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Abstract. Three supervised neural network cloud classification routines are applied to daytime MODIS Aqua
imagery and compared for the year 2018 over the North Atlantic Ocean. Routines surveyed here include the
Morphology Identification Data Aggregated over the Satellite-era (MIDAS), which specializes in subtropical
stratocumulus (Sc) clouds; sugar, gravel, flowers, and fish (SGFF), which is focused on shallow cloud systems
in the tropical trade winds; and the community record of marine low-cloud mesoscale morphology supported by
the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) dataset, which
is focused on shallow clouds globally.

Comparisons of co-occurrence and vertical and geographic distribution show that morphologies are classified
in geographically distinct regions; shallow suppressed and deeper aggregated and disorganized cumulus are seen
in the tropical trade winds. Shallow Sc types are frequent in subtropical subsidence regions. More vertically
developed solid stratus and open- and closed-cell Sc are frequent in the mid-latitude storm track. Differing
classifier routines favor noticeably different distributions of equivalent types.

Average scene albedo is more strongly correlated with cloud albedo than cloud amount for each morphology.
Cloud albedo is strongly correlated with the fraction of optically thin cloud cover. The albedo of each morphol-
ogy is dependent on latitude and location in the mean anticyclonic wind flow over the North Atlantic. Strong
rain rates are associated with middling values of albedo for many cumuliform types, hinting at a complex re-
lationship between the presence of heavily precipitating cores and cloud albedo. The presence of ice at cloud
top is associated with higher albedos. For a constant albedo, each morphology displays a distinct set of physical
characteristics.
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1 Introduction

Low clouds tend to organize into large-scale, repeating mor-
phological structures with individual cells observed on the
scale of 20–150 km in patterns that repeat for hundreds or
even thousands of kilometers (Agee, 1987; Muhlbauer et al.,
2014). These structures influence climate in different ways
due to their unique radiative characteristics (McCoy et al.,
2023) and sensitivities to their surrounding environment (Qu
et al., 2015). Understanding where and how different mor-
phological structures develop and what the radiative charac-
teristics of those structures are is vital for understanding how
low clouds will evolve with climate change and for determin-
ing the sensitivity of Earth’s climate.

Clouds can evolve between morphologies via multiple
pathways depending on initial environmental conditions and
subsequent changes to those conditions (Bretherton et al.,
2010; Yamaguchi et al., 2017; Eastman et al., 2022; Salazar
and Tziperman, 2023). Additionally, differing cloud mor-
phologies can experience opposite changes when exposed
to the same environmental forcing. For instance, stratiform
clouds, which form beneath temperature inversions and are
driven by radiative cooling at cloud top, will reduce in extent
when a warming sea surface weakens the inversion. How-
ever, the warming sea surface will drive more upward mo-
tion within the boundary layer, causing cumulus (Cu) to re-
place stratus (St). This process is detailed in Wyant et al.
(1997) and is also shown in Norris et al. (1998) and East-
man et al. (2011). This process shows how one cloud type
(e.g., stratocumulus, Sc) can be replaced by another (e.g.,
Cu) when environmental conditions (sea surface tempera-
ture, SST) change and is one example of many possible
changes in cloud organization associated with a changing cli-
mate.

Until recently, surface observations were the primary
source of cloud-type information, including the studies refer-
enced above. Trained observers classify cloud types at mul-
tiple levels as part of coordinated weather reporting (WMO,
1974), and these classifications have contributed to long-term
climate records (Hahn et al., 2009). These records have been
valuable assets in studying long-term cloud and climate be-
haviors (Klein et al., 1995; Norris et al., 1998; Eastman et al.,
2011) but are limited in their spatial resolution and are prone
to incongruities in their record due to geopolitical and eco-
nomic shifts (Warren et al., 1991). Satellite-based cloud-type
data are now being developed in an attempt to continue and
enhance the study of cloud types. Several methods for sys-
tematically identifying low-cloud morphological structure
have recently been developed (Wood and Hartmann, 2006;
Rasp et al., 2020; Yuan et al., 2020; Denby, 2020; Janssens
et al., 2021). This development coincides with advances in
the spatial and spectral resolution of satellite observations
along with exponentially improved computing power.

