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Abstract. Large uncertainties persist within current biomass burning (BB) inventories, and the choice of these
inventories can substantially impact model results when assessing the influence of BB aerosols on weather and
climate. We evaluated discrepancies among BB emission inventories by comparing carbon monoxide (CO)
and organic carbon (OC) emissions from seven major BB regions globally between 2013 and 2016. Main-
stream bottom-up inventories, including the Fire INventory from NCAR 1.5 (FINN1.5) and Global Fire Emis-
sions Database version 4s (GFED4s), along with the top-down inventories Quick Fire Emissions Dataset 2.5
(QFED2.5) and Visible Infrared Imaging Radiometer (VIIRS-)based Fire Emission Inventory version 0 (VFEI0),
were selected for this study.

Global CO emissions range from 252 to 336 Tg, with regional disparities reaching up to a 6-fold difference.
Dry matter is the primary contributor to the regional variation in CO emissions (50 %–80 %), with emission
factors accounting for the remaining 20 %–50 %. Uncertainties in dry matter often arise from biases in calculating
bottom fuel consumption and burned area, influenced by vegetation classification methods and fire detection
products. In the tropics, peatlands contribute more fuel loads and higher emission factors than grasslands. At
high latitudes, increased cloud fraction amplifies the discrepancy in estimated burned area (or fire radiative
power) by 20 %. The global OC emissions range from 14.9 to 42.9 Tg, exhibiting higher variability than CO
emissions due to the corrected emission factors in QFED2.5, with regional disparities reaching a factor of 8.7.

Additionally, we applied these BB emission inventories to the Community Atmosphere Model version 6
(CAM6) and assessed the model performance against observations. Our results suggest that the simulations
based on the GFED4s agree best with the Measurements of Pollution in the Troposphere (MOPITT-)retrieved
CO. While comparing the simulation with the Moderate Resolution Imaging Spectroradiometer (MODIS) and
AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD), our results reveal that there is no global
optimal choice for BB inventories. In the high latitudes of the Northern Hemisphere, using GFED4s and
QFED2.5 can better capture the AOD magnitude and diurnal variation. In equatorial Asia, GFED4s outperforms
other models in representing day-to-day changes, particularly during intense burning. In Southeast Asia, we rec-
ommend using the OC emission magnitude from FINN1.5 combined with daily variability from QFED2.5. In the
Southern Hemisphere, the latest VFEI0 has performed relatively well. This study has implications for reducing
the uncertainties in emissions and improving BB emission inventories in further studies.

Published by Copernicus Publications on behalf of the European Geosciences Union.



6788 W. Hua et al.: Uncertainties in BB emissions and their impact on modeled pollutants

1 Introduction

In recent years, extreme wildfire events have occurred fre-
quently around the world (Balshi et al., 2009; Knorr et al.,
2016; Yang et al., 2019; Junghenn Noyes et al., 2022). The
size of these fires has consistently broken records over the
last few decades (Westerling et al., 2006; Westerling and
Bryant, 2008; Brando et al., 2020), threatened lives and in-
frastructure, and continuously jeopardized the global econ-
omy. Wildfires are also one of the most important sources
of biomass burning (BB) emissions, which can emit loads of
gaseous and particulate pollutants (Ferek et al., 1998; Adams
et al., 2019) that are detrimental to regional air quality and
human health (Reid et al., 2005, Reid and Mooney, 2016).
Additionally, BB aerosols, predominantly black carbon (BC)
and organic carbon (OC), can affect regional climate by ab-
sorbing and/or scattering solar radiation, acting as cloud con-
densation nuclei, and altering cloud albedo (Spracklen et al.,
2011; Boucher et al., 2013). Recent studies have shown that
aerosols produced by biomass burning can significantly af-
fect changes in temperature, cloud fraction, precipitation, and
even the circulation structure (Christian et al., 2019; Yang et
al., 2019; Yu et al., 2019; Carter et al., 2020; Jiang et al.,
2020; Ding et al., 2021; Huang et al., 2023). However, these
changes in meteorology are sensitive to the choice of BB
emission inventory.

Previous studies often found that there is a significant de-
viation between the gaseous or particulate pollutants simu-
lated by the model and the satellite retrieval value (Bian et
al., 2007; Chen et al., 2009; Carter et al., 2020); one of the
most important reasons comes from the uncertainties in emis-
sion inventories. For example, Bian et al. (2007) applied six
different BB emission inventories, the Global Fire Emissions
Database versions 1 and 2 (GFED1 and GFED2), Arellano1,
Arellano2, Duncan1, and Duncan2, to the Unified Chemistry
Transport Model (UCTM). They reported that although the
total global CO of the six BB emission inventories was within
30 % of each other, the model results suggested that regional
deviations can be much higher by 2–5 times, especially in
the Southern Hemisphere. Therefore, bias in emission inven-
tories can often significantly impact the direct and indirect
effects of models on aerosol assessments (Liu et al., 2018;
Ramnarine et al., 2019; Carter et al., 2020; L. Liu et al.,
2020). Carter et al. (2020) compared simulated black carbon
(BC) and organic carbon (OC) concentrations with measure-
ments from the Interagency Monitoring of Protected Visual
Environments (IMPROVE) observation network from May
to September. They suggested that using the Fire INventory
from NCAR 1.5 (FINN1.5) inventory improves model re-
sults in eastern North America, while using the GFED4s, the
Quick Fire Emissions Dataset 2.4 (QFED2.4), and the Global
Fire Assimilation System 1.2 (GFAS1.2) inventories shows
better agreement with observations in western North Amer-
ica. They also noted that population-weighted BB PM2.5 con-
centrations in Canada and the adjacent United States could

vary between 0.5 and 1.6 µgm−3 in 2012 by using different
BB emissions. Liu et al. (2018) used the global Community
Atmosphere Model 5 (CAM5) and three different BB emis-
sion inventories to analyze the uncertainties in the aerosol ra-
diative effects in the northeastern United States in early April
2009. They found that aerosols exhibited a stronger cool-
ing effect when CAM5 used the QFED2.4 inventory rather
than the GFED3.1 and GFED4s inventories, with additional
cooling of −0.7 and −1.2 Wm−2 through the aerosol di-
rect radiative effect and the aerosol–cloud radiative effect,
respectively. On a global basis, Ramnarine et al. (2019) used
the GEOS-Chem-TwO-Moment Aerosol Sectional (GEOS-
Chem-TOMAS) global model and found that the direct ra-
diative effects and indirect effects of aerosols driven by the
FINN1.5 emission inventory in 2010 were 70 % and 10 %
lower than those driven by GFED4, respectively. Therefore,
to better estimate regional aerosol–radiation/aerosol–cloud
interactions in wildfire regions, it is necessary to understand
the differences in emission inventories from biomass com-
bustion and the main drivers of uncertainties.

In general, BB emission inventories are based on bottom-
up or top-down methods to infer the emission source inten-
sity. The bottom-up approach, also known as the fire detec-
tion and/or burned area method, estimates emissions based
on surface data such as fuel loading, active fire counts, and/or
burned area. Currently, the widely used BB inventories based
on the bottom-up approach include Duncan (Duncan et al.,
2003), GFED (van der Werf et al., 2006, 2010, 2017), FINN
(Wiedinmyer et al., 2011), and the Global Inventory for
Chemistry-Climate Studies-GFED4S (G-G) (Mieville et al.,
2010). The top-down approach uses satellite observations of
fire radiative power (FPR), a method to measure the radia-
tive energy release rate of burning vegetation, to estimate
emissions by fuel consumption. The BB inventories based on
the top-down method include Arellano (Arellano et al., 2004;
Arellano and Hess, 2006), GFAS (Kaiser et al., 2012), Fire
Energetics and Emission Research (FEER) (Ichoku and Elli-
son, 2014), QFED (Darmenov et al., 2015), the Fire Emis-
sions Estimate Via Aerosol Optical Depth (FEEV-AOD)
(Paton-Walsh et al., 2012), and the recently released Visi-
ble Infrared Imaging Radiometer (VIIRS-)based Fire Emis-
sion Inventory version 0 (VFEI0) (Ferrada et al., 2022). On
a global scale, the average annual BB emissions of CO and
OC can differ by a factor of 3 to 4, with the global emissions
fluctuating in the range of 280–580 and 13–50 Tgyr−1, re-
spectively. The bias may be even greater when focusing on
emissions in specific regions (Bian et al., 2007; Liousse et
al., 2010; Williams et al., 2012; Carter et al., 2020; Lin et al.,
2020b; T. Liu et al., 2020). For example, the estimated CO
emission of the Arellano inventory in South America dur-
ing the burning peak season of September 2000 is 4 times
greater than that of the GFED1 inventory (Bian et al., 2007).
A recent study has even found that since 2008, OC emissions
from QFED2.5 in the Middle East have been approximately
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50 times larger than those from GFED3 and GFED4 (Pan et
al., 2020).

