxi-
mately 7 million premature deaths worldwide yearly (WHO,
2021). Many epidemiological studies have linked PM ex-
posure to adverse health effects including (i) acute effects
studies using time series and related studies to evaluate the
immediate impact of PM exposure (Bell et al., 2004; Do-
minici, 2004; Pope and Dockery, 2006; Peng et al., 2009) and
(ii) cohort studies aiming to evaluate the long-term effects of

chronic PM exposure (Pelucchi et al., 2009; Crouse et al.,
2012, 2015; Beelen et al., 2014; Ayres et al., 2008; Yu et al.,
2021). These studies mainly focused on the association with
PM mass concentrations. However, various research shows
that the impacts of PM also depend on other factors such
as chemical composition, size distribution, particle morphol-
ogy, and biological mechanisms (Brook et al., 2010) . The
capacity of PM to generate reactive oxygen species (ROS)
in vivo has recently been introduced as a pivotal indicator of
PM biological mechanism with direct implications for oxida-

Published by Copernicus Publications on behalf of the European Geosciences Union.



7262 V. D. Ngoc Thuy et al.: Unveiling the optimal regression model for source apportionment

tive stress and cellular damage (Li et al., 2008; Lodovici and
Bigagli, 2011; Mudway et al., 2020; Nelin et al., 2012; Rao
et al., 2018; Ayres et al., 2008; Akhtar et al., 2010; Leni et
al., 2020). The quantification of the PM capacity to oxidize
biological media is called “oxidative potential” (OP) (Bates
et al., 2019; Daellenbach et al., 2020; Dominutti et al., 2023).
Various acellular assays of OP have been introduced, differ-
entiating ROS generation mechanisms of PM (Dominutti et
al., 2023; Calas et al., 2018). Dithiothreitol (DTT) and ascor-
bic acid (AA) assays are two of the commonly used proce-
dures in the literature (Liu and Ng, 2023).

The relationship between PM chemical components and
OP activities may indicate which components are the most
prone to generating ROS (Calas et al., 2019; Godri et al.,
2011; Yang et al., 2014; Janssen et al., 2014; Crobeddu et al.,
2017; Szigeti et al., 2015, 2016; Calas et al., 2018). How-
ever, this research pathway struggles with the co-variation
between measured and unmeasured PM components (Calas
et al., 2018; Weber et al., 2018). An alternative approach is to
examine the association between OP and sources of PM ob-
tained using receptor models such as chemical mass balance,
positive matrix factorization (PMF), or principal component
analysis. PMF is the most popular method for its ability to
quantify PM source contributions without extensive prior in-
formation on specific sources at the site studied (Belis et al.,
2013; Viana et al., 2008; Paatero and Tappert, 1994; Brown
et al., 2015; Paatero and Hopke, 2009).

Regression analysis is the most common and effective way
to estimate the redox activity of receptor-model-derived PM
sources (Bates et al., 2015; Deng et al., 2022; Li et al.,
2023; Liu et al., 2018; Shangguan et al., 2022; Verma et al.,
2014; J. Wang et al., 2020; Yu et al., 2019). Generally, this
is achieved by regression analyses to characterize the rela-
tionship between OP activities (nmol min−1 m−3) and PM
source contributions (µg m−3). This approach provides the
OP activities attributed to each microgram of each source
(nmol min−1 µg−1), denoted as “intrinsic OP”, which can be
used to calculate the contribution of each source for each
observation day. Numerous regression models can be used
for such OP source apportionment (SA), with multiple lin-
ear regression fitted by ordinary least squares (OLS) being
the most common regression technique (Bates et al., 2015;
Deng et al., 2022; Li et al., 2023; Liu et al., 2018; Shang-
guan et al., 2022; Verma et al., 2014; Y. Wang et al., 2020;
Yu et al., 2019). Further, some studies exclude sources with
negative intrinsic OP, assuming that negative OP activities
are geochemically nonsensical (Bates et al., 2018; Weber et
al., 2018). Additionally, weighted least squares can be used
to introduce a weighting term, generally using the OP anal-
ysis uncertainties to take into account the measurement un-
certainties of the OP assays (Borlaza et al., 2021; Daellen-
bach et al., 2020; Dominutti et al., 2023; Fadel et al., 2023;
in’t Veld et al., 2023; Weber et al., 2021). Finally, non-linear
models, such as multilayer perceptron, have been used to try
to capture possible non-linearities between OP activities and

PM sources (Borlaza et al., 2021; Elangasinghe et al., 2014;
D. Wang et al., 2023). However, no study to date has com-
pared the performance and applicability of these various re-
gression models. Each model entails different assumptions
which should be carefully considered when selecting a given
model.

This study aims to evaluate the variability in PM10 OP
SA techniques by comparing eight regression techniques:
multiple linear regression fitted by OLS, weighted least
squares (WLS), positive least squares (PLS), ridge regres-
sion (Ridge), least absolute shrinkage and selection opera-
tor (Lasso), generalized linear model (GLM), random forest
(RF), and multilayer perceptron (MLP). These techniques are
applied to apportion PM10 OPAA and PM10 OPDTT to PM10
sources at six sites in France. The PM10 SA outputs have
been published by Weber et al. (2021), using a harmonized
PMF methodology based on 1 year of sampling with similar
chemical analyses for a large set of chemical tracers. The re-
sults of the PM10 OP SA models are compared with regard to
the estimated intrinsic PM10 OP of each source, the out-of-
sample accuracy of the apportionment, and the assumptions
inherent in each model. The most appropriate model at each
site is compared with OLS to quantify the difference between
choosing a model based on data characteristics vs. using the
most common approach. Finally, this study provides guide-
lines for selecting the most suitable model in the strategy for
OP contribution regarding sources of PM10. This holds par-
ticular significance in the context of the implementation of
OP monitoring as a novel air quality metric as foreseen in
research programs (such as RI-Urbans) and in the process of
the revision of European Directive 2008/50/CE.

2 Methodology

2.1 General organization of the study

Figure 1 illustrates the general workflow of this study. Sec-
tions 2.2, 2.3, and 2.4 describe the methods used to an-
alyze the temporal evolution of PM10 sources and PM10
OP, identify collinearity among PM10 sources, and exam-
ine homoscedasticity in the relationship between PM10 OP
and PM10 sources. Section 2.5 describes the eight regression
techniques (OLS, WLS, PLS, Ridge, Lasso, GLM, RF, and
MLP), used for PM10 OP SA. Each technique is applied to
each site separately using PM10 OPv (nmol min−1 m−3) as
the dependent variable and PM10 sources (µg m−3) as inde-
pendent variables. The coefficient of the regression, called
the “intrinsic PM10 OP” of the source (nmol min−1 µg−1),
represents the capacity of each µg of PM10 from the given
source to generate oxidative stress; the higher the intrinsic
PM10 OP of a source, the more redox-active. Each model is
trained on a randomly selected (without replacement) 80 %
subsample of the dataset and validated on the remaining
20 %. This process is repeated 500 times to estimate uncer-
tainty, a method particularly needed for sources with strong
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seasonality. For WLS, PLS, Ridge, and Lasso models, PM10
OP analytical errors were used as a weighting, implying that
the PM10 OP with the high analysis uncertainties has less in-
fluence on the model. These eight regression techniques were
applied to find the relationship between PM10 OP and PM10
sources; however, PLS, Ridge, and Lasso were performed
twice, with and without weighting, and consequently there
are 11 results of regression techniques that will be presented.
Section 2.6 describes the statistical validation of the models
using root mean square error (RMSE), mean absolute error
(MAE), and R-squared (R2). The geochemical validation is
based on the regression coefficient (the intrinsic PM10 OP)
of each source. These are calculated separately for the train-
ing and testing data and averaged across the 500 sampling
iterations.