Cloud classifiers have been developed to identify archety-
pal cloud morphologies for a variety of climatological re-

gions. The Morphology Identification Data Aggregated over
the Satellite-era (MIDAS; Wood and Hartmann, 2006; up-
dated in McCoy et al., 2023) dataset was trained to discern
between open- and closed-cell Sc fields in subtropical sub-
sidence regions, also producing a “disorganized but cellular”
category representing any remaining cloud cover that has cel-
lular structure. The “sugar”, “gravel”, “flowers”, and “fish”
(SGFF; Schulz et al., 2021) algorithm was trained in the
North Atlantic trade wind regime and identifies four cloud
morphologies more common to the tropics and has limited
overlap with the MIDAS dataset (e.g., mostly the disorga-
nized type; Rasp et al., 2020). The community record of
marine low-cloud mesoscale morphology supported by the
NASA Making Earth System Data Records for Use in Re-
search Environments (MEaSUREs; Yuan et al., 2020) routine
produced a more geographically varied dataset by training
the algorithm with images sourced globally and with cloud
morphologies ranging from solid marine stratus to clustered
tropical convection. A focus of this work is to understand
the extent to which these algorithms classify the same pat-
terns and variability, despite their differing training routines
and areas. This is still an open question and has important
implications for how we place studies based on these varied
routines into context with one another.

The three routines compared here are human-trained or
supervised machine learning algorithms that classify cloud
cover using satellite images. First, human observers classify
morphological structures on hundreds or thousands of satel-
lite images. These classifications are then used to train a neu-
ral network, which can then identify these specific structures
on other images. Aside from human-trained algorithms, rou-
tines are being developed that identify and sort morphologies
without initial training (i.e., unsupervised; Denby, 2020). Fu-
ture work may focus on comparing unsupervised classifica-
tions with those from supervised methods.

Prior work has shown that cloud albedo is a function of
both cloud amount and morphology globally (e.g., McCoy
et al., 2017, 2023). McCoy et al. (2023) found that the re-
lationship between scene albedo and cloud amount is sig-
nificantly different depending on cloud morphology, with
closed-cell Sc clouds reflecting more than open-cell Sc or
disorganized Sc for the same cloud amount. This was in part
due to the different fractions of optically thin cloud cover be-
tween morphologies, clearly illustrating how cloud amount
alone does not fully explain cloud albedo. The three MI-
DAS cloud types, which are especially skilled for open- or
closed-cell Sc identification, were utilized in that analysis.
This motivates a further evaluation of this behavior using
more specific, largely tropical, cloud-type identifications to
subset the expansive disorganized category. The global focus
of McCoy et al. (2023) also motivates evaluating behaviors
on a more regional scale to better understand their variabil-
ity since cloud micro- and macro-physical characteristics and
radiative properties may be affected by geographic location.
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This work will assess and compare geographic, radiative,
and physical differences for a variety of cloud types identi-
fied by the supervised neural network algorithms discussed
above (i.e., MIDAS, SGFF, and MEASURES) for 1 year in
the North Atlantic. The characteristics of our three classifica-
tion routines can be compared across several climate regimes
in the North Atlantic, from the mid-latitude storm track and
subtropical subsidence regions to the tropical trade winds.
Cloud properties within each routine will also be compared
against one another. In particular, we seek to quantify the
contributions that a varied range of cloud morphologies make
to the global cloud amount–albedo relationships and further
investigate the albedo sensitivity to variations in cloud char-
acteristics across morphology types.