Several previous studies have analyzed the reason for the
huge emission bias. According to Darmenov et al. (2015), the
emissions Ei (mass of pollutant i) is the sum of the products
of the emission factor (EF) and the dry matter (DM) for each
biome. While earlier studies suggested that the uncertainty
in BB emissions arises mainly from differences in emission
factors (e.g., Alvarado et al., 2010; Akagi et al., 2011; Ur-
banski et al., 2011), more recent studies point out that uncer-
tainty in dry matter also plays an important role (Paton-Walsh
et al., 2010, 2012; Carter et al., 2020). For example, Paton-
Walsh et al. (2012) assessed the difference in CO emissions
from the February 2009 Australian fire and found that total
CO emissions in GFED3.1 were roughly 3 times higher than
those in FINN1, with DM contributing up to 80 %. Carter
et al. (2020) evaluated emissions from various North Amer-
ican BB inventories over the 2004–2016 period and found
that changes in DM were very close to the emission trend,
suggesting that uncertainty in potential DM rather than EF
across North America was the primary factor.

The accuracy of BB inventories is influenced by land cover
and land use (LULC) data, impacting both EFs and DM
(Wiedinmyer et al., 2006; Ferrada et al., 2022). In a study
by Wiedinmyer et al. (2006), three distinct LULC products
were employed to drive a regional BB emissions model. The
variations in LULC products led to discrepancies in fuel con-
sumption, resulting in an annual bias of up to 26 % in North
and central America. Moreover, EFs are closely tied to differ-
ent biomes, introducing uncertainty into BB emission inven-
tories with varied biome classifications (Ferrada et al., 2022).
In addition to LULC products, uncertainties are introduced
by fire detection products (such as FRP and burned area prod-
ucts), affected by factors such as satellite transit time and
cloud obscuration. For example, Paton-Walsh et al. (2012)
found that in an Australian fire called Black Friday in Febru-
ary 2009, the burned areas of FINN1 were barely half of
those of GFED3.1. T. Liu et al. (2020) reported that com-
pared with the active fire area used in FINN1.5, the burned
area product selected by GFED4s is less sensitive to the satel-
lite overpass time and cloud obscuration. These results indi-
cate that LULC and fire detection products are key factors
leading to bias in BB emission estimation.

Although previous work has generated biomass burning
emission inventories and attempted to reduce their uncertain-
ties (Duncan et al., 2003; Arellano et al., 2004; Arellano and
Hess, 2006; van der Werf et al., 2006, 2010, 2017; Bian et
al., 2007; Mieville et al., 2010; Wiedingmyer et al., 2011;
Kaiser et al., 2012; Paton-Walsh et al., 2012; Ichoku and El-
lison, 2014; Darmenov et al., 2015; Liu et al., 2018; Ramnar-
ine et al., 2019; Carter et al., 2020; Lin et al., 2020b; T. Liu
et al., 2020; Pan et al., 2020; Zhang et al., 2020; Ferrada et
al., 2022), they did not analyze the reasons why DM and EF
exhibited large differences among various emission invento-
ries, which may vary over time and location. Here, this study

Figure 1. (a) The fraction of BB CO emissions to the sum of
anthropogenic and BB CO emissions (CO_BB/CO_Total) dur-
ing 2013–2016 and (b) the spatial distribution of CO emissions
(FINN1.5 was used as an example). The red dots in (a) are the fire
points from the MCD14DL satellite product. In (b), seven regions
with high BB emissions taken from those applied by van der Werf
et al. (2006, 2010) are marked with black boxes, and the red tri-
angles represent 12 AERONET stations. In this study, the seven
major BB regions include boreal North America (BONA), boreal
Asia (BOAS), Southeast Asia (SEAS), equatorial Asia (EQAS),
Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa
(SHAF), and Southern Hemisphere South America (SHSA).

aims to explore the underlying reasons for the differences
in BB emission inventories in major combustion regions
around the world, thereby attempting to reduce the uncer-
tainties of the impact of BB emission inventories on model
results. To minimize the interference of anthropogenic emis-
sions on model results, we selected combustion regions sat-
isfying the following conditions: (1) regional BB CO emis-
sions are above 20 Tgyr−1; (2) BB CO emissions contribute
more than 70 % of the total. We ultimately selected seven
major burning areas as shown in Fig. 1, including boreal
North America (BONA), southern hemispheric South Amer-
ica (SHSA), northern hemispheric Africa (NHAF), southern
hemispheric Africa (SHAF), boreal Asia (BOAS), Southeast
Asia and India (SEAS), and equatorial Asia (EQAS).

In this study, we compare several widely used datasets
(FINN1.5, GFED4s, and QFED2.5) and the recently released
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VFEI0. The former two datasets are based on the bottom-
up method, while the latter two are based on the top-down
method. Specific details of these BB inventories are de-
scribed in Sect. 2. In Sect. 3, we explore the differences in
CO and OC emissions among the four inventories, examin-
ing the contributions of DM and EFs to these differences,
respectively. For the first time, we evaluate the biases in CO
column concentrations and AOD driven by BB inventories in
the Community Earth System Model version 2.1 (CESM2)-
CAM6 model. Based on our findings, we provide recommen-
dations on which inventory should be adopted across various
regions. Section 4 presents the conclusion and discussion,
and our research is expected to offer insights into reducing
the uncertainties with BB emission datasets.

2 Data and methodology

2.1 Biomass burning emission inventories

We simultaneously diagnosed the differences between two
bottom-up approach inventories and two top-down approach
inventories, including FINN1.5, GFED4s, and QFED2.5,
which are commonly used in the current atmospheric model,
as well as the recently released VFEI0. Details about the
emission inventories and the satellite products they use are
listed in Table 1 and Text S1 in the Supplement.

2.1.1 Bottom-up (burned area) inventories

In this study, both FINN1.5 and GFED4s adopt a bottom-
up approach (also called the burned area method), and the
details are shown in Table 1. FINN1.5 uses the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) prod-
uct MCD14DL for burned area calculations. This active fire
detection product monitors real-time fire points larger than
0.05 km2. However, it is important to note that if a fire occurs
when the satellite is not in transit or is obscured by clouds
during transit, it will not be detected (Firms, 2017). Addition-
ally, FINN1.5 assumes that every fire detected at the Equator
(30° N–30° S) will persist the next day at half the size of the
previous day’s fire (Table 1). However, this assumption may
not accurately reflect real-world conditions (Wiedinmyer et
al., 2011; Pan et al., 2020). The land cover classification
in FINN1.5 is based on MCD12Q1 (IGBP, version 2005).
According to the IGBP land cover classification, each fire
is initially assigned to 1 of 16 land use/land cover (LULC)
classes and then lumped into 6 generic categories, includ-
ing tropical forest, temperate forest, boreal forest, savanna
and grasslands, woody savannas and shrublands, and crop-
land (Table S1 in the Supplement, Wiedingmyer et al., 2011).
Emission factors (EFs) for various gaseous and particulate
species are determined from a dataset compiled by Akagi et
al. (2011) and Andreae and Merlet (2001), with these EFs
varying for different LULC types. Currently, FINN1.5 has
been providing daily global emissions from biomass burning

since 2002, including 41 species, with a spatial resolution of
1 km2 (Table 1).

GFED4s differs in that it primarily uses the MCD64A1
Collection 5.1 burned area product (Giglio et al., 2013; Ran-
derson et al., 2018), capable of detecting fires larger than
500m× 500m. For small fire areas, GFED4s incorporates
active fire detection products (MOD14A1 and MYD14A1),
compensating to some extent for the lower spatial resolution
of the original product MCD64A1 (van der Werf et al., 2017).
In general, burned area products reduce uncertainty in fire
detection due to satellite non-transit and cloud/smoke obscu-
ration when a burn occurs by identifying day-to-day surface
variations, such as charcoal and ash deposition, vegetation
migration, and changes in vegetation structure (Boschetti
et al., 2019). Similar to FINN1.5, each fire in GFED4s is
initially assigned to 1 of 16 LULC subcategories and then
lumped into 6 categories, with the inclusion of an additional
biome, peatland (Table S1). EFs for various species follow
Akagi et al. (2011) and Andreae and Merlet (2001), vary-
ing across different biome categories. Currently, GFED4s has
been providing daily global emissions from biomass burning
since 1997, including 27 species, with a spatial resolution of
0.25°× 0.25° (Table 1). However, since 2017, the DM pro-
vided by GFED4s has been derived from a linear relationship
between past emissions and MODIS FRP data for the 2003–
2016 period.