2.2 Study sites and PM10 sources

Six French sites are selected in this work for their differ-
ent typologies: Roubaix and Nice (traffic sites within ur-
ban areas), Port-de-Bouc (industrial hotspot), Talence (ur-
ban background site), Grenoble and Chamonix (urban back-
ground sites in an alpine valley). At each site, sampling was
conducted over at least 1 year to capture the complete an-
nual evolution of PM10 and its components. These sites and
sampling series have been used and described by Weber et
al. (2019).

In brief, daily filter samples were collected on pre-heated
Pallflex quartz fiber filters every third day through high-
volume sampling (DA80, Digitel). These filters were ana-
lyzed to determine the PM chemical species and OP ac-
tivities. Further details regarding the chemical species and
PM10 OP analysis methodology can be found in Weber et
al. (2019, 2021). Briefly, elemental carbon (EC) and organic
carbon (OC) were analyzed using the EUSAAR2 thermo-
optical protocol with a Sunset Laboratory analyzer. Major
ionic components (Cl−, NO−3 , SO2−

4 , NH+4 , Na+, K+, Mg2+,
Ca2+) and methanesulfonic acid (MSA) were measured by
ion chromatography (IC). Anhydro sugars and saccharides
(including levoglucosan, mannosan, arabitol, sorbitol, and
mannitol) were analyzed by high-performance liquid chro-
matography with pulsed amperometric detection (HPLC-
PAD). Major and trace elements (Al, Ca, Fe, K, As, Ba, Cd,
Co, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Sr, V, and Zn) were
determined by inductively coupled plasma atomic emission
spectroscopy or mass spectrometry (ICP-AES or ICP-MS).
Furthermore, colocated PM10 measurements were conducted
automatically at each site using the Tapered Element Oscil-
lating Microbalance equipped with a Filter Dynamics Mea-
surement System (TEOM-FDMS).

We used the PM10 sources identified by Weber et
al. (2019), who performed a separate PMF for each site us-
ing a harmonized approach for all sites (the same chemical
species and measurement methods, the same procedure to es-
timate uncertainties, and the same constraints on the prelim-

inary solutions). Table 1 provides a data description, includ-
ing the sampling duration, the number of samples collected,
and the PM10 sources identified at each site, while Fig. 2
presents the location of the sites in France together with the
respective proportion of each PM10 source at each site.

2.3 OP analysis

PM10 OP assays were performed on PM10 extracted from
the filters using simulated lung fluid, as detailed in Calas
et al. (2017, 2018). The AA assay involved ascorbic acid,
a natural antioxidant in the lungs inhibiting lipid and pro-
tein oxidation in the lining fluid, using the method pre-
sented by Kelly and Mudway (2003) and further described by
Calas et al. (2018). Conversely, the DTT assay used dithio-
threitol (DTT) as a chemical surrogate for cellular reduc-
ing agents, specifically nicotinamide adenine dinucleotide
and nicotinamide adenine dinucleotide phosphate oxidase,
thereby replicating in vivo interactions between PM10 and
biological oxidants (Cho et al., 2005; Calas et al., 2018).
Both assays measured the consumption of AA or DTT dur-
ing the assay, i.e., the rate of the transfer of electrons from
AA or DTT to oxygen. The assays were conducted with 96-
well plates of UV-transparent quality (CELLSTAR, Greiner
Bio-One), and absorption measurements were acquired us-
ing a TECAN spectrophotometer (Infinite M200 Pro) at the
wavelengths of 265 nm for the AA assay and 412 nm for the
DTT assay (Calas et al., 2017, 2018, 2019). Each sample
extraction was subjected to four analyses; the PM10 OP in
this study represents the mean and the analysis uncertainty is
the standard deviation of these four PM10 OP analyses. After
analysis, the PM10 OP activities of each sample were blank-
subtracted using laboratory and field blanks, and normalized
using the air sampling volumes and the mass concentration.
The resulting OPV represents the PM10 OP due to PM10 per
cubic meter of air (nmol min−1 m−3). To simplify the deno-
tation of PM10 OP, OP is used to represent PM10 OP through-
out this article.

2.4 Collinearity and heteroscedasticity tests

The result of a regression model strongly depends on the
characteristics of the dataset because each model makes as-
sumptions about the data. Two critical assumptions in OLS
regression analysis are that (1) there is little collinearity be-
tween independent variables (the PM10 sources in this study)
and (2) the variance of the regression residuals is constant
(called “homoscedasticity”). These assumptions should be
tested in different ways.

2.4.1 Collinearity

Collinearity occurs when one or more of the independent
variables is close to a linear combination of the other in-
dependent variables. When collinearity is present, small
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Figure 1. Workflow comparison of the methodology for PM10 OP source apportionment.

Figure 2. The location of the sites selected for this study. The small colored dots represent the typology of the sites. The pie charts are
the PM10 source apportionment for each site with the colors identifying the PM10 sources. Background photography from ESRI satellite
imagery.
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Table 1. Data description.

PdB TAL GRE-fr CHAM RBX NIC

Name Port-de-Bouc Talence Grenoble Chamonix Roubaix Nice

No. of 185 147 125 115 156 107
samples

Sampling June 2014 to February 2012 to February 2017 to November 2013 to January 2013 to July 2014 to
dates June 2016 April 2013 March 2018 October 2014 May 2014 May 2015

No. of 10 10 10 8 9 9
sources

changes in the data can cause large changes in estimated
coefficients, and the estimated standard errors of the coef-
ficients are large. The variance inflation factor (VIF) is an
indicator of the collinearity between independent variables
(Craney and Surles, 2002; O’Brien, 2007; Rosenblad, 2011).
The VIF of a specific source is calculated as

VIFi =
1

1−R2
i

, i = 1, . . ., p− 1, (1)

where p is the number of PM10 sources and R2 is the coeffi-
cient of determination of a multiple linear regression model
between the ith source and the other sources. The VIF val-
ues of a PM10 source present a range between 1 and∞. The
higher the VIF values, the greater the collinearity between
this PM10 source and the other sources. A VIF value between
5 and 10 is commonly interpreted as moderate collinear-
ity, while values greater than 10 indicate high collinearity
(Craney and Surles, 2002).