2 Data

Data in this work span the entire year 2018 for the North At-
lantic, defined by a box bounded by 5–55° N and 0–90° W.
Only ocean areas are considered in this work. The region
and time were chosen because classifier data from all three
sources were reliably available for that entire year in that re-
gion and also because the North Atlantic Ocean contains a
wide variety of climatological conditions in a single ocean
basin, including a strong mid-latitude storm track in the
north, a subtropical subsidence region in the east, and tropi-
cal trade winds to the south. Classifier data will soon be avail-
able for more regions and more dates, allowing for more ex-
tensive studies of morphologies. Data from all three classifier
routines come from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) on the polar-orbiting Aqua satellite
which crosses the Equator at 01:30 and 13:30 LT (local time).
For this work, only the daytime swaths are used. In order to
better compare datasets built by these differing routines at
differing resolutions, all morphology data are projected onto
a 1°× 1° latitude/longitude grid. Each 1°× 1° box is classi-
fied as a morphology if any part of that box was classified
by a routine. This means that a 1°× 1° box can be classi-
fied multiple times by the same classifier if multiple cloud
morphologies are observed in that box. This allows the study
of co-occurrence, where certain boxes may be located in a
transitioning regime between two morphologies.

2.1 Classifier routines

2.1.1 MIDAS

The Morphology Identification Data Aggregated over the
Satellite-era (MIDAS; Wood and Hartmann, 2006; McCoy
et al., 2023, updated dataset) was initially developed to dis-
tinguish closed-cell mesoscale cellular convection (MCC)
from open-cell MCC in Sc decks in subtropical subsidence
regions. A third cloud type, disorganized but cellular, iden-
tifies shallow ocean clouds that do not readily fit into the
other two categories. These morphologies will be referred to

as “MIDAS closed”, “MIDAS open”, and “MIDAS disorga-
nized” throughout this paper.

The MIDAS routine was trained by human observers clas-
sifying visible MODIS imagery. These classifiers were then
used to train a neural network which used the mean and spa-
tial variability in the MODIS 6.1 L2 liquid water path (LWP;
King et al., 1997; Platnick et al., 2003) field within 256 km
square boxes (defined as a square box, measuring 256 km on
each side) to produce classifications for 2003 through 2018.
These boxes are spaced 128 km apart, allowing 50 % over-
lap between neighboring boxes. Observations are screened
for ice in that LWP is required for classifications. Classified
scenes are rejected if the cloud-top temperature–SST differ-
ence is greater than 30 K or if the cloud top is shown to be
mostly ice water instead of liquid. Scenes are also rejected
if the SST is below 275 K. Additional filtration is done to
remove the distorting effects of excessive Sun glint near the
swath center.

2.1.2 SGFF

The sugar, gravel, fish, and flowers (SGFF; Stevens et al.,
2019; Schulz et al., 2021) classifications were first devel-
oped to distinguish large patches of organized cloud struc-
tures in the North Atlantic tropical trade winds. Shallow sup-
pressed Cu cloud scenes are named “sugar”, while more de-
veloped and aggregated shallow convective scenes are named
“gravel”. More stratiform scenes, with geographically sep-
arated, horizontally extensive cloud tops and thicker, fre-
quently raining cloud cores are named “flowers”. The “fish”
classification is named for extensive “bony” structures of
thick clouds, often oriented in tendrils aligned in an east–
west direction. Fish are often associated with the shallow
remnants of cold fronts as they dissipate in the tropical trades
(Schulz et al., 2021; Aemisegger et al., 2021).

Classifications were initially made by human observers
based on visible MODIS images (Rasp et al., 2020), and
these classifications were used to train a neural network
to identify morphologies in the North Atlantic for the
years 2003–2020 based on MODIS Aqua infrared bright-
ness temperatures (Schulz et al., 2021). Classifications are
made in variably sized rectangular (with respect to latitude–
longitude) boxes, often 10°× 10° or larger. Classified re-
gions are permitted to overlap.