2.1.2 Top-down (fire radiative power) inventories

In this study, both QFED2.5 and VFEI0 use a top-down
approach known as the fire radiative power (FRP) method.
In contrast to the bottom-up approach, the top-down ap-
proach relies on satellite products detecting fire-radiated
power rather than fire point detection. QFED2.5 uses MODIS
Collection 6 MOD14/MYD14 level 2 products to esti-
mate fire radiative power and pinpoint fire locations us-
ing MOD03/MYD03 (Darmenov et al., 2015; T. Liu et al.,
2020). The FRPs are integrated over time to obtain fire ra-
diative energy (FRE), which is converted to DM using an
empirical coefficient α. The initial α values are obtained
from Kaiser et al. (2009) and are adjusted monthly based on
global emissions of GFED2 in 2003–2007. QFED2.5 classi-
fies land cover using the International Geosphere-Biosphere
Programme (IGBP-INPE) dataset, aggregating 17 land cover
classes into 4 broad vegetation types (Table S1, Darmenov
and da Silva, 2015). Initially, EFs for various species in
QFED2.5 also follow Akagi et al. (2011) and Andreae and
Merlet (2001). But for certain species, including organic car-
bon (OC), black carbon (BC), ammonia (NH3), sulfur diox-
ide (SO2), and particulate matter with a diameter < 2.5 µm
(PM2.5), QFED2.5 incorporates a scaling factor to enhance
the EFs. QFED2.5 has been providing daily global BB emis-
sions since 2000, including 17 species, with a spatial resolu-
tion of 0.1°× 0.1° (Table 1).
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Table 1. Brief introduction to the four BB inventories.

Inventory Bottom-up approach Top-down approach

FINN1.5 GFED4s QFED2.5 VFEI0

Temporal range 2002– (NRT)a 1997–2023b 2000– (NRT)a 2012– (NRT)a

Spatio-temporal
resolution

1 km, daily 0.25°, monthly
(daily fraction)

0.1°, daily (0.25°× 0.375°,
NRTa)

500 m, daily

Primary satellite fire
input

MCD14DL C5 active fire
area (1 km)

MCD64A1 C5.1 burned
area (500 m)

MOD14/MYD14 C6 FRP
(1 km)

VNP14IMG FRP (1 km)

Statistical boosts/
adjustment

Smooth assumption in
tropicsc

Small fire boost
(MOD14A1/MYD14A1)

Cloud-gap-adjusted FRP
density

Primary land use/
land cover (LULC)

MCD12Q1 (IGBP), 2005 MCD12Q1 (UMD), 2001–
2012

IGBP-INPE MCD12C1(IGBP) and
Köppen climate
classification

Peatland fire × Olson et al. (2001) × Ferrada et al. (2022)

Conversion to dry
matter

Hoelzemann et al. (2004) CASA biogeochemical
model (van der Werf
et al., 2010)

QFED FRP vs. GFED2 dry
matter global calibration

VFEI FRP vs. GFED3.1 dry
matter global calibration

Emission factors Andreae and Merlet (2001);
Andreae and Rosenfeld
(2008); McMeeking et al.
(2009); Akagi et al. (2011)

Akagi et al. (2011); An-
dreae and Merlet (2001)

Andreae and Merlet (2001),
Akagi et al. (2011)d

Akagi et al. (2019)

Speciation 41 species 27 species 17 species 46 species

References Wiedinmyer et al. (2011) van der Werf et al. (2017) Darmenov and da Silva
(2015)

Ferrada et al. (2022)

a NRT – near real time. b 2017–2022 are beta version releases. c In the equatorial region (30° N–30° S), each detected fire will be counted as 2 d, assuming the second day’s fire will continue to
be half the size of the previous day’s. d Particulate-matter-related emissions from biomass burning (e.g., BC, OC, NH3, SO2, and PM2.5) were corrected from emission factors based on MODIS
AOD.

VFEI0 also adopts the top-down method but uses the
VNP14IMG.001 FRP product from the Visible Infrared
Imaging Radiometer (VIIRS) I-band. This product has a
higher resolution (375 m at nadir) compared to MODIS (1 km
resolution at nadir), enabling the detection of smaller and
colder flames (Ferrada et al., 2022). VFEI0 uses an em-
pirical coefficient α derived from the linear regression of
GFED3.1 DM and VIIRS FRP to convert detected FRE into
DM. VFEI0 uses MCD12C1 (IGBP, version 2015) as the un-
derlying LULC data, supplemented by Köppen climate clas-
sification (Beck et al., 2018), defining 10 subcategories in
VFEI0 (Table S1). VFEI0 groups these subcategories into six
biomes, corresponding to EFs provided by Andreae (2019).
Currently, VFEI0 has been offering daily BB emissions since
20 January 2012, covering 46 emitted species with a horizon-
tal resolution of 0.005°× 0.005° (Table 1).

2.2 The calculation of EFs and DM

To calculate regional EFs and DM, we adopt the approach
outlined by Carter et al. (2020). Initially, we divide CO emis-
sions per grid by the EF applied to each biome, yielding DM:

DMb,x = COb,x/EFb, (1)

where b represents one of the seven biomes in Table S1, and
x represents the location grid. This calculation of DM using
CO is reasonably representative, given that the inventories
are not adjusted for CO emission factors. After calculating
DMb,x for each grid, we derive a regional average emission
factor by dividing total CO emissions by total DM for each
major BB region:

EFCO =
∑

b,x
CO

/∑
b,x

DM. (2)

These calculations enable us to discern the influence of
LULC classification on BB emission inventories. For a spe-
cific biome type within a given region, we calculate EF by
dividing the CO emissions of that particular biome classifi-
cation by the sum of the value from each biome in the respec-
tive region:

EFb = COb
/∑

b
DM, (3)

where b represents one of the seven biome classifications in
this study (Table S1).

Furthermore, for the two bottom-up inventories, we invert
the fuel consumption for each vegetation biome b within a
given area:

FCb = DMb

/
BA. (4)
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Here, the DM corresponding to each biome in FINN1.5 and
GFED4s is obtained using Eq. (1), and BA represents the
total burned area derived from the emission inventory.

2.3 Quantitative statistical methods

As described in Sect. 2.1, fire detection is greatly affected
by cloud/smoke obscuration in the bottom-up approach. For
example, if there are clouds/smoke at high altitudes while
fire occurs on the ground, the MCD14DL active fire detec-
tion product used in FINN1.5 may miss these fire points. In
addition, the combustion that is too small in size and too
low in temperature cannot be effectively monitored due to
the low brightness temperature contrast with the surround-
ing environment. In contrast, the burned area product (mainly
MCD64A1) used by GFED4s determines the burning infor-
mation based on the changes such as surface albedo and
is, therefore, less affected by clouds/smoke. For inventories
based on the top-down approach, the emission inventories
also differ to a large extent due to the cloud/smoke obscura-
tion, since QFED2.5 uses a “sequential method” to correct
for missing FRPs during cloud/smoke obscuration, whereas
VFEI0 does not. Thus, in this study, the symmetrical mean
absolute percentage error (SMAPE) and Pearson’s R are
used to assess the difference in sensitivity to clouds/smoke
between the two BB products based on the bottom-up (or
top-down) approach. The specific algorithm is as follows:

SMAPE=
100%
n

∑n

i=1

|X−Y |

(|X| + |Y |)/2
, (5)

R =

∑N
i=1|(X−X) · (Y −Y )|√∑N

i=1(X−X)2 ·
∑N
i=1(Y −Y )2

, (6)

where X and Y are fire detection data from two different
datasets (e.g., burned area from FINN1.5 and GFED4s or
FRP from VFEI0 and QFED2.5). We divided these fire de-
tection data into three groups according to the cloud fractions
less than 0.4, 0.4–0.7, and greater than 0.7, and the number
n represents valid samples in different cloud fraction groups.
SMAPE ranges from 0 % to 200 %, with smaller values indi-
cating smaller differences, while Pearson’s R ranges from 0
to 1, with smaller values implying less correlation.

In order to quantify the effect of cloud obscuration on
BB datasets, we selected the most intensely burning re-
gions in BONA in July for this study. For consistency, we
re-interpolated the fire detection data used in the four BB
datasets, as well as the MODIS MCD06 cloud fraction data,
to the same horizontal resolution (0.25°× 0.25°). Consider-
ing the continuity of combustion, we took every 5°× 5° as a
sample area in the northern US to ensure that if a large burn
occurred, the area would be detected to some extent, avoid-
ing errors due to differences between the inventories. At the
same time, we excluded the samples in the same time and
location, where the emissions are all zero. Finally, a total of
1888 samples were obtained for the burned area group, with

534, 541, and 813 samples for low (< 0.4), medium (0.4–
0.7), and high (> 0.7) cloud fraction, respectively. A total of
1682 samples were obtained for the FRP group, with 860,
390, and 432 samples under low, medium, and high cloud
fraction, respectively. It is worth noting that we use the aver-
age FRP of MOD and MYD for QFED2.5 since the VFEI0
FRP is the average between day- and nighttime observations.
Moreover, our approach cannot rule out the case of missing
measurements when two sets of BB inventories are both ob-
scured by the cloud. However, the main goal of this paper
is to explore the causes of uncertainties in emission invento-
ries; the specific case of omission due to cloud obscuration
depends on the development of satellite detection technology
and is not part of the purpose of this study.