2.4.2 Heteroscedasticity

Heteroscedasticity occurs when the variance of regression
residuals is not constant but varies for different values of the
dependent variable. In this case, the estimated standard errors
of the regression coefficients are not reliable. The Goldfeld–
Quandt test was developed by Goldfeld and Quandt (1965)
to evaluate residual variance in a regression model. To imple-
ment the Goldfeld–Quandt test, an OLS regression was per-
formed between OP and PM10 sources to identify the residual
of OP prediction. Next, the PM10 sources and corresponding
residual are divided into three segments: the upper segment is
the group with higher PM10 source concentration, the lower
segment is the group with lower PM10 source concentration,
and the middle segment, constituting 10 % of the moderate
PM10 concentration, is excluded. A subsequent regression
analysis is then conducted on the two remaining subgroups
to determine the ratio of residual sums of squares. Finally, an
F test is conducted on this ratio to assess whether the vari-
ances are the same, with a p value below 0.05 interpreted as
evidence of heteroscedasticity.

The variance inflation factor (VIF) and the Goldfeld–
Quandt test were performed in Python 3.9, using the
statsmodels 0.14.0 package (Seabold and Perktold, 2010).

2.5 Regression models

The fundamental principle of regression models in this study
is to use the PM10 sources to predict OP activities by iden-
tifying the parameters (coefficients and residuals) that mini-
mize an error term (Hastie, 2009). A simple regression model
can be represented by Eq. (2), which defines the estimated
function of the regression model, and by Eq. (3), which esti-
mates the residuals:

ŷ = f (X)+ e, (2)
e = y− ŷ, (3)

where ŷ is the estimated OP (nmol min−1 m−3), X is
the PM10 source contribution (µg m−3), y is the ob-
served OP (nmol min−1 m−3), and e denotes the residuals
(nmol min−1 m−3). Each model has certain assumptions and
a minimization term, as presented in the next section.

2.5.1 Ordinary least squares (OLS)

OLS is a linear regression technique that minimizes the resid-
ual sum of squares. This model is based on several assump-
tions: (1) linearity – the relationship between OP and PM10
sources is linear; (2) independence – the PM10 sources must
be independent, with no collinearity; (3) homoscedasticity –
the variance of residuals is constant across all values of PM10
sources; and (4) normality – the residuals are normally dis-
tributed. In the OLS model, the estimated equation and ob-
jective to minimize are defined as follows:

ŷ = β0+

p∑
1
βi · xi, (4)

Minimize
m∑
i=1

(
yi − ŷi,

)2 (5)

where β0 denotes the intercept (nmol min−1 m−3), βi
represents the regression coefficient (intrinsic OP,
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nmol min−1 µg−1) of source i, xi is the concentration
of source i (µg m−3), p is the number of PM10 sources, and
m is the number of observations.

2.5.2 Weighted least square (WLS)

The assumptions and the minimization term in WLS closely
align with those in OLS. The only difference is that WLS ac-
counts for heteroscedasticity by introducing a weighting term
for individual OP observations whose variance is assumed
to be related to the variance of the residuals. The estimation
equation in WLS is the same as that of OLS, but the objective
to minimize is expressed as

Minimize
m∑
i=1

(
yi − ŷi

)2
· wi,

wi =
1

SD2
i

, (6)

where wi is the weight assigned to each observation and SDi
is the OP analysis variance of each observation.

2.5.3 Positive least squares (PLS)

The assumptions for PLS primarily include linearity, inde-
pendence, and normality. PLS can be applied with weighting
if there is heteroscedasticity in the data. PLS extends OLS
with the constraint that the regression coefficients must be
non-negative. The estimation equation and the error term,
PLS, are similar to OLS (without weighting) and WLS (ap-
plying weighting). To ensure the positivity of coefficients, a
specific condition must be met.

βi ≥ 0, ∀ i in PM sources (7)

2.5.4 Ridge

Shrinkage methods such as Ridge regression try to produce
a more interpretable model or reduce error in the presence
of collinearity by selecting a subset of the independent vari-
ables. Ridge regression is introduced by Hoerl and Kennard
(1970), and it incorporates a penalty term that shrinks the co-
efficients towards 0. Ridge regression minimizes the residual
sum of squares plus a penalty term proportional to the sum
of squares of the coefficients (L2 regularization) as shown in
Eqs. (8) and (9). Consequently, Ridge regression reduces the
influence of a PM10 source that exhibits minimal impact on
OP prediction without excluding it from the model.

Minimize
m∑
i=1

(
yi − ŷi

)2
+ λ ·

p∑
j=1

β2
j (8)

Minimize
1

2m

m∑
i=1

wi
(
yi − ŷi

)2
+ λ ·

p∑
j=1

β2
j (9)

Here, λ is the parameter representing the amount of shrink-
age; the larger λ, the greater the shrinkage. The hyperparam-

eter tuning was implemented with different values of λ (5,
1, 0.5, 0.1, 0.01, 0.005, 0.001, 0.0005, and 0.0001). The best
λ for every site varied from 0.005 to 0.01, and in this study,
0.01 was selected. Ridge can be applied with weighting to
account for heteroscedasticity.

2.5.5 Least absolute shrinkage and selection operator
(Lasso)

Lasso (Tibshirani, 1996) is a shrinkage method that uses
a penalty term proportional to the sum of the absolute re-
gression coefficients (L1 regularization). This penalty term
shrinks the coefficients of a source with a low impact on OP
prediction to 0, effectively removing it from the model. This
results in a sparse model that may be easier to interpret and
may reduce error on out-of-sample data. However, Lasso is
more sensitive to outliers than Ridge regression and is less
stable when data are collinear. Lasso can be applied with
weighting to account for heteroscedasticity.

Minimize
m∑
i=1

(
yi − ŷi

)2
+ λ ·

p∑
j=1

∣∣βj ∣∣ (10)

Minimize
1

2m

m∑
i=1

wi
(
yi − ŷi

)2
+ λ ·

p∑
j=1

∣∣βj ∣∣ (11)

Similar to Ridge, λ is the parameter representing the amount
of shrinkage; λ is selected as 0.01 in this study by running the
hyperparameter tuning using the same values as for Ridge.

2.5.6 Generalized linear model (GLM)

Generalized linear models, as introduced by McCullagh
(1989), provide a framework for regression analysis that
can contain non-normal error distributions and capture non-
linear relationships between OP activities and PM10 sources.
GLMs allow for error variance that is a function of the pre-
dicted value, hence accounting for heteroscedasticity. Key
assumptions underlying GLM include (1) independence,
(2) the non-normal distribution of OP, and (3) that the rela-
tionship between the PM10 sources and the transformed OP
(logarithm in this study) is linear. The mathematical expres-
sion for GLM can be represented as follows:

log(ŷ)= β0+

p∑
0
βi · xi, (12)

where β0 denotes the intercept, βi represents the regression
coefficient of source i, and xi is the concentration of source
i.

2.5.7 Random forest (RF)

RF, an ensemble learning method introduced by Breiman
(2001), combines multiple decision trees to make predic-
tions. In the reference implementation, each tree is grown
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on a bootstrap sample of the data, and a random subset of
the available features is evaluated at each node to choose the
best split. The predictions of all trees are averaged to give
the RF final prediction. RF is customizable via hyperparam-
eters such as the number of trees, the size of the bootstrap
sample, and the number of features to evaluate at each node.
For hyperparameter tuning, 5-fold cross-validation was used
on the training data. The training dataset was separated into
five parts: four parts were used for training and the remaining
part was used for validation. This process was repeated five
times, and the hyperparameter value producing the lowest
mean RMSE across the five parts was selected. The hyper-
parameter tuning is shown in Sect. S1.1 in the Supplement.