2.1.3 MEASURES

The third classifier analyzed here is the Community Record
Of Marine low-cloud mesoscale Morphology, developed
with the support of the NASA Making Earth System Data
Records for Use in Research Environments (MEaSUREs;
Yuan et al., 2020; Mohrmann et al., 2021). This routine, built
as a continuation and improvement of the MIDAS classifier
originally made by Wood and Hartmann (2006), classifies
six morphologies present across multiple climate regimes.
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Morphologies include solid stratus (MEASURES solid St),
closed- (MEASURES closed) and open-cell (MEASURES
open) MCC and disorganized clouds (MEASURES disorga-
nized) observed predominantly in mid-latitude storm track
and subtropical subsidence environment, and clustered Cu
(MEASURES clustered) and suppressed Cu (MEASURES
suppressed) in the tropical trade winds. These tropical cloud
types were developed to improve upon the disorganized mor-
phology produced in the MIDAS dataset, which was not
trained to discern cloud structures in the tropics and instead
classified most tropical scenes as disorganized.

The MEASURES routine was initially trained by human
observers classifying MODIS visible images for ocean re-
gions globally. These classifications were used to train a neu-
ral network, which employed MODIS visible imagery along
with cloud-top height, cloud optical depth, cloud droplet ef-
fective radius, and a cloud mask (Platnick et al., 2017) to pro-
duce morphologies globally. Data are available upon request
for a selected number of years, including 2018 used here.
Classifications are made within 128 km square boxes with
no overlap between boxes. Classifications are not made near
the swath edge (sensor zenith angle> 45°) due to the distort-
ing effects of wide view angles on observed cloud properties
(Maddux et al., 2010).

2.2 Cloud properties from satellites

Cloud properties are gathered concurrently with all classifi-
cations in order to assess and compare radiative and physi-
cal traits. Concurrent datasets are made possible by the for-
mation flying of numerous sensors in NASA’s A-train polar-
orbiting satellite constellation. All data are collected during
the day at approximately 13:30 LT along the same swath used
to generate the classifications (as MODIS on Aqua is part of
the A-train).

Cloud physical properties, including cloud liquid water
path (LWP), ice water path (IWP), cloud optical thickness
(τ ), and cloud droplet effective radius (re) are sourced from
MODIS Aqua L3 optical properties dataset (King et al.,
2003; Platnick et al., 2017) on a 1°× 1° latitude–longitude
grid. MODIS cloud LWP and re are combined to produce
an estimate of cloud droplet concentration (Nd), as demon-
strated in Possner et al. (2020), based on relationships pre-
sented in Boers et al. (2006) and Bennartz (2007). Cloud
optical thickness (τ ) is calculated as a weighted average of
τ from “Filled” and partly cloudy (“PCL”) pixels, weighted
by the relative Filled and PCL cloud amounts. Other cloud
properties are only calculated for Filled pixels because cloud
edges may distort and bias those retrievals. The ratio of op-
tically thin to optically thick cloud cover is derived from
MODIS liquid cloud optical thickness histograms, which
produce counts of observations within optical thickness bins
for all observations within 1°× 1° grid boxes. Clouds with
a τ value of less than three are considered optically thin, as
defined in Leahy et al. (2012). Cloud cover is sourced from

MODIS cloud mask (Platnick et al., 2017) on the 1°× 1°
L3 grid.

Daily albedo is sourced from the Clouds and the
Earth’s Radiant Energy System (CERES; Loeb et al., 2018)
single-scanner footprint daily 1°× 1° dataset (SSF1deg;
NASA/LARC/SD/ASDC, 2015) based on retrievals from
MODIS Aqua. The SSF1deg dataset offers total scene albedo
and cloud-free albedo along with cloud amount. These prod-
ucts can be used to calculate the albedo of the cloudy regions
within each 1°× 1° grid box, which is the value most fre-
quently applied here.