2.4 CESM2-CAM6 model

The Community Earth System Model version 2.1 (CESM2)
is a new generation of the coupled climate–Earth system
models developed by the National Center for Atmospheric
Research (NCAR). In this study, we used the global Com-
munity Atmosphere Model version 6 (CAM6) (Danaba-
soglu et al., 2020). Gas-phase chemistry was represented by
the Model for Ozone and Related chemical Tracers tropo-
spheric chemistry (MOZART-T1; Emmons et al., 2020). The
wet deposition of soluble gaseous compounds in CAM6-
Chem is based on the scheme of Neu and Prather (2012),
which describes the process of in-cloud cleaning and under-
cloud cleaning. The formation of secondary organic aerosols
(SOAs) is from a volatility basis set (VBS) approach de-
veloped by Tilmes et al. (2019). Properties and processes
of aerosol species of black carbon (BC), primary organic
aerosols (POAs), SOAs, sulfate, dust, and sea salt are calcu-
lated by the Modal Aerosol Module (MAM4) described by
Liu et al. (2016). CAM6 uses a horizontal resolution of nom-
inal 1° (1.25°× 0.9°, longitude by latitude) and 32 vertical
levels from the surface to 2.26 hPa (∼ 40 km).

In this study, four BB emission inventories (FINN1.5,
GFED4s, QFED2.5, and VFEI0) are regridded to a hori-
zontal resolution of 1.25° (longitude) × 0.9° (latitude) and
then applied to the model. All simulations are performed
for 5 years, while horizontal winds and temperature are
nudged toward the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) reanaly-
sis data (GMAO, 2015) every 6 h. Simulations are conducted
for 2012–2016, with the first year used for initialization and
model spin-up. Daily BB emissions are applied in this study,
whereas the vertical distribution of fire emissions is fol-
lowed Freitas et al. (2006, 2010). Anthropogenic and bio-
genic emissions in this study are from the Community Emis-
sions Data System (CEDS) and the Model of Emissions of
Gases and Aerosols from Nature version 2.1 (MEGANv2.1),
respectively, at 2010 levels (Guenther et al., 2012; Hoesly et
al., 2018).
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2.5 Measurement data

The Measurements of Pollution in the Troposphere (MO-
PITT) is aboard the Earth Observing System (EOS)/Terra
satellite launched by NASA (Warner et al., 2001). MOPITT
is the first instrument to observe the global concentration and
has been providing the column concentration and volume
mixing ratio of global carbon monoxide (CO) since 1999. We
used MOPITT CO gridded monthly means (near- and ther-
mal infrared radiances) V009 (MOP03JM_9; NASA Langley
Atmospheric Science Data Center DAAC, retrieved from
https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009,
NASA/LARC/SD/ASDC, 2024), which has a horizontal
resolution of 1°× 1°. It should be noted that to compare
the CO column concentration simulated by CESM2-CAM6
with MOPITT CO, we calculated the simulated CO col-
umn concentrations by cumulative integration from 900
to 100 hPa isobaric height (Deeter et al., 2022). We also
used the daily AOD (550 nm) and cloud fraction data from
the MODIS products MOD08_D3 (MODIS/Terra Aerosol
Cloud Water Vapor Ozone Daily L3; Platnick et al., 2015)
and MCD06COSP (MODIS (Aqua/Terra) Cloud Properties
level 3 daily, Webb et al., 2017), respectively.

The observations of AERONET (http://AERONET.gsfc.
nasa.gov/, last access: 11 February 2023; Holben et
al., 1998) from 12 sites are used in this study. These
AERONET stations were selected since they are close to
BB source regions. As marked in Fig. 1b, these sites
include sites in BONA (Yellowknife, Aurora (62.5° N,
114.4° W), Pickle Lake (51.4° N, 90.2° W)), BOAS (Tiksi
(71.6° N, 128.9° E), Yakutsk (61.7° N, 129.4° E)), SHAF
(Namibe (15.2° S, 12.2° E), Mongu Inn (15.3° S, 23.1° E)),
SHSA (Alta Floresta (9.9° S, 56.1° W), Rio Branco (9.9° S,
67.9° W)), EQAS (Palangkaraya (2.2° S, 113.9° E), Jambi
(1.6° S, 103.6° E)), SEAS (Omkoi (17.8° N, 98.4° E), Ubon
Ratchathani (15.2° N, 104.9° E)).

Each observed AOD represents real atmospheric condi-
tions, and therefore, in addition to BB aerosols, biogenic
aerosols, anthropogenic aerosols, dust, and sea salts are also
integrated in MODIS and AERONET datasets.

3 Comparative analysis of emission inventories

CO and OC are the main species emitted from biomass burn-
ing (van der Werf et al., 2010; Carter et al., 2020), but emis-
sions vary widely. In this study, we compare the differences
in CO and OC emissions (representing gaseous and particu-
late pollutants, respectively) in four BB inventories and in-
vestigate in detail the key reasons for the differences in emis-
sion inventories.

Figure 2. (a) Average annual CO emissions of the four biomass
burning emission inventories across seven major BB regions during
2013–2016. The cv, defined as the ratio of the standard deviation
to the mean, is the coefficient of variation among the emissions of
the four datasets. Panels (b) and (c) are the same as (a) but for the
emission factor of CO (EFCO) and dry matter.

3.1 The contribution of dry matter and emission factors
to the difference in CO emission

The total global CO emissions from the four BB emission
inventories selected for this study are in the range of 252–
336 Tg, with GFED4s being the highest and FINN1.5 the
lowest. To quantify the differences in CO emissions among
the four datasets, we use the standard deviation (SD) to char-
acterize the absolute difference and the coefficient of varia-
tion (cv; calculated as the ratio of SD to the mean) to charac-
terize the relative differences (Fig. 2a). The larger the cv, the
greater the difference between emission inventories. We have
ranked the seven major BB regions in the world according
to the differences in CO emissions between the four sets of
inventories, with the differences being, in descending order,
EQAS, BONA, SEAS, SHAF, NHAF, BOAS, and SHSA.

This study points to a high variability of different BB emis-
sion inventories in EQAS, which is inconsistent with previ-
ous studies (T. Liu et al., 2020; Pan et al., 2020). Previous
studies mainly focused on emission differences of particu-
late pollutants, such as BC and OC (Bian et al., 2007; Paton-
Walsh et al., 2012; Carter et al., 2020; Lin et al., 2020b;
Pan et al., 2020), thus assuming that the inventory differ-
ences in equatorial Asia are smaller than those in southern

https://doi.org/10.5194/acp-24-6787-2024 Atmos. Chem. Phys., 24, 6787–6807, 2024

https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009
http://AERONET.gsfc.nasa.gov/
http://AERONET.gsfc.nasa.gov/


6794 W. Hua et al.: Uncertainties in BB emissions and their impact on modeled pollutants

hemispheric Africa and northern hemispheric Africa. In con-
trast, this study analyzes the differences between particulate
and gaseous pollutant emissions separately when compar-
ing the differences in BB emission inventories. For exam-
ple, GFED4s classifies a large portion of EQAS land cover
as peatland (Kasischke and Bruhwiler, 2002; Stockwell et
al., 2016; van der Werf et al., 2006, 2010, 2017) and sug-
gests that this organic-matter-rich soil emits a large amount
of CO when burned. The other three inventories either do not
include peatland (FINN1.5 and QFED2.5) or only consider
peatlands to be a small fraction of the burned area in EQAS
(VFEI0), thus estimating CO emissions much smaller than
GFED4s. In addition, the extent of peatland fires in EQAS
increased significantly during the strong El Niño event (Page
et al., 2002). Considering that a strong El Niño event also oc-
curred in 2015–2016, these increases in peatland fires further
amplify the discrepancy between GFED4s and other emis-
sion inventories on CO estimates.

As shown in Fig. 2, the distribution pattern of DM dif-
ferences is very similar to that of CO emission differences,
indicating that DM is the main reason for dominating the dif-
ference in the four emission inventories. In comparison, the
difference in DM contributes 50 %–80 % to the regional CO
emission differences, and the comprehensive EFs contribute
the remaining 20 %–50 %. However, in EQAS, BONA, and
BOAS, the contribution of comprehensive EFs to BB emis-
sion differences in the four datasets is comparable to that of
DM (Fig. 2). In the following sections, we further analyze
the main causes of the differences in DM and EFs.

3.2 Primary causes of DM inconsistency in the
bottom-up inventories

To investigate the underlying causes of the differences in
DM, we first compared DM between emission inventories
produced by the bottom-up and up-down approaches. The
difference in DM estimated by the top-down method is small,
and the DM ratio of QFED2.5 to VFEI0 does not exceed 2 in
different regions. However, DM estimated by the bottom-up
approach varied widely, with the DM ratio as high as 4.7 in
BONA for GFED4s and FINN1.5 during the 2013–2016 fire
season. Therefore, we need to focus on the main reasons for
DM variance in emission inventories based on the bottom-up
approach.