RF does not assume a specific equation to express the re-
lationship between OP activities and PM10 sources, with the
result that intrinsic OP could not be computed in this regres-
sion model. Nevertheless, RF can estimate the relative im-
portance of each PM10 source in OP prediction. This study
estimated the permutation importance of each PM10 source
as the mean increase in the mean squared error of predicted
OP when the values of the PM10 source were permuted.

2.5.8 Multilayer perception (MLP)

MLP is an artificial neural network that consists of multi-
ple layers of interconnected nodes or neurons organized in
a feedforward structure (Akhtar et al., 2018; Chianese et al.,
2018; Bourlard and Wellekens, 1989). These layers include
an input layer (PM10 sources), one layer or several hidden
layers, and an output layer (OPAA or OPDTT activities). In
MLP, the neurons in the hidden layers are linked to the pre-
vious neurons by the connection weight, where every neu-
ron is independent and has a different weight. The output of
each neuron depends on its inputs and an activation func-
tion, which, if non-linear, allows the model to capture non-
linear relationships. The implementation of MLP includes
three steps: (1) forward pass to training model – the input
is passed to the model, multiplied with an initial weight, bias
is added at every layer, and the output of the model is then
calculated; (2) error calculation – after applying step 1, the
output of the model and the observed data are used to cal-
culate the error; (3) backward pass – the error is propagated
back through the network, and the weights are then adjusted
to minimize overall error. These three steps are repeated until
the error is minimized.

The choice of hyperparameters to ensure the MLP model
robustness is processed by hyperparameter tuning using 5-
fold cross-validation, as shown in Sect. S1.2. Thanks to hy-
perparameter tuning, the two hidden layers and a logistic sig-
moid activation function were selected in this study to cap-
ture the non-linear relationships between OP activities and
PM10 sources.

All regression models were performed using the Python
package statsmodels 0.14.0 (Seabold and Perktold, 2010)
and scikit-learn 1.3.1 (Pedregosa et al., 2011).

2.5.9 Performance of the models

The performance metrics R-square (R2), mean absolute er-
ror (MAE), and root mean square error (RMSE) were used
to assess the goodness of fit of the models, as described by
Kuhn and Johnson (2013). R2 quantifies the ability of the
model to explain the variance in the data. R2 = 1 indicates
a perfect fit. RMSE represents the aggregation of the indi-
vidual differences between predicted OP and measured OP,
while MAE assesses the average magnitude of errors be-
tween them. Lower RMSE and MAE values indicate a better
fit, with a perfectly fitting model yielding an RMSE or MAE
of 0. Equations (13), (14), and (15), respectively, define R2,
MAE, RMSE. These indicators are computed for the train-
ing and testing data of each sampling iteration and averaged
across the 500 sampling iterations.

R2
= 1−

Sum of Squared Residuals
Total Sum of Squares

= 1

−

∑m
i=0
(
yi − ŷi

)2∑m
i=0
(
yi − ŷi

)2 (13)

MAE=

∑m
i=0

∣∣yi − ŷi∣∣
m

(14)

RMSE=

√∑m
i=0
(
yi − ŷi

)2
m

(15)

3 Result and discussion

Assessments of collinearity and homoscedasticity are ad-
dressed in Sect. 3.1. Model performance, including key per-
formance metrics and identification of the optimal model,
is detailed in Sect. 3.2. Section 3.3 compares the intrinsic
OP estimated by the different models. Section 3.4 compares
the intrinsic OP between the combined best-fit and reference
models. Lastly, Sect. 3.5 proposes recommendations for se-
lecting an appropriate model.

3.1 Dataset characteristics

The contributions of identified sources (µg m−3) and the OPv
activities (nmol min−1 m−3) in each site are presented in
Fig. 3, illustrating variations in annual average OP activi-
ties and PM10 source contributions by site. Most sites, in-
cluding traffic and industrial sites, show higher OPDTT ac-
tivities than OPAA. Conversely, for the alpine valley sites,
CHAM presents higher OPAA than OPDTT, while GRE-fr ex-
periences similar levels of OPAA and OPDTT. Additionally,
the average OP activities in every site are not proportional to
the average PM concentration. For instance, CHAM and NIC
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had lower PM10 concentrations but higher OP activities than
other sites, while TAL showed high PM10 concentrations but
relatively lower OP activities.

The variations observed in the levels of PM10 and OP
across six sites can be attributed to distinctions in the iden-
tified sources and their respective contributions. These dis-
parities are contingent upon the unique typologies of each
site, which are discussed in Weber et al. (2021). Further, we
can observe a significant seasonality in the OP activities (Ta-
ble S1 in the Supplement). The strong seasonality of OP in
alpine valley sites has been addressed in previous studies
(Borlaza et al., 2021; Dominutti et al., 2023; Weber et al.,
2018, 2021), with thermal inversions during winter increas-
ing pollutant concentrations and OP activities compared with
summer. Conversely, OP activities in cold and warm periods
in other sites are not significantly different.

The PM10 sources and their distribution vary among sites
(Fig. 3) because of the difference in typology and local ac-
tivities. For instance, in the industrial site (PdB), two spe-
cific sources are identified: shipping emissions (HFO), with
an annual mean contribution of 1.39 µg m−3, and industrial
sources at 0.86 µg m−3. The urban background site TAL also
appears to be influenced by industrial sources (2.34 µg m−3),
which might, however, be partly due to biases induced by the
application of the harmonized receptor model protocol (We-
ber et al., 2019). Note that the application of a site-specific
PMF procedure for this site leads to a much lower contri-
bution of this source category but relatively similar contri-
butions of other sources (Favez, 2017). GRE-fr, an urban
background site in an alpine valley, presents significant long-
range transport sources, with secondary sulfate contributing
3.90 µg m−3 followed by biomass burning at 2.21 µg m−3. As
expected, biomass burning is an abundant source in CHAM,
accounting for 7.28 µg m−3 of the PM contribution, while the
traffic sites RBX and NIC displayed high contributions of
traffic sources (at 2.43 and 1.45 µg m−3, respectively).

The presence of multicollinearity and homoscedasticity
was tested to assess the data characteristics of every site. The
only site with evidence of collinearity was NIC, where the
VIF of the traffic source was equal to 5.0. For all other sites,
VIF values are below 5, indicating limited collinearity among
sources. This is expected, as the PMF analysis is constrained
to avoid collinearity between sources. VIF values for each
site can be found in Table S2.

The presence of heteroscedasticity is commonly found
when the dependent variable (or OP in this study) exhibits
a large difference between the minimum and maximum val-
ues or when the error variance varies proportionally with an
independent variable (PM10 sources). The heteroscedasticity
was assessed by applying the Goldfeld–Quandt test. Table 2
presents the p values of the Goldfeld–Quandt test, indicat-
ing homoscedasticity of OP prediction when p > 0.05. This
test reveals that heteroscedasticity was detected in CHAM, in
GRE-fr, in NIC for OPAA, and in CHAM and TAL for OPDTT
(Table 2). We observed a large difference between the cold

Table 2. The p value of the Goldfeld–Quandt heteroscedasticity
test.