Vertical profiles of cloud frequency associated with each
morphology are produced using the vertical feature mask
(VFM; Vaughan et al., 2004) based on lidar retrievals taken
by the Cloud–Aerosol Lidar with Orthogonal Polarization
(CALIOP) carried aboard the Cloud–Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO) satellite.
The VFM dataset produces observations of clear air, cloud,
aerosol, ocean surface, and a flag for when the beam is fully
attenuated. Below 8 km, profiles contain data in 30 m vertical
bins spaced 333 m apart along the satellite ground track, pro-
ducing a 333 m horizontal spatial resolution. Data are avail-
able at higher altitudes at reduced spatial resolution. Only
“clear” and “cloudy” pixels are studied here.

Rain rate data are sourced from the Advanced Microwave
Scanning Radiometer (AMSR/2) 89 GHz passive microwave
brightness temperatures (Tb; JAXA, 2012) tuned to estimate
rain rates using co-located CloudSat rain profile observations
(Lebsock and L’Ecuyer, 2011) using the routine developed
in Eastman et al. (2019). This routine derives rain rate from
Tb by controlling for variability in the AMSR/2 column-
integrated water vapor (Wentz et al., 2014) and ERA5 SST
and 10 m wind speed (Copernicus Climate Change Service,
2017) and then comparing CloudSat rain rates to Tb values,
which tend to be warmer when more liquid precipitation is
present. This establishes a mean relationship between Tb and
rain rate, which is then applied to the full AMSR swath.

The strong resolution of light precipitation by the 89 GHz
microwave band and the CloudSat cloud profiling radar used
to develop the precipitation product allow us to see light
rain associated with many of the cloud morphologies stud-
ied here. However, retrievals tend to saturate at fairly low
rain rates relative to deeper tropical boundary layer convec-
tion, providing only a minimum possible rate. This saturation
prevents the rain rate product from precisely resolving rates
in the heaviest raining cores in the tropics, so the rain rates
shown here for the some convective morphologies may be
underestimated given this limitation.

3 Results

3.1 Geographic distributions

Classifier output from all three routines is plotted on a
MODIS visible satellite image for the same day (26 Jan-
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uary 2018) in Fig. 1 in order to compare the spatial struc-
tures of the routines. Figure 1a shows the three MIDAS clas-
sifiers in their 256 km square overlapping boxes. “MIDAS
closed” and “MIDAS open” cells are identified in the sub-
tropical subsidence region in the eastern Atlantic and are
also seen in smaller amounts in the northwestern region
behind the cold front. In the tropical trades, the central–
southern portion of the image, the MIDAS routine classi-
fies nearly all features as “MIDAS disorganized”. Figure 1b
shows the same image classified by the MEASURES rou-
tine which uses non-overlapping grid boxes that are half the
size of the MIDAS boxes. Similar to MIDAS, “MEASURES
closed” and “MEASURES open” Sc cells are seen in the
subtropical region, but clouds in the tropical trade winds
are mostly classified as “MEASURES clustered” or “MEA-
SURES suppressed” Cu. “MEASURES solid St” and “MEA-
SURES closed” cells dominate the region behind the cold
front, where the MIDAS routine did not classify most clouds.
The dissipating, trailing edge of the cold front is classified as
MEASURES solid St. In Fig. 1c, the SGFF classifications
are only present in the subtropics and tropics, with flowers
observed upstream where other routines saw Sc types. Sugar
is observed where MEASURES suppressed Cu was classi-
fied, off the northwestern African coast. Downstream, the re-
mains of the cold front are classified as fish, and a broad area
south of the cold front is classified as gravel, where the MEA-
SURES routine classified a mix of MEASURES suppressed
and MEASURES clustered Cu.