According to Eq. (2), DM equals the product of the burned
area, fuel load, and FB in the bottom-up inventories, with
the product of the last two terms being fuel consumption.
Figure 3 compares the burned area and fuel consumption
of GFED4s and FINN1.5 emission inventories for the seven
largest BB regions. The GFED4s/FINN1.5 ratio represents
the relative difference in burned area or fuel consumption be-
tween the two emission inventories. In general, the difference
in burned area between the two inventories varies greatly
with latitude, and the ratio of GFED4s to FINN1.5 fluctu-
ates in the range of 0.28–1.94. In contrast, differences in fuel

consumption between the two inventories were more consis-
tent, with GFED4s consistently having higher fuel consump-
tion than FINN1.5 in all regions except SEAS. In the next
sections, we discuss the main reasons for the differences in
burned area and fuel consumption between the two datasets.

3.2.1 Effect of land cover on burned area

As shown in Fig. 3a, the differences in the burned area be-
tween the bottom-up emission inventories are highly vari-
able. At high latitudes, the burned area of GFED4s is sig-
nificantly higher than that of FINN1.5, especially in BONA,
where the burned area of GFED4s is twice that of FINN1.5.
In contrast, the burned area of GFED4s in the equato-
rial region is much lower than that of FINN1.5 and even
60 % smaller in EQAS. This is a result of the difference in
fire detection between the two datasets. As shown in Ta-
ble 1, FINN1.5 uses the MCD14 DL fire point product,
while GFED4s uses the hybrid burned area product, mainly
using MCD64A1 combined with the fire point products
MOD14A1/MYD14A1 to enhance the detection of small
fires.

These two sets of products have their advantages in detec-
tion ability under different vegetation type conditions. The
hybrid burned area product detects burned areas over a pe-
riod of time (up to days), while the fire point product de-
tects burned areas primarily in near real time (Roy et al.,
2008). In addition, the burned area used in GFED4s (hy-
brid burned area product) is not affected by the vegetation
canopy when the leaf area index (LAI) is less than 5. There-
fore, a higher burned area is estimated in GFED4s in BONA
and BOAS than in FINN1.5. However, in areas with more
broadleaf forests and grasslands, such as EQAS, SEAS, and
SHSA (Fig. S1 in the Supplement), the MCD14DL fire point
product used in FINN1.5 performed better in capturing un-
derstory fires that occurred in closed canopies (Cochrane and
Laurance, 2002; Cochrane, 2003; Alencar et al., 2005; Roy et
al., 2008). It also has an advantage in capturing sporadic and
fragmented small fires in grasslands and agricultural fields
due to its high resolution (T. Liu et al., 2020). Furthermore,
FINN1.5 assumes that each detected fire in the equatorial re-
gion will continue to burn for 2 d and that the next day’s fire
will continue to be half the size of the previous day’s (Ta-
ble 1). Thus, the burned area of FINN1.5 in the tropical zone
is 2.6 times higher than that of GFED4s, which is consistent
with previous studies (Wiedinmyer et al., 2011; Pan et al.,
2020). At the Equator, the burned area in grassland/agricul-
tural fields and forests estimated by FINN1.5 is 1–3 and 4–6
times higher than in GFED4s, respectively (not shown).

It is worth noting that in Africa (NHAF and SHAF),
although the dominant burnable vegetation is grassland
(Fig. S1), unlike the sporadic small fires that occur in grass-
land in the other five regions, large continuous fires often
occur in African savannas (T. Liu et al., 2020). Therefore,
the hybrid burned area product used in GFED4s is more ef-
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Figure 3. Annual burned area (a) and fuel consumption (b) of two bottom-up datasets (FINN1.5 and GFED4s) across seven regions from
2013 to 2016.

fective in detecting all fire events occurring over time, with
10 %–20 % higher burned area than FINN1.5.

3.2.2 Effect of cloud obscuration on burned area

In addition to the vegetation, cloud occlusion can likewise
bias the satellite detection of burned area. Figure S2 in the
Supplement shows the time series of AOD measured by satel-
lite or ground-based data at the Pickle Lack site of BONA
from June to August 2013. In contrast to the high AOD val-
ues observed for the AERONET network, MODIS AOD of-
ten in missing measurements when the MODIS cloud frac-
tion is larger than 0.5 thus may lead to a low value. Further-
more, AERONET AOD varies dramatically over a short pe-
riod, suggesting that different detection principles (such as
detecting fire points in near real time during satellite over-
pass time or estimating the accumulation of burned area over
time through changes in surface albedo over multiple satellite
overpass times) can significantly affect the burned area prod-
uct under high-cloud-fraction/high-smoke conditions (Paton-
Walsh et al., 2012; T. Liu et al., 2020; Pan et al., 2020). Al-
though some assumptions are made in FINN1.5 in the equa-
torial regions as described above to improve the effect of
cloud obscuration on burned area detection, these assump-
tions are not used for middle and high latitudes. GFED4s
uses a hybrid burned area product and is relatively unaf-
fected by cloud obscuration. By fusing the MCD64A1 prod-
uct with the MOD14A1/MYD14A1 products with multi-
temporal satellite data, GFED4s is able to determine the ap-
proximate date and extent of fires through post-fire ash depo-
sition, vegetation migration, and land surface changes (van
der Werf et al., 2017; Boschetti et al., 2015, 2019).

To quantitatively assess the impact of cloud obscuration
on different emission inventory estimates, we perform anal-
yses in areas with high cloud fraction (Fig. S3 in the Supple-
ment) and intense biomass burning and that are unaffected
by the smoothing hypothesis used in FINN1.5. We selected
the regions of North America with the most intense biomass
burning (Alberta and Saskatchewan, Canada; 50–70° E, 100–
130° W; Fig. S4 in the Supplement) and analyzed the re-
lationship between the burned area and cloud fraction for

bottom-up inventories in July from 2013 to 2016 (Fig. S5
in the Supplement). As shown in Fig. 4, with the increase
in cloud fraction, the SMAPE of the two bottom-up emission
inventories increases from 150 % to 180 %, while the Pearson
correlation declines from 0.85 to around 0.75. These results
demonstrate that the uncertainty in the burned area for two
bottom-up emission inventories increases by ∼ 20 % dur-
ing high-cloud-fraction conditions compared to low-cloud-
fraction conditions.

3.2.3 Causes of fuel consumption differences

Fuel consumption is another factor that affects DM differ-
ences between two BB emission inventories. As shown in
Fig. 3b, the fuel consumption of GFED4s is 30 %–75 %
higher than that of FINN1.5 in almost all BB areas except
SEAS. The difference in fuel consumption between the two
emission inventories is larger in the tropics than in the high
latitudes. As shown in Fig. 5, at high latitudes (e.g., BONA
and BOAS) and in the equatorial region (such as EQAS),
relatively high fuel consumption comes from peatlands in
GFED4s. According to previous studies, peatlands, a type
of soil rich in organic matter, store large amounts of carbon
underground (van der Werf et al., 2010, 2017; Gibson et al.,
2018; Kiely et al., 2021; Vetrita et al., 2021) and emit large
amounts of CO when burned. Peatlands contribute 30 %–
60 % of the total fuel consumption in BONA, BOAS, and
EQAS (Fig. 5a–c).

Besides peatlands, GFED4s tends to have higher fuel con-
sumption than FINN1.5 due to forest contributions. Forests
(including tropical, temperate, and boreal forests) account for
more than 50 % of the fuel consumption in all burning re-
gions except EQAS, where peatlands dominate the fuel con-
sumption. Moreover, forest fuel consumption in GFED4s is
generally much higher than in FINN1.5 except in BOAS and
SEAS (Fig. 5). Since fuel consumption is equal to the prod-
uct of fuel load and FB (the percentage of specific plants that
can be adequately burned, Eq. 2), different vegetation clas-
sifications may be responsible for large differences in fuel
consumption between emission inventories. For example, for
woody vegetation such as forests, GFED4s assumes a range
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Figure 4. The differences in (a, b) burned areas and (c, d) total FRP detected by two inventories under different cloud fraction conditions
in a pilot region of BONA. These differences are quantified by two indicators: SMAPE and Pearson’s R. Cloud fraction data are calculated
from the MODIS product MCD06COSP.

Figure 5. Annual average fuel consumption of two bottom-up datasets (FINN1.5 and GFED4s) across seven regions from 2013 to 2016. The
contributions of the seven biomes are shown in different colors.

of FB between 40 %–60 % for temperate and tropical forests
and 20 %–40 % for boreal forests, while FINN1.5 assumes
that all woody vegetation burns no more than 30 % (van der
Werf et al., 2010; Wiedinmyer et al., 2011). Thus, in terms of
FB alone, the forest fuel consumption of GFED4s is therefore
0.67–1.3 times greater than that of FINN1.5, which is one of
the main reasons for the difference in fuel consumption.

3.3 Primary causes of DM inconsistency in the
top-down approach

We also analyze the causes of the difference in DM between
BB emission inventories estimated by the top-down method.

