



## Supplement of

## A mechanism of stratospheric $O_3$ intrusion into the atmospheric environment: a case study of the North China Plain

Yuehan Luo et al.

Correspondence to: Tianliang Zhao (tlzhao@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1: The spatial distributions of three nesting domains d01, d02 and d03 with terrain altitude (m in a.s.l.). The red star represents the capital of China, Beijing.



Figure S2: Hourly changes of simulated and observed meteorological elements and near-surface O<sub>3</sub> concentrations during May 18–20, 2019 averaged over North China.



Figure S3: Spatial distribution of (a) the surface  $O_3S$  derived from EAC4 data and (b) the differences of surface  $O_3$  between CASE<sub>STRO3</sub> and CASE<sub>noSTRO3</sub> simulations of WRF-Chem over the NCP. The red dots in (b) indicate the geographical location of the representative sites SJZ and JN in the NCP.



Figure S4: Latitudinal vertical sections of  $O_3$  concentrations (color contours) averaged over 32 °N-40 °N from the MERRA2 data during May 18-21, 2019. Black solid lines indicate the dynamical tropopause labeled by PV=2. The dashed black lines represent air temperature (°C), the solid blue lines represent relative humidity (%), and the blue rectangles mark the NCP region.



Figure S5: Atmospheric circulation patterns of horizontal wind vectors at 200 hPa, 500 hPa, and 850 hPa at 16:00 LST on May 18 and 20, 2019. The shaded colors and black arrows denote the horizontal wind speed (m·s<sup>-1</sup>), and the black contour lines denote the geopotential height (gpdm). The red solid boxes indicate the scope of the NCP region.



Figure S6: Hourly variations of (a, d) T<sub>2</sub>, RH<sub>2</sub>, (b, e) WS<sub>10</sub>, and total cloud cover (TCC), (c, f) near-surface O<sub>3</sub> and CO concentrations in representative cities SJZ and JN from the observations in the NCP region. The shaded areas mark the periods of the SI to the near-surface layer.

| Process          | Parameters          | WRF-Chem options                |
|------------------|---------------------|---------------------------------|
| Physical process | Microphysics        | Lin scheme                      |
|                  | Longwave radiation  | RRTM scheme                     |
|                  | Shortwave radiation | Goddard scheme                  |
|                  | Boundary layer      | YSU scheme                      |
|                  | Land surface        | unified Noah land-surface model |
|                  | Surface layer       | MM5 similarity scheme           |
|                  | Cumulus             | Grell 3D ensemble scheme        |
| Chemical process | Gas-phase chemistry | CBMZ                            |
|                  | Aerosol module      | MOSAIC_8bins                    |

Table S1: Physical and chemical parameterization schemes used in the WRF-Chem simulations.