Clouds are unclassified in a few regions for a variety of
reasons. If overlying ice clouds are present, Sun glint is in-
terfering with the retrievals, or if the observed patterns do
not adequately satisfy any of the criteria for any morphol-
ogy, then these are left blank. Future work may be able to
identify other morphologies or transitions in these gaps, but
we restrict the analysis here to only boxes that are classified.
Colors may deviate from the legend shown if boxes overlap
(red overlapping yellow may appear orange) or if the back-
ground color of the image changes.

The frequencies of observations of each morphology and
their geographic distributions are shown in Figs. 2–4, where
contour maps show how frequently morphologies were clas-
sified within 5°× 5° latitude–longitude boxes. These are ab-
solute frequencies not relative to each classifier. The grid is
aggregated from 1°× 1° in order to show smoother contours,
meaning each 1°× 1° box classified within a 5°× 5° grid box
counts as a single observation.

MIDAS open and MIDAS closed (Fig. 2) cells are ob-
served less frequently than MIDAS disorganized and occur
in roughly equal amounts in the mid-latitude storm track and
subtropical subsidence region. MIDAS disorganized clouds
are extremely common across the entire trade wind belt. This
region experiences mean anticyclonic (clockwise) boundary
layer wind flow centered over the central Atlantic (Brueck
et al., 2015). The peaks in cloud-type distributions coincide
with this flow. MIDAS closed MCC transition to MIDAS

open MCC further downstream in the mid-latitude storm
track and subsidence region. These transition into MIDAS
disorganized scenes even further downstream as clouds are
brought into the deeper tropics in the trade wind flow toward
the Caribbean.

Figure 3 shows the distributions of MEASURES cloud
types and adds specificity to the cloud transitions seen in MI-
DAS associated with the mean anticyclonic Atlantic winds.
Furthest upstream in the cold-air-outbreak region, just off-
shore of the Canadian Maritimes, MEASURES solid St oc-
currence peaks. Downwind (eastward) of that peak are subse-
quent distribution peaks in MEASURES closed MCC, then
MEASURES open MCC, followed by MEASURES disor-
ganized clouds in the subsidence region offshore of western
Europe. In contrast with the MIDAS routine, MEASURES
closed and MEASURES open MCC are less frequent overall
and are classified more frequently in the mid-latitude storm
track compared to the subsidence region. MEASURES dis-
organized clouds are seen primarily in the eastern Atlantic.
Rounding the eastern extreme of the North Atlantic high,
MEASURES clustered Cu occurrence peaks first before
MEASURES suppressed Cu, which dominates the down-
wind trade winds just upwind of the Caribbean. This distri-
bution progression highlights the frequent Lagrangian mor-
phology transitions that occur as air masses advect equator-
ward in the anticyclonic mean flow.

The geographical distributions of the SGFF morphologies
are shown in Fig. 4 and mainly describe clouds near the
tropical belt. Sugar is seen most frequently in the upstream
trade winds off the coast of Africa, with a second region
of frequent occurrence nearer the Caribbean. Gravel is most
frequent just upstream of the Caribbean, downwind of the
sugar maximum. Flowers are observed most frequently in a
region spanning the subtropical subsidence region and up-
wind tropical belt, where Sc types are generally transition-
ing to more tropical Cu cloud types. This is consistent with
the more stratiform nature of flowers, as observed by Schulz
et al. (2021). These distributions suggest sugar cloud types
can occur across the trade winds but may frequently form
in offshore winds originating over Africa. It is likely these
shallower Cu deepen into convective structures akin to gravel
and flowers (Narenpitak et al., 2021) as they travel across the
trade winds. Fish is the least frequently observed type and
is most common in the south–central Atlantic. It should be
noted that Schulz et al. (2021) also found sugar frequently
occurring adjacent to the Inter-Tropical Convergence Zone
(ITCZ) and its nearby subsidence region.