According to Eq. (3), it is evident that the empirical fac-
tor and the radiative energy of the fire are the key factors
that cause the discrepancy in the top-down emission inven-
tories. The QFED2.5 and VFEI0 inventories we have cho-
sen use different satellites for the fire detection products. For
example, for the fire radiative power product, QFED2.5 is
based on the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) inversion of the NASA Terra and Aqua com-
bined satellites, while VFEI0 is based on the Visible In-
frared Imaging Radiometer (VIIRS) inversion of the com-
bined polar-orbiting satellites Suomi NPP and NOAA-20, al-
though the algorithms are similar. However, there are sys-

Atmos. Chem. Phys., 24, 6787–6807, 2024 https://doi.org/10.5194/acp-24-6787-2024



W. Hua et al.: Uncertainties in BB emissions and their impact on modeled pollutants 6797

tematic deviations due to different satellites, specific tests
and metadata, and resolutions. The VIIRS 375 m fire prod-
uct used by VFEI0 has a finer resolution and is more ad-
vantageous for small fire spot detection than other coarser-
resolution (1 km) fire spot detection products. The FRP den-
sity used in VFEI0 is much higher than that of QFED2.5 due
to the fine horizontal resolution.

The estimations of FRP and DM are strongly influenced
by the horizontal resolution of satellite products. For ex-
ample, in the BONA region during July (the month with
the most intense burning at the position of 50–70° N, 100–
130° W), the total QFED FRP (average FRP measured by
MOD and MYD) is 1.5 times higher than VFEI0 (Fig. S6
in the Supplement). Additionally, the differing α values be-
tween QFED2.5 and VFEI0 in BONA can potentially result
in higher DM in QFED2.5 compared to VFEI0 by a factor
of 1.3–3.8. However, the actual DM in the QFED2.5 inven-
tory is 30 % lower than in VFEI0. The relatively high FRP
density used in VFEI0 (Fig. S7 in the Supplement) results in
a higher DM than in QFED2.5 due to its superior horizontal
resolution, enabling the precise delineation of fire areas. It is
important to note that while the empirical factor also influ-
ences the amount of DM, its impact should not be as signif-
icant as the difference caused by the horizontal resolution of
satellite products (Kaiser et al., 2012; Darmenov et al., 2015;
Ferrada et al., 2022).

Previous studies have shown that cloud occlusion also
causes bias in FRP detection (T. Liu et al., 2020). We also
take BONA as a pilot region to analyze the influence of
cloud fraction on FRP in QFED2.5 and VFEI0. Accord-
ing to Fig. 5c and d, the SMAPE of the two emission
inventories rises as the cloud fraction increases, and the
Pearson correlation is noticeably low under the maximum
cloud fraction. While QFED2.5 uses the sequential approach
(Sect. 2.1) to correct for the missing FRP in cloud-obscured
fires, this correction is not considered in VFEI0. Therefore,
although the two top-down emission inventories use similar
algorithms, significant bias occurs under high-cloud-fraction
conditions, with QFED2.5 estimating DM much higher than
VFEI0.

3.4 Primary causes of EF inconsistencies

Although DM differences dominate the inconsistencies in
CO emissions across major BB regions, the contribution of
EFs is still not negligible in some regions. For example,
in EQAS, BONA, and BOAS, the contribution of EFs is
up to 50 %, which is comparable to that of DM. The com-
prehensive EFs of GFED4s are higher in BONA, BOAS,
and EQAS regions than in other inventories, with vegeta-
tion classification being one of the most important factors
(Fig. 6). For example, in EQAS at low latitudes, peatlands
in GFED4s account for 65 % of the regional comprehensive
EF. In contrast to GFED4s, FINN1.5 and QFED2.5 do not
consider this organic-matter-rich land as a source of burn-

ing, and they classify this category of land cover type as
savanna or grass. The CO emission factor for peatlands is
4 times higher than the CO emission factor for savanna or
grass (Table 2), ultimately making the comprehensive EF
for GFED4s 60 %–70 % higher than that of the other three
datasets. It is worth noting that although the classification of
peatland exists in VFEI0 (Ferrada et al., 2022) due to differ-
ences in terrestrial ecological divisions (Olson et al., 2001;
https://www.worldwildlife.org/, last access: 9 June 2023),
peatland identification areas are much smaller than in the
GFED4s inventory. Therefore CO emissions from peatlands
in GFED4s are much higher than in the VFEI0 inventory
(Fig. 3-9a; Ferrada et al., 2022).

In both BONA and BOAS, we find that the comprehensive
EFs in the four datasets are ranked as follows: GFED4s>
FINN1.5> QFED2.5> VFEI0, where the EF of GFED4s
is about 1.5 times higher than that of VFEI0. Unlike the
low-latitude regions, the classification of forests in differ-
ent emission inventories is the main reason for the difference
in comprehensive EF in high-latitude regions. At high lati-
tudes (50–70° N), GFED4s, QFED2.5, and FINN1.5 identify
more forests than VFEI0 (Table S1) because the former three
classify some shrubs (e.g., closed shrublands and woody sa-
vanna) as forests, while the latter classifies them as grassland.
Forests contribute to 70 % or more of the comprehensive EFs
at high latitudes in the first three emission inventories but
only 8 % to the comprehensive EF in VFEI0. The remaining
gap in the absolute contribution of forests is caused by the
difference in the selected emission factors and the horizontal
resolution of the satellite products.

3.5 Contribution of DM and EFs to differences in OC
emissions

The above analysis completes the comparison of gaseous
pollutant CO among different emission inventories. In this
section, we take OC as an example to compare the emis-
sion differences of particulate pollutants. As shown in
Fig. 7, the global OC emissions of the four datasets range
from 14.9 to 42.9 Tg, with the highest emissions from
QFED2.5, which is consistent with previous studies (Carter
et al., 2020; Pan et al., 2020). According to the statisti-
cal method in Sect. 3.1, we quantified the magnitude of
OC emission differences between regions and ranked them
as follows: BONA> BOAS> NHAF> SHAF> SEAS>
SHSA> EQAS. Compared to the CO emission differences
(Fig. 2), the difference in OC emissions becomes larger for
BOAS and smaller for the low-latitude regions of SEAS and
EQAS. Since DM should be consistent in the same emis-
sion inventories for a given time and area, the magnitude of
emissions for different species depends on changes in emis-
sion factors. Considering that the emission factors of aerosol-
related emission species such as OC, BC, NH3, SO2, and
PM2.5 have been corrected based on the satellite-retrieved
AOD of the QFED2.5 emission inventory (Table 2), the EFs
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Figure 6. Regional comprehensive emission factors for the four datasets (FINN1.5, GFED4s, QFED2.5, and VFEI0) in seven regions from
2013 to 2016. The contributions of the seven biomes are shown in different colors.

Table 2. CO and OC emission factors used in the four biomass burning emission inventories.

Emission factors across inventories and vegetation types (g species per kg dry matter)

Types CO OC

FINN1.5 GFED4s QFED2.5 VFEI0 FINN1.5 GFED4s QFED2.5 VFEI0

Temperate forest 108a 88a 107b 113c 6.97d 9.6b 41.09f 10.9c

Boreal forest 118a 127a 107b 121c 7.31e 9.6b 41.09f 5.9c

Savanna and grass, shrub 59a / 68a 63a 65b 69c 2.6a / 6.61e 2.62a 6.12f 3c

Tropical forest 92a 93a 104b 104c 4.77a 4.71a 13f 4.4c

Agricultural field 111a 102a / 76c 3.3b 2.3a / 4.9c

Peatlands / 210g / 260c / 6.02g / 14.2c

a Akagi et al. (2011). b Andreae and Merlet (2001). c Andreae (2019). d Andreae and Rosenfeld (2008). e McMeeking et al. (2009). f QFED2.5 PM-related
emission factors are obtained by multiplying the base EF multiplied by its biome-specific enhancement factor. g Emission factors for peatland are the average of
lab measurements of Yokelson et al. (1997) and Christian et al. (2003).

of OC in QFED2.5 are much higher than those of the other
three emission inventories (Fig. 7b). As a result, the OC EFs
in the QFED2.5 emission inventory were enlarged by a fac-
tor of 1.8–4.5 through the correction of BOAS, SEAS, and
EQAS (Table 2). In contrast, the other three emission inven-
tories were not corrected for OC EFs.

Unlike the CO EFs, the OC EFs of GFED4s in equatorial
regions are largely consistent with the FINN1.5 and VFEI0
emission inventories. Although burning organic-matter-rich
soil substrates is generally thought to release large amounts
of CO, their ability to release OC is similar to that of veg-
etation such as shrubs and some forests. Thus, despite CO
emissions bias in EQAS being largely affected by peatlands,
differences in OC emissions among the four inventories are
not significant.