PdB TAL GRE-fr CHAM RBX NIC

AA 0.15 0.78 � 0.001 � 0.001 0.44 0.002
DTT 0.59 � 0.001 0.189 � 0.001 0.56 0.91

and warm periods for both OPAA and OPDTT in CHAM, sim-
ilar to what was seen for OPAA in GRE-fr (Table S1), which
can be the reason for the presence of heteroscedasticity. For
NIC and TAL, there is an insignificant difference between the
cold and warm periods, which indicates the presence of het-
eroscedasticity may be because of the relationship between
the PM10 sources and error variance. When heteroscedas-
ticity is detected, unweighted regression for OP prediction
according to the source may not accurately reflect the un-
certainty in the intrinsic OP of each source. The scatterplots
representing the relationship between the regression analysis
residuals and the fitted values (for observed OP) are available
in Figs. S1 and S2 in the Supplement.

3.2 Performance of regression models

The 11 regression models, with or without the weighting for
some of them, were tested by comparing their performance
metrics between the measured and reconstructed OPs. For
each run (n= 500 iterations), theR2, RMSE, and MAE were
computed for the testing and training dataset, resulting in
500 values for each performance metric. Figure 4 presents
the mean R2 values of the training datasets as well as the
mean and the standard deviation of the testing datasets of the
OPAA models across the 500 sampling iterations, and Fig. 5
presents the mean RMSE and MAE. The same result pat-
tern was found for OPDTT, as presented in Tables S3, S4, S5.
The WLS, wPLS, wRidge, and wLasso models incorporated
weighting, while the OLS, PLS, Ridge, Lasso, GLM, RF, and
MLP models were unweighted.

OP predictions across all sites are statistically vali-
dated, with testing R2 values in RBX, NIC, PdB, TAL,
CHAM, and GRE-fr observed to be 0.66, 0.76, 0.76,
0.78, 0.87, and 0.90, respectively. The lowest mean test
set RMSE values are 0.70, 0.28, 0.21, 0.37, 0.70, and
0.31 nmol min−1 m−3, respectively, for the same sites. The
lowest mean test set MAE values are 0.49, 0.23, 0.14,
0.25, 0.45, and 0.21 nmol min−1 m−3, respectively. Notably,
the GLM model exhibits the lowest R2 values and the
highest RMSE for all sites (Tables S3–S5). These results
strongly suggest that the relationship between OPAA and
PM10 sources is not log-linear.

Differences in MAE, RMSE, and R2 between the training
and testing database for RF and MLP are significant across
the sites. Notably, RF displays a large difference in R2 , with
a gap of up to 0.6 in RBX (R2 training: 0.92; R2 testing:
0.27). Similar gaps were found in RMSE and MAE. RF con-
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Figure 3. The contribution of sources to PM10 and the OP activities in six sites. The left y axis and bar show the contribution of PM sources
in µg m−3. The right y axis, circles, and squares show the mean OPv activities in nmol min−1 m−3, with the red circle indicating OPAA and
the black square indicating OPDTT.

sistently performed best on the training set, characterized by
the highest R2 and the lowest MAE and RMSE values, but
had lower test set R2 values than the other models (except
GLM). Conversely, MLP exhibited training R2 values com-
parable to other models but lower test R2 values. These find-
ings suggest overfitting: the flexible algorithms identify re-
lationships in the training data that do not generalize to the
testing data. This observation may be attributed to the lim-
itations of data coverage, possibly failing to fully represent
the underlying relationships, leading to poor performance in
the testing datasets (Matsuki et al., 2016; Benkendorf and
Hawkins, 2020; Stockwell and Peterson, 2002; Wisz et al.,
2008; Hernandez et al., 2006; Hawkins, 2004; Raudys and
Jain, 1991). Pearce and Ferrier (2000) recommended that the
minimum number of samples for robust performance should
be over 250 for GLM model, while Raudys and Jain (1991)
showed that the minimum number of samples is based on the
complexity of the model and the number of predictors. Ad-
ditionally, Harrell (2016) suggested that the number of pre-
dictors (PM sources) should be below the number of sam-
ples divided by 15, a threshold not reached in this analy-
sis. For example, in NIC, the minimum number of samples
should be 135 for the training set (9 PM sources× 15), while
in total, we have only 107 samples. Therefore, we can also
recommend that, for optimal performance of RF and MLP,
the number of samples and PM sources should satisfy these
thresholds.

The WLS, OLS, wPLs, wRidge, and wLasso models show
more robust performances with fewer differences between
the training and testing data. At most sites, there is very lit-
tle difference between the R2, RMSE, and MAE of OLS and
Ridge, with or without weighting, and often between PLS
and Lasso as well. This consistency is observed even in the
collinearity case of NIC, where VIF= 5. The difference be-
tween these models is a maximum of 0.06 in R2, 0.01 in

MAE, and 0.1 in RMSE, indicating that these models work
well for OP prediction. Nevertheless, it is worth noting that
every model exhibits different assumptions that have to be
respected. The assumption violations may lead to unreliable
regression coefficients (intrinsic OP) even though the predic-
tion is good (Williams et al., 2013; Cohen et al., 2002).

The best model for each site was selected based on both
data characteristics (collinearity and heteroscedasticity) and
testing data performance. For sites with collinearity, Ridge
and Lasso were considered the most appropriate. For sites
with heteroscedasticity, models with weights were consid-
ered the most appropriate. For sites with neither collinear-
ity nor heteroscedasticity, OLS and PLS were considered the
most appropriate. Tables 3 and 4 present the best OPAA and
OPDTT prediction models for each site. It follows that the
best model is not necessarily the same one for both series of
OP for a given site. As a rule, the model that exhibits the best
performance metrics (the best model by error in Table 3 for
OPAA and Table 4 for OPDTT) is suited to be the best model
chosen by data characteristics; therefore, choosing a model
according to data characteristics help to obtain more reliable
OP predictions.

3.3 Effect of the choice of a model on intrinsic OP

It is particularly important to try to define the best way of
calculating the more accurate intrinsic OP of PM sources and
the contribution of sources to OP, since these values are fun-
damental inputs in all the works of large-scale modeling of
OP with chemical transport models (CTM) (Daellenbach et
al., 2020; Vida et al., 2024). Figures 6 and 7 show the varia-
tions in intrinsic OP for all the models, focusing on the results
of NIC as an example. The evaluation of the five other sites
is presented in Figs. S3–S7 for OPAA and Figs. S8–S12 for
OPDTT. The differences in equations, error term minimiza-
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Figure 4. The R2 values of 11 OPAA models in six sites. The mean R2 of the training data is shown by the blue bars, the mean R2 of
the testing data is shown by the red triangled, and the standard deviation of the R2 of the testing data is shown by the red bars. The y axis
represents the models, and the x axis denotes the R2 values.

Table 3. Criteria for selection of the best model for OPAA.