3.2 Co-occurrence statistics

To assess how the different routines classify the same scenes,
Fig. 5 illustrates co-occurrence between the morphologies. A
1°× 1° grid box may have multiple classifications assigned
by differing routines or from the same routine due to over-
lapping observation boxes or a box containing an “edge” be-
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Figure 1. The cloud field from 26 January 2018 with overlaid classifications by (a) MIDAS, (b) MEASURES, and (c) SGFF. Colors may
deviate from the legend if boxes overlap or if background colors differ. Image credit: NASA and MODIS Aqua.

tween classifications. At the chosen resolution of the dataset,
co-occurrences can stem from morphologies overlapping or
being adjacent to each other within a box. Due to the pat-
terns’ mesoscale extent, this unresolved co-occurrence af-
fects only the edges of the patterns and is assumed to have no

affect on the geospatial analysis. To quantify co-occurrence,
we show a fraction where the denominator is the total number
of times a morphology represented on the x axis is classified,
and the numerator is the number of times the two morpholo-
gies are observed in the same 1°× 1° box (same place; same
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Figure 2. The frequency of 1°× 1° grid boxes classified by MIDAS as (a) open MCC, (b) closed MCC, and (c) disorganized within 5°× 5°
grid boxes.

Figure 3. The frequency of 1°× 1° grid boxes classified by MEASURES as (a) closed MCC, (b) clustered Cu, (c) disorganized Cu, (d) open
MCC, (e) solid St, and (f) suppressed Cu within 5°× 5° grid boxes.

Figure 4. The frequency of 1°× 1° grid boxes classified by SGFF
as (a) sugar, (b) gravel, (c) flowers, and (d) fish within 5°× 5° grid
boxes.

time). Co-occurrence events are weighted by the surface area
within grid boxes, so smaller grid boxes in the northern re-
gion contribute less to the frequency due to their relatively

smaller surface areas. Differences between the co-occurrence
fractions for elements above and below the central diagonal
indicate differing frequencies of observations of one mor-
phology (y axis) given the presence of the other (x axis).

The fractions of co-occurrence are shown as shades of blue
in Fig. 5, with darker shades indicating more frequent co-
occurrence. This representation allows us to compare scene
classification behaviors within and between classifier rou-
tines (separated by black lines). MIDAS-classified scenes
show the most within-routine overlap of any classifier ex-
amined, with MEASURES and SGFF coming second and
third, respectively. The overlap sampling method of MIDAS
scenes is likely responsible for this. Within MIDAS, MI-
DAS disorganized scenes overlap more with MIDAS closed
or MIDAS open MCC relative to the less frequent overlap
between MIDAS closed and MIDAS open MCC. This sug-
gests that edges between MIDAS closed or MIDAS open
MCC and MIDAS disorganized scenes are more common
than edges between MIDAS closed and MIDAS open MCC.
Between the MIDAS and MEASURES classifications, open
MCC classifications frequently overlap, as do MIDAS closed
MCC with MEASURES closed MCC and MEASURES
solid St. This suggests a broad classification verification for
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Figure 5. Co-occurrences of cloud morphologies shown as a frac-
tion. The numerator is the number of times the two morphologies
are classified at the same place and same time, and the denomina-
tor is the total number of times the x-axis morphology is classi-
fied. Black lines separate classifier routines (labeled at top and right
edge). Individual classification labels are marked along the bottom
and left edge. Contributing boxes are area-weighted to account for
varying grid box area with latitude.

these types between the MIDAS and MEASURES routines.
MIDAS disorganized scenes have the most frequent over-
lap with other classification routine types, excluding MEA-
SURES closed MCC, MEASURES solid St, and sugar.

MEASURES clustered scenes overlap with MEASURES
open MCC and MEASURES suppressed Cu scenes. Taken
together with the maps from the prior section, a Lagrangian
model emerges, where MEASURES open cells evolve into
sparser MEASURES clustered Cu, which then alternates
with MEASURES suppressed Cu in the tropical trade winds.
MEASURES clustered and MEASURES suppressed scenes
overlap with MIDAS disorganized scenes, showing that the
MEASURES routine accomplishes its mission of adding fur-
ther detail to the expansive MIDAS disorganized classifi-
cation. MEASURES clustered scenes overlap with gravel
and fish, while MEASURES suppressed scenes overlap more
with sugar, gravel, and fish. It is likely that MEASURES sup-
pressed Cu is detected in gaps between larger features in fish
and gravel scenes.