Compared with Pan et al. (2020), it is obvious that the top-
down approach will not lead to an increase in emission devi-
ation of the particulate-phase species. The correction of EFs,
however, is the root cause of the increased bias in OC emis-
sions. Pan et al. (2020) reported that QFED2.5 and FEER1.0
had the highest global OC emissions, while GFAS1.2 had
much lower OC emissions. In this study, the largest OC emis-

sion also appears in QFED2.5, but the global total OC emis-
sions of the recently released VFEI0 are relatively low.

4 Model evaluation based on emission inventory
application

4.1 Comparison of simulations with MOPITT CO

One of the main goals of this study is to provide a confi-
dence assessment of the BB emission inventories by com-
paring model simulations with observations. A comparison
between model simulations using different emission invento-
ries and ground-based/satellite-retrieved data for the respec-
tive fire seasons (Table 3) of the main BB regions is explored
below. In this study, we compared the model results with
measurements from two perspectives: the spatial distribution
of BB pollutants and the time-varying characteristics of BB
pollutants.

Figure 8 depicts the spatial distribution of CO column bur-
dens in SHSA and SHAF during the fire seasons. In SHSA,
the simulated CO column burdens using different emission
inventories are all consistent with the spatial distribution
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Table 3. Comparison of CESM-CAM6-simulated CO column averages and satellite-retrieved CO column averages during the fire season.
Italics indicate simulated values that are closest to the satellite observations.

Satellite CESM2-CAM6

Regions Fire season MOPITT FINN1.5 GFED4s QFED2.5 VFEI0

EQAS January–April 1.88 1.66 1.69 1.61 1.47
BONA April–August 2.03 1.29 1.47 1.30 1.32
SEAS February–April 2.40 2.10 1.94 1.89 1.95
SHAF May–November 2.31 1.75 2.04 1.99 2.19
NHAF January–May 2.66 1.96 2.02 2.05 2.10
BOAS March–November 2.05 1.31 1.42 1.33 1.34
SHSA July–December 1.77 1.75 1.80 1.76 1.80

Figure 7. (a) Average annual OC emissions of the four biomass
burning emissions inventories across seven major BB regions dur-
ing 2013–2016. The cv, defined as the ratio of the standard deviation
to the mean, is the coefficient of variation among the emissions of
the four datasets. Panel (b) is the same as (a) but for the emission
factor of OC (EFoc).

pattern of the MOPITT CO column burden, with the peak
value located in the Amazon rainforest. However, the cen-
tral value of the MOPITT CO column burden is as high as
2.8×1018 molec.cm−2, which is slightly higher than the sim-
ulated results. Among the four sets of emission inventories,
the peak amplitude and spatial distribution of simulated CO
column burdens are closest to the satellite-retrieved data after
applying GFED4s and VFEI0. In SHAF, however, the model
underestimated the peak CO column burden after applying
all emission inventories except VFEI0.

In addition to SHSA and SHAF, a comparison of region-
ally averaged CO column burdens between our simulations
and MOPITT CO in major BB regions is also shown in Ta-
ble 3. In the Northern Hemisphere, our simulations are sig-
nificantly underestimated compared to MOPITT CO, while
those in the Southern Hemisphere are consistent with satel-

lite retrievals. Surprisingly, the simulated spatial distributions
and magnitudes of CO in the Southern Hemisphere using the
recently released VFEI0 agree very well with observations.
In contrast, the underestimation of CO concentrations in the
Northern Hemisphere is partly due to uncertainty in anthro-
pogenic emissions, as we assume anthropogenic emissions
at 2010 levels, which are lower than those during the 2013–
2016 period.

Note that simulated CO concentrations are 30 %–40 %
lower than MOPITT CO at high latitudes. Besides the im-
pact of emission inventories, there are also large uncertainties
in satellite-retrieved CO concentrations (Lin et al., 2020a;
Pan et al., 2020). In addition, OH loss, long-range trans-
port, and photochemical reactions involved in the CESM2-
CAM6 model simulations also lead to uncertainties in simu-
lated CO. For example, MOZART-4x contains an additional
OH oxidation pathway for CO, which may lead to lower CO
concentrations (Lamarque et al., 2012; He and Zhang, 2014;
Barré et al., 2015; Brown-Steiner et al., 2018; Emmons et
al., 2020). In comparison, the simulated CO using GFED4s
is closest to the MOPITT CO value in terms of spatial distri-
bution and peak magnitude at high latitudes in the Northern
Hemisphere, which is superior to other emission inventories.

4.2 Comparison of simulations with MODIS AOD

We compared MODIS-derived aerosol optical depth (AOD)
data with simulated AOD in major BB areas. Figure 9 shows
the spatial distribution of AOD in SHSA and SHAF during
their fire seasons. The simulated AOD is significantly higher
than the MODIS AOD in SHSA. Note that primary organic
aerosols (POAs) associated with BB account for only 15 %–
23 % of the total AOD in the Amazon, while secondary or-
ganic aerosols (SOAs) account for approximately 50 % of the
total AOD. Furthermore, overestimation of simulated AOD
occurs throughout the year, not just during the fire season.
Considering the high biogenic emissions in this region, the
overestimation of AOD could be attributed to the formation
of biogenic SOA (He et al., 2015; Tilmes et al., 2019). In
SHAF, the spatial distribution and magnitude of simulated
AOD using GFED4s and VFEI0 are close to those of the
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Figure 8. Spatial distribution of CO column burdens from MOPITT and CESM2-CAM6 simulations during the fire season (Table 3). The
text above each plot identifies the name of the satellite inversion dataset or emission inventory dataset applied by the model, namely FINN1.5,
GFED4s, QFED2.5, and VFEI0.

Table 4. The same as Table 3 but for AOD. Italics indicate simu-
lated values that are closest to the satellite observations.

Satellite CESM2-CAM6

Regions MODIS FINN1.5 GFED4s QFED2.5 VFEI0

EQAS 0.23 0.22 0.25 0.23 0.21
BONA 0.13 0.07 0.12 0.11 0.07
SEAS 0.30 0.35 0.30 0.36 0.30
SHAF 0.33 0.31 0.37 0.53 0.40
NHAF 0.32 0.53 0.54 0.61 0.55
BOAS 0.15 0.11 0.13 0.16 0.11
SHSA 0.14 0.30 0.31 0.34 0.29

MODIS AOD. In comparison, our results show that AOD is
significantly underestimated using FINN1.5 but largely over-
estimated using QFED2.5.

Table 4 shows the mean values of model-simulated AOD
and satellite measurements for each region during its fire sea-
son. The influence of the BB emission inventory has little
effect on the simulated AOD value in the Southern Hemi-
sphere, and the regional average AOD deviation is within
20 %. In contrast, the average deviation of simulated AOD
driven by the four BB inventories can be as high as 40 %
in the high latitudes of the Northern Hemisphere. Compar-
atively, GFED4s and QFED2.5 are more suited to high lat-
itudes in the Northern Hemisphere, whereas VFEI0 is the
most suitable for the Southern Hemisphere for AOD simu-
lations. In Africa, QFED2.5 is not recommended due to its
considerable overestimation.

4.3 Comparison of simulations with ground-based
measurements

In the above sections, we merely discuss the spatial distri-
bution and the magnitude of pollutants during fire seasons.
To further analyze whether each dataset can effectively cap-
ture the instantaneous combustion of BB, we compared the
value of simulated daily AOD with that of ground-based ob-
servations (Fig. 10). To be more representative, we selected
stations in each BB region with a large amount of data during
the fire seasons, allowing for a comprehensive assessment of
the global BB emission inventories. The specific locations of
the 12 selected AERONET sites are shown as red triangles in
Fig. 1b.

At EQAS sites such as Palangkaraya and Jambi, the ob-
served AOD from September to November 2014/2015 is
generally higher than 1, with peaks exceeding 5, reflecting
the intense BB events (Fig. 10a and b). Only simulations
using GFED4s were consistent with observed AOD during
strong BB events, with a slight underestimation of 33 %–
38 %, while none of the other simulations could capture the
BB process. Considering the significant contribution of peat-
lands to BB emissions in EQAS in GFED4s, our results sug-
gest that it is important to include the burning of organic-
matter-rich soils in BB emission inventories. At SEAS sites
such as Omkoi and Ubon Ratchathani, the peak AOD occurs
from February to April at a value of about 2, and all simula-
tions applying the four emission inventories capture the ob-
served changes in AOD (Fig. 10c and d). However, due to the
uncertainty in anthropogenic emissions, the simulated AOD
is usually smaller than the actual observed value in EQAS.
Note that simulations using QFED2.5 are the most consistent
with observed AOD during intense biomass burning events.
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Figure 9. The same as Fig. 8 but for AOD.