PdB TAL GRE-fr CHAM RBX NIC

Collinearity No No No No No Yes

Heteroscedasticity No No Yes Yes No Yes

Best model OLS/PLS OLS/PLS WLS/wPLS WLS/wPLS OLS/ PLS wRidge/wLasso
by characteristic

Best model by error PLS PLS wPLS wPLS OLS wRidge

tions, and assumptions can explain the differences in intrin-
sic OP per µg of source among the eight regression models.
While the R2 , RMSE, and MAE values are similar among
models (except for GLM, RF, and MLP), the intrinsic OP val-
ues significantly differ between the models with and without
weighting and between the linear and non-linear regression

models. The average intrinsic OP of 500 iterations is dis-
cussed in this section, since these values are generally used to
calculate the contribution of the PM10 source to OP in prior
studies (Borlaza et al., 2021; Dominutti et al., 2023; Weber
et al., 2018). The mean and standard deviation of intrinsic
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Figure 5. The MAE and RMSE of 11 OPAA models in every site for the testing data. Blue and red lines represent the RMSE and the MAE,
respectively. The values in the figure are the mean of the RMSE and MAE of 500 iterations.

Table 4. Criteria for selection of the best model for OPDTT.

PdB TAL GRE-fr CHAM RBX NIC

Collinearity No No No No No Yes

Heteroscedasticity No Yes No Yes No No

Best model OLS/PLS WLS/wPLS OLS/PLS WLS/wPLS OLS/PLS Ridge/Lasso
by characteristic

Best model by error OLS wPLS PLS wPLS PLS Ridge

OPAA and OPDTT for the six sites are shown in Tables S6
and S7, respectively.

The intrinsic OPAA of PM10 sources at NIC is the same
between WLS and wRidge and between the OLS and Ridge,
revealing that the moderate collinearity of the road traffic
source did not affect the estimated intrinsic OPAA. PLS sets
the intrinsic OPAA of some sources to 0, therefore producing
slightly different results. Lasso regression sets the intrinsic
OPAA of some sources to 0 and shrinks the estimates for all
other sources toward 0. GLM produces intrinsic OPAA val-
ues that represent a multiplicative change on the log scale,

and thus they are not directly comparable to the other mod-
els. However, the direction and importance of the sources are
similar to the other models. Whatever the model, road traf-
fic appears as the source with the highest intrinsic OPAA,
followed by biomass burning, aged salt, salt, and sulfate-
rich sources, in NIC. Traffic and biomass burning sources
have been similarly recognized as significant contributors to
OPAA in prior studies (Borlaza et al., 2021; Dominutti et
al., 2023; Stevanović et al., 2023). The intrinsic OP of the
dominant sources is stable, indicating that all these models
could give the same information about the intrinsic OP of the
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Figure 6. Intrinsic OPAA values of the different PM10 sources at Nice obtained with the different models.

main sources. Conversely, the differences are larger between
models for the sources with small to very small intrinsic OP
(MSA-rich, primary biogenic, nitrate-rich, and dust sources),
whose intrinsic OP varies from positive to negative among
models.

The OPDTT intrinsic values in NIC (Fig. 7) display mini-
mal variation among the WLS and wPLS. This consistency
is linked to the absence of negative intrinsic values. On the
other hand, even though there is the presence of moderate
collinearity, wRidge still has the same result as WLS and
wPLS. In line with the OPAA results, the wLasso and GLM
models exhibit distinct responses compared with the other
models. The intrinsic OPDTT of all sources varies depend-
ing on the presence or absence of weighting. While the WLS
models tend to amplify the influence of some sources (aged
sea salt, primary biogenic, sea salt, and sulfate-rich sources),
the OLS reduces the intrinsic OPDTT of these sources. Con-
versely, MSA-rich, nitrate, and road traffic sources undergo
less influence in WLS but more influence in OLS. Different
from OPAA, OPDTT prediction shows more variation among
models, highlighting the effect of choosing a model on eval-
uating the intrinsic OPDTT of PM10 sources.

The comparison of intrinsic OP among regression mod-
els in NIC demonstrated that OPDTT and OPAA intrinsic val-
ues exhibit variation across different models with and with-
out weighting, illustrating that the choice of the model sig-
nificantly influences the values obtained for intrinsic OP of

PM10 sources (a similar pattern is observed for all other sites
and shown in Figs. S3–S7 for OPAA and Figs. S8–S12 for
OPDTT). Because of the difference in intrinsic OP across
models, a comparison between the best-performing and most
commonly used models (OLS) is presented in the following
section to elucidate the advantage of choosing a model based
on data characteristics (Sect. 3.4).

3.4 Comparisons between the best site-specific model
and OLS

In this section, the intrinsic OP of the best model is selected
for each site as discussed in Sect. 3.2, and the intrinsic val-
ues of each source are compared with the ones returned by
the OLS model. The OLS model is used as a representative of
usual practices that do not consider the database characteris-
tics (Williams et al., 2013). The average intrinsic OP value of
each PM10 source is calculated from all 500 bootstrapping it-
erations for all sites where that particular source is identified.
Intrinsic OP values obtained in this way from the best model
(the best model presented in Table 3 for OPAA and Table 4
for OPDTT) encompassing all six sites are called “the intrin-
sic OP of the best model”, and the intrinsic OP values derived
from the OLS from all six sites are called the “intrinsic OP
of the reference model”.
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Figure 7. Variations in the intrinsic OPDTT of the different PM10 sources at Nice obtained with the different models.

A meaningful comparison of the two series of intrinsic
values requires two conditions. First, intrinsic OP should
be consistent across all sites. While recognizing that intrin-
sic OP values depend on diverse factors, we assumed the
sites share fairly uniform PM10 chemical source profiles in
France. This is demonstrated by evaluating the Pearson dis-
tance and standardized identity distance similarity indicators
of the source chemical profiles (Belis et al., 2015; Weber
et al., 2019), and Fig. S13 indicates consistent profiles of
sources for the six sites. Consequently, we could expect to
observe minimal divergence in intrinsic OP values among
these sites. Second, we postulate that negative intrinsic OP
values are possible since previous studies have reported that
total PM10 intrinsic OP can be modulated due to the syn-
ergetic/antagonistic effects involving, for example, soluble
copper, quinones, and bacteria (Borlaza et al., 2021; Pietro-
grande et al., 2022; Samake et al., 2017; S. Wang et al., 2018;
Xiong et al., 2017). Samake et al. (2017) demonstrated that
the presence of bacterial cells in aerosol decreases the redox
activity of Cu and 1,4-naphthoquinone, with a maximum de-
crease of 60 % compared with the oxidative reactivity con-
sidered individually. Pietrogrande et al. (2022) indicated that
the mixture of Cu, Fe, 9,10-phenanthrene quinone, and 1,2-
naphthoquinone reduces the rate consumption of AA and
DTT by up to 50 % depending on the quantity of each chem-
ical. Wang et al. (2018) reported that the mixing of Cu, naph-
thalene secondary organic aerosol (SOA), and phenanthrene

SOA only achieved half of the DTT rate consumption com-
pared with the separately considered consumption. Xiong et
al. (2017) showed the presence of antagonists in the inter-
action of Fe and quinones; nevertheless, it was much lower
than those in the other studies (under 10 %). These references
reported that the antagonistic effects of a mixture can signif-
icantly reduce the consumption rate of OPDTT and OPAA,
and this impact varies widely from 10 % to 60 % depend-
ing on the type of chemical species and the quantity of each
species in the mixture. Consequently, we consider here that
the intrinsic OP value of an individual site for a given source
could be negative only within a range of at most 60 % of the
mean combined intrinsic OP value of this source across all
sites. Negative intrinsic OP exceeding this criterion may re-
sult from the mathematical construction of the model. The
comparison between the intrinsic OPAA of the best model
and the reference model is presented in Sect. 3.4.1 and that
of OPDTT is shown in Sect. 3.4.2.

3.4.1 OPAA activities

The results of the comparison of OPAA intrinsic values
(Fig. 8 and Table S8) show that the anthropogenic sources
have the highest intrinsic OP values in both the best model
and the reference model. Among these sources, road traffic
appears as the most prominent potent fraction, followed by
biomass burning, HFO, and industrial sources. These results
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are aligned with prior research (Calas et al., 2019; Daellen-
bach et al., 2020; Dominutti et al., 2023; Fadel et al., 2023;
Fang et al., 2016; in’t Veld et al., 2023; Weber et al., 2018;
Zhang et al., 2020) which has highlighted the sensitivity of
OPAA to concentrations of metals, black carbon, and organic
carbon. The differences between the best model and the refer-
ence model were insignificant for these sources, demonstrat-
ing that the best model and the reference model consistently
captured similar patterns for the most critical sources of OP
activities.

However, the interquartile ranges (IQR) of the intrinsic OP
values are consistently narrower for the best model across
all sources, accounting for less divergence in intrinsic OP
values across sites. Moreover, the median intrinsic OP val-
ues obtained from the best model closely approximated the
mean values, indicating the absence of extreme intrinsic OP
values. For instance, in the case of road traffic, the mean
and median values were 0.24 and 0.23 nmol min−1 µg−1, re-
spectively. Conversely, the reference model exhibited a large
difference between the mean and median values, implying
lower consistency across sites and sampling iterations. The
same result was observed in biomass burning source, in
which the median and mean intrinsic OP in the best model
had fewer discrepancies. Further, the biomass burning intrin-
sic OP in GRE-fr of the best model is more consistent with
those in other sites (best: 0.30 nmol min−1 µg−1; reference:
0.35 nmol min−1 µg−1).

When considering sources with low intrinsic OP, the
variability can be larger between the two methods. As
an example, for the sulfate-rich sources, the median in-
trinsic OP values were positive (0.002 nmol min−1 µg−1),
while the mean intrinsic OP values were negative
(−0.008 nmol min−1 µg−1). The mean intrinsic OP in the
best model exhibited fewer negative values in individual sites
than in the reference model (for aged salt, salt, primary bio-
genic, MSA-rich, sulfate-rich, and nitrate-rich sources). In
addition, the best model showed the least disparate intrin-
sic OP among individual sites, for instance, the aged salt
sources in GRE-fr and the primary biogenic and salt sources
in CHAM. Furthermore, the best model displayed an in-
trinsic OP meaningful in terms of geochemical validation,
which was shown in the salt, primary biogenic, and sulfate-
rich sources. For instance, in the reference model, the av-
erage intrinsic OP of the primary biogenic source in NIC
(−0.03 nmol min−1 µg−1), the intrinsic OP of salt in GRE-
ft (−0.07 nmol min−1 µg−1), and the sulfate-rich source in
CHAM (−0.05 nmol min−1 µg−1) represented a 100 % re-
duction compared with the mean intrinsic OP of all sites.
Moreover, negative intrinsic OP was observed in NIC (pri-
mary biogenic), and some extreme values were observed in
GRE-fr (aged salt, salt) and CHAM (salt, primary biogenic,
MSA-rich; where heteroscedasticity was presented) in the
OLS model, which underscores that the model assumptions
on data characteristics proving false could impact the accu-

racy of OP prediction. Consequently, these results highlight
the advantage of considering the data in the model selection.

The detailed comparison of intrinsic OPAA between the
best model and the reference model is categorized into four
groups and discussed in detail in Sect. S9. These groups
include (1) anthropogenic sources without nitrate and sul-
fate (road traffic, biomass burning, HFO, and industrial
sources); (2) natural inorganic sources (aged sea salt, sea salt,
dust); (3) biogenic sources (primary biogenic and MSA-rich
sources); and (4) nitrate and sulfate-rich sources.

3.4.2 OPDTT activities

Similar to OPAA, for OPDTT the IQR of the best model
is narrower for most of the sources than the IQR of the
reference model (OLS). Except for road traffic, indus-
trial, and MSA-rich sources, the IQR is slightly higher in
the best model (Fig. 9 and Table S9). In the two mod-
els, the mean intrinsic OP is essentially unchanged, where
traffic is the most critical source (0.27± 0.10) followed
by HFO (0.18± 0.01), biomass burning (0.12± 0.03), dust
(0.12± 0.07), primary biogenic (best: 0.10± 0.06; refer-
ence: 0.12± 0.08) and MSA-rich sources (best: 0.11± 0.09;
reference: 0.09± 0.09). The minimum difference between
the two models in the dominant sources again confirms the
conclusion in the OPAA comparison, demonstrating the sim-
ilar pattern of the best model and the reference model in the
most crucial sources of OP. For both the best and the ref-
erence models, OPDTT activities showed sensitivity to more
sources compared with OPAA, as discussed in previous stud-
ies (Borlaza et al., 2021; Calas et al., 2019; Dominutti et al.,
2023; Fadel et al., 2023).

While the best model and reference model give the same
mean intrinsic OPDTT for all sites, the mean OPDTT at each
individual site can vary substantially between the two mod-
els. The best model exhibited the positive intrinsic OP for all
sources, while the reference model displayed negative intrin-
sic OP in RBX (MSA-rich and sulfate-rich sources). Espe-
cially in the case of sulfate-rich sources in RBX, the nega-
tive intrinsic OP in the reference model passed the thresh-
old of the negative value, which presented a 110 % reduc-
tion compared to the mean intrinsic OP of all sites. This is
also found in the OPAA comparison, which confirmed that
the best model generates a geochemical meaningful intrin-
sic OP. In addition, the best model exhibited consistent in-
trinsic OP across sites, especially for the dust, salt, primary
biogenic, and sulfate-rich sources in TAL (heteroscedastic-
ity is presented in this site), where intrinsic OP in TAL in
the best model is more similar to the other sites. For in-
stance, the reference model showed that the intrinsic OP in
TAL is 0.20 nmol min−1 µg−1, far from the mean of all sites
(0.07 nmol min−1 µg−1). We observed the same for the in-
trinsic OP of the nitrate-rich source in CHAM (where the
heteroscedasticity is detected), which displayed a less dis-
similar OP in CHAM compared with the other site in the best
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Figure 8. Intrinsic OPAA estimated by the best model and the reference method in the six sites. The y axis represents the intrinsic OP values
in nmol min−1 µg−1, and the x axis represents the sources. The gray bars are the median intrinsic OP values of the best models in the six
sites (n= 500 bootstrapping× number of sites where the given source is detected) for each source. The white bars are the same median
intrinsic OP values for the reference (OLS) model. The gray plus symbol represents the mean of intrinsic OP values. The hatched bars are
the interquartile ranges of the intrinsic OP values. The dots represent the mean intrinsic OP of all sites, including gray – Chamonix, green –
Grenoble, red – Nice, blue – Port-de-Bouc, purple – Roubaix, and orange – Talence.

model. This again validates the conclusion in the OPAA com-
parison, demonstrating that respecting the model assumption
is essential for obtaining a robust OP SA result.