Figure 10. Comparison between AOD simulated by CESM2-CAM6 using the four datasets (FINN1.5, GFED4s, QFED2.5, and VFEI0) and
AERONET ground-based observations during fire seasons. These AERONET sites are (a) Palangkaraya (2.2° S, 113.9° E), (b) Jambi (1.6° S,
103.6° E), (c) Omkoi (17.8° N, 98.4° E), (d) Ubon Ratchathani (15.2° N, 104.9° E), (e) Namibe (15.2° S, 12.2° E), (f) Mongu Inn (15.3° S,
23.1° E), (g) Alta Floresta (9.9° S, 56.1° W), (h) Rio Branco (9.9° S, 67.9° W), (i) Yellowknife (Aurora) (62.5° N, 114.4° W), (j) Pickle Lake
(51.4° N, 90.2° W), (k) Tiksi (71.6° N, 128.9° E), and (l) Yakutsk (61.7° N, 129.4° E).
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At the Namibe station of SHAF (Fig. 10e), the simu-
lated AOD agrees best with the measured results after using
FINN1.5 and GFED2.5, with normalized mean bias (NMB)
values within ± 8 %, indicating these two emission invento-
ries can characterize the day-to-day variability of the intense
BB process. However, Namibe is located downwind of the
dust source, and dust aerosols contribute more than 50 % to
the total AOD in this area. To better evaluate the performance
of the four BB emission inventories in SHAF, we chose an-
other site, Mongu Inn, located in the interior of southern
hemispheric Africa, where dust and sea salt accounted for
20 %–30 % of the total AOD. At Mongu Inn, all simulations
underestimate AOD by 46 %–71 %, and only the QFED2.5
and VFEI0 emission inventories can capture a few peaks
during intense biomass burning events (Fig. 10f). In SHSA,
while Figs. 9 and 10h show an overall overestimation of sim-
ulated AOD compared to MODIS AOD, at the Brazilian Alta
Floresta site east of the Amazon, simulated AOD agrees very
well with the ground-based observations (Fig. 10g). In gen-
eral, the simulations using the VFEI0 emission inventory for
the Southern Hemisphere are close to the measurements.

At high latitudes, simulations driven by GFED4s and
QFED2.5 better capture the observed peak AOD, with re-
gional NMB values of less than 40 % (Fig. 10i–l), suggest-
ing that these two simulations can reproduce the intense BB
process. In contrast, FINN1.5 and VFEI0 are obviously not
suitable for describing the BB process in these sites, and the
simulated AOD is underestimated by 60 %–80 %.

5 Conclusion and discussion

In this study, we examine four commonly used BB emis-
sion inventories (two bottom-up inventories (GFED4s and
FINN1.5) and two top-down inventories (QFED2.5 and
VFEI0)) to better understand the uncertainties associated
with BB emissions. We analyze variations in CO and OC
emissions across seven major BB regions worldwide from
2013 to 2016. We explore the differences between gaseous
and particulate emission inventories, quantifying the impact
of vegetation classification, cloud cover, and emission factors
on inventory bias. Additionally, we apply these inventories
to the global model CESM2-CAM6 to assess the model’s
performance in simulating pollutants against satellite and
ground-based observations.

The total global CO emissions exhibit significant variabil-
ity among the four inventories, with annual averages ranging
from 252 to 336 Tg and a maximum deviation rate exceed-
ing 30 %. In certain regions such as BONA, changes in CO
emissions are even larger – GFED4s emits 5.8 times more
CO than FINN1.5. DM is identified as the primary contrib-
utor to variance among BB emission inventories, accounting
for 50 %–80 % of regional bias, while comprehensive EFs
contribute the remaining 20 %–50 %. Interestingly, the con-
tributions of DM and comprehensive EFs to emission inven-

tory differences are comparable across equatorial regions and
Northern Hemisphere high latitudes.

The uncertainty in DM arises from underlying fuel con-
sumption and burned area, linked to the vegetation classi-
fication, fire detection product algorithm, and cloud/smoke
masking. Vegetation classification significantly impacts fuel
loading and the fraction of biomass burned, with discrep-
ancies contributing to biases in fuel consumption. In re-
gions at both low and high latitudes (except Southeast Asia),
FINN1.5 exhibits a fuel consumption term that is less than
50 % of GFED4s, with the vegetation classification method-
ology contributing primarily to this bias. Different fire de-
tection products introduce bias in estimated burned area, af-
fecting uncertainty in DM. Satellite transit/cloud obscuration
influences DM by affecting burned area/fire radiative energy.
Cloud cover at high latitudes substantially impacts emission
uncertainty, with bias increasing by 20 % in July in BONA
with higher cloud fraction.

We extend our analysis to particulate pollutants, using
OC emissions as an example. Global average annual OC
emissions vary widely among the four inventories, rang-
ing from 14.9 to 42.9 Tg, demonstrating greater variabil-
ity than gaseous species like CO. BB OC emissions exhibit
large variability at high latitudes in the Northern Hemisphere,
with QFED2.5 adjusting emission factors based on satellite
aerosol optical thickness (AOD) to enhance particulate mat-
ter emissions.

Applying four BB emission inventories to CESM2-
CAM6, we compare model-simulated CO column concentra-
tions with the MOPITT satellite inversion CO column con-
centrations. According to our simulations, CO simulated us-
ing GFED4s is closest to satellite observations in almost
all regions except southern Asia and Africa. We also com-
pared model results with AOD retrieved from MODIS satel-
lites or measured by AERONET. Simulated AOD at high
northern latitudes is often underestimated when using current
mainstream BB emission inventories. For example, the simu-
lated regional average AOD is 8 %–46 % lower than MODIS
in North America. Unlike the high latitudes, the simulated
AOD is significantly overestimated at the Equator, and the
regional average AOD simulated by the model in northern
hemispheric Africa is 66 %–91 % higher than that simulated
by MODIS. In addition, comparing model-simulated AOD
with AERONET ground-based observations, we find that
GFED4s performs best in EQAS for daily variability dur-
ing intense burning. In SEAS, although FINN1.5 can better
represent the magnitude of the overall OC emissions in the
BB season, QFED2.5 can capture the day-to-day variation
characteristics of intense combustion. In the Southern Hemi-
sphere, the latest VFEI0 emission inventory performs well,
and the simulated AOD is able to capture the BB processes.

Our study assesses the global applicability of BB emis-
sion inventories and has some implications for future studies.
Overall, the GFED4s and QFED2.5 inventories for the north-
ern high latitudes capture the magnitude of and daily vari-
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ation in OC emitted throughout the BB season. These two
emission inventories outperformed the others when applied
to studies of interactions between BB aerosol and weather/-
climate. In the Southern Hemisphere, the spatial distribution
and daily variation characteristics of CO and AOD simulated
by the model are closest to the observed values when the lat-
est VFEI0 emission inventory is applied. For the Equator, the
situation is more complicated, and we recommend combin-
ing emission inventories according to the research objectives.
For example, GFED4s performs best in day-to-day changes
during intense burning in equatorial Asia. In Southeast Asia,
combining OC magnitude in FINN1.5 and daily variation in
QFED2.5 is the optimal choice.

It is worth noting that emission factors (as listed in Table 2)
significantly contribute to the differences in BB emissions.
However, actual emission factors vary widely depending on
the different states of combustion (Pokhrel et al., 2021). Fur-
ther study is needed to understand the impact of combustion
efficiency on the BB EFs and optimize them.

Data availability. The GFED4s emission datasets are available
from https://doi.org/10.3334/ORNLDAAC/1293 (Randerson
et al., 2018). The FINN1.5 emissions can be accessed from
NCAR’s Atmospheric Chemistry Observations and Modeling
repository https://www.acom.ucar.edu/Data/fire/ (last access: 16
August 2023, Wiedinmyer et al., 2011). The QFED2.5 emis-
sions are available from NASA’s Center for Climate Simulation
public repository at https://portal.nccs.nasa.gov/datashare/iesa/
aerosol/emissions/QFED/v2.5r1/ (last access: 16 August 2023,
Darmenov et al., 2015). The VFEI0 emissions can be accessed
at https://doi.org/10.5281/zenodo.6474058 (last access: 16 Au-
gust 2023, Ferrada, 2022). MODIS AOD are available from
https://doi.org/10.5067/MODIS/MOD08_D3.061 (last access: 16
August 2023, Platnick et al., 2015a), and cloud fraction can be ac-
cessed at https://doi.org/10.5067/MODIS/MOD06_L2.061 (last ac-
cess: 16 August 2023, Platnick et al., 2015b). MODIS Collection 61
NRT Hotspot/Active Fire Detections MCD14DL are available from
https://doi.org/10.5067/FIRMS/MODIS/MCD14DL.NRT.0061
(last access: 16 August 2023, Giglio et al.,
2018). MOPITT CO can be obtained from
https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009
(last access: 16 August 2023, NASA/LARC/SD/ASDC,
2024). The AERONET data can be accessed at https:
//aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3 (last access:
10 May 2022, Giles et al., 2019). The Modern-Era Retrospective
analysis for Research and Applications, version 2 (MERRA-
2) reanalysis datasets used in this study are available from
https://doi.org/10.5067/SUOQESM06LPK (last access: 21 May
2020, GMAO, 2015). Additional data and scripts related to the mod-
eling results are available at https://zenodo.org/records/10939422
(last access: 8 April 2024, Hua, 2024).
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