The comparison of intrinsic OP between the best model
and the reference model highlights the importance of consid-
ering the database characteristics when selecting a model for
OP SA. For all the datasets studied here, using the best model
for each site delivered more robust results, with reduced un-
certainty and reduced differences in intrinsic OP across sites,
and it provided a more geochemically meaningful intrinsic
OP. The recommendation for selecting a model based on the
characteristics of the database is presented in Sect. 3.5.

3.5 Guidelines for the selection of a regression model
for OP SA

Our results have highlighted the benefits of choosing a model
that matches the characteristics of the data to improve the
robustness of the OP SA method. For this reason, this section
develops a workflow to help make model selection decisions.
Before selecting a regression for OP SA, the first question
is whether the PM10 sources are collinear and the second is
whether the residual variance of the regression between OP
and PM10 mass is constant. These two questions represent
the characteristics of PM10 sources and OP activities, which
vary according to the study site.

For data exhibiting collinearity between sources and gen-
erating a residual variance that varies according to the value
of the PM10 sources, weighted regularization regression can

https://doi.org/10.5194/acp-24-7261-2024 Atmos. Chem. Phys., 24, 7261–7282, 2024



7276 V. D. Ngoc Thuy et al.: Unveiling the optimal regression model for source apportionment

Figure 9. Intrinsic OPDTT estimated by the best model and the reference model in the six sites. The y axis represents the intrinsic OP values
in nmol min−1 µg−1, and the x axis represents the sources. The gray bars are the median intrinsic OP values of the best models in the six
sites (n= 500 bootstrapping× number of sites where the given source is detected) for each source. The white bars are the same median
intrinsic OP values for the reference (OLS) model. The gray plus symbol represents the mean of intrinsic OP values. The hatched bars are
the interquartile ranges of the intrinsic OP values. The dots represent the mean intrinsic OP of all sites, including gray – Chamonix, green –
Grenoble, red – Nice, blue – Port-de-Bouc, purple – Roubaix, and orange – Talence.

help to reduce collinearity and to match the model assump-
tion about the residual. On the other hand, unweighted Ridge
and Lasso are introduced for data showing collinearity and
homoscedasticity. Additionally, data with no collinearity are
suitable for OLS and unweighted PLS in the case of ho-
moscedasticity, while WLS and weighted PLS are used for
data with heteroscedasticity.

If the number of predictors (PM10 sources) is below
the number of samples divided by 15, RF and MLP can
also be employed to capture possible non-linear relation-
ships between the OP and PM10 sources. However, cross-
validation must be used to ensure that there is no over-
fitting. In addition, these models do not estimate intrinsic
OP (nmol min−1 µg−1) but only the importance of each PM10
source to the OP prediction. This is a major drawback, since

the intrinsic OP of sources is a prerequisite for the modeling
effort of OP with CTM. However, RF and MLP could be use-
ful for OP prediction in the case of larger datasets generated
by online instruments.

For each data characteristic there is more than one model
that is suitable. Out-of-sample performance metrics should
be employed to identify the most accurate of these models.

Finally, these techniques of OP apportionment could not
be performed well with uncertain PMF-derived sources. The
PMF results sometimes do not adequately represent PM mass
concentration for several reasons, such as the lack of a trace
species to identify a source, an insufficient sample size, the
source contribution being too small to be identified (under
1 %), or collinearity issues. Important information could be
missed because of these problems in PMF implementation,
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Figure 10. Workflow in model selection considering the data characteristics.

which is explained by the model’s low accuracy. Our study
did not encounter this problem, since the PMF is harmo-
nized and performed according to European recommenda-
tions which could perform the regression technique well and
make it possible to obtain a very satisfactory successive OP
modeled in comparison with observations after regression
techniques (R2 from 0.7 to 0.9). However, this problem could
potentially happen, and for these cases, we could recommend
either subtracting the total source contribution from the PM
mass concentration to get the part that PMF cannot simulate.
The information in this part may contain vital sources. Alter-
natively, it is possible to re-execute the PMF to validate the
result and ensure the robustness of the chemical profile and
the contribution of sources.

Limitations and perspectives of the study:

– This study compares eight regression models but is not
exhaustive; further research could add more regression
techniques to evaluate result variations across models.
The potential techniques that could be applied for OP
SA are gradient boosting techniques for resolving re-
gression models or supervised machine learning tech-
niques which enable the investigation of linear and
non-linear regression relationships. However, the con-
sistently strong performance of ordinary linear regres-
sion across six locations in France suggests that there
may be little to gain from applying more complex mod-
els in areas with similar PM10 sources.

– PMF coupled with a regression model remains a popular
approach for OP SA. Notably, the uncertainties in PMF
are typically addressed in chemical profiles but not in
contributions. Incorporating uncertainty from variations
in contributions into models could enhance their robust-
ness compared with relying only on absolute PMF re-
sults.

– Observations ranged between 100 and 200 samples at
each site, which may be insufficient to obtain a fair per-
formance of GLM, decision tree, and neural network
models, even though this number of samples is suffi-
cient to address SA through the PMF model for offline
analyses. Therefore, this study outlines well the limi-
tations of GLM, RF, and MLP for offline datasets. Fu-
ture investigations should be performed in an extended
dataset, such as long-term or real-time measurement
data, to investigate the performance of machine learn-
ing algorithms.

– This study only focused on the two most popular OP
assays of PM10 (OPDTT and OPAA). However, there are
various OP assays available, such as OPDCFH, OPOH,
OPFOX, OPGSH and OPESR, and different sizes of PM
(PM1, PM2.5, PM5). Further research should include
more OP assays, which can be helpful in evaluating the
performance of various regression models for different
OP and different PM sizes.

– This study used the analytical uncertainty as the weight-
ing for the weighted model. However, the weighting
can be selected based on different ways, as reported by
Montgomery et al. (2012): (1) prior information from
the theoretical model, (2) using the residual extracted
from the OLS model, (3) selecting the weighting based
on the uncertainty of the instrument if the dependent
variable is measured by a different method, and (4) se-
lecting the weighting based on the error of these obser-
vations if the dependent variable is the average of dif-
ferent observations.

4 Conclusion

The results of the OP SA marked an important milestone as
they were revealed for the first time through the use of eight
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regression models, including OLS, WLS, PLS, GLM, Ridge,
Lasso, RF, and MLP. This in-depth analysis was carried out
on a complete set of data collected from six sites with dif-
ferent characteristics. The approach of selecting a suitable
model for each site based on specific data characteristics re-
sulted in a more consistent intrinsic OP across sites, in stark
contrast to the variation observed when using the basic OLS
model. The revelations of the study have provided concrete
recommendations for the judicious selection of an appropri-
ate regression model based on the unique characteristics of
the dataset. These guidelines should help to improve the ac-
curacy of OP assessments and contribute to the refinement of
air quality assessment methods. In addition, the implications
of this research extend to the implementation of OP monitor-
ing as a new measure of air quality, particularly on European
supersites. As this initiative aligns with the ongoing revision
process of European Directive 2008/50/CE, the findings of
the study assume a pivotal role in shaping the methodologies
underpinning air quality assessments on a broader regulatory
level.
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