The SGFF classifications show less frequent overlap with
one another, but some overlap is apparent between sugar–
gravel and fish–flowers. Flowers overlap most with MIDAS
open MCC and MIDAS disorganized, in addition to MEA-
SURES clustered and MEASURES disorganized. Sugar and
MEASURES suppressed Cu show some overlap, as do gravel
and MEASURES clustered Cu, indicating that the two rou-
tines are classifying the same scenes as these conceptually
similar types.

3.3 Morphology and albedo

In this section, we construct comparisons between various
cloud properties for each morphology to understand the in-
fluence morphological organization has on albedo. Gener-
ally, we utilize one variable to define quantile bins along
the x axis and report the mean of a second variable in each
bin (e.g., shaded lines in Fig. 6). Grid box area is used to
weight all averages shown, so smaller boxes do not have dis-
proportionate contributions. The 2σ standard error for each
bin mean is shown by the line width in the y direction. To
eliminate noise caused by outliers, data plotted in the lines
represent the middle 80 % quantile (with the upper and lower
10 % removed). Large, filled symbols represent the morphol-
ogy mean x and y behavior. Small, hollow symbols mark
the morphology corresponding to each line. We are able to
examine inter-morphology (between mean morphology be-
haviors, comparing large symbols) relationships and intra-
morphology (within morphology type behaviors, comparing
shaded lines) relationships to test whether observed behav-
iors are unique to each type or common to all morphologies.

Each figure in this section has been produced using two
methods; one uses all grid boxes assigned to a morphol-
ogy, while the other uses a “pure” set that only uses boxes
assigned to a single morphology by each routine (no co-
occurrences within classifiers). This is to ensure that no bias
is present due to overlap between morphologies. Figures are
qualitatively identical regardless of which method is used and
show no bias caused by overlap. Figures shown use all avail-
able data, including co-occurrences within classifiers.

For each morphology, we find that the scene (all-sky)
albedo is both a function of cloud albedo (Fig. 6a) and
cloud amount (Fig. 6b). The correlation coefficients shown
are calculated for the means (large symbols) and describe
how much variation between morphologies in mean scene
albedo is explained by cloud albedo (Fig. 6a) and cloud cover
(Fig. 6b). Cloud albedo explains slightly more (98 %) of the
variability in all-sky albedo compared to cloud cover (90 %).
Cloud amount and cloud albedo (Fig. 6c) are also closely re-
lated to each other with 86 % variance explained.

There is broad agreement in albedo values for similar
cloud types seen by different classifiers. For example, MEA-
SURES suppressed Cu and sugar show nearly equivalent
albedos. Albedo tends to be lowest for Cu types and high-
est for stratiform types, with open cells, disorganized scenes,
and clustered cumuliform albedos in the middle. Stratiform
types show far more extensive cloud cover accompanied by
a higher albedo compared with cumuliform types.

The spread between lines in the three plots suggests that
the relationships between mean scene albedo and mean
cloud amount, as well as between mean cloud albedo and
mean cloud amount, are unique functions of cloud mor-
phology. This is particularly true for the cloud albedo and
cloud amount relationships, which exhibit more separation
(Fig. 6c). For instance, the two suppressed Cu cloud types
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in Fig. 6c show a significantly less extensive mean cloud
amount and a weaker increase in amount when albedo in-
creases relative to stratiform morphologies. Differences are
also present in Fig. 6a, where, again, the suppressed Cu types
show a weaker relationship along with gravel and MEA-
SURES open cells. Taken together, these figures show how
mean radiative properties for each cloud morphology are a
unique function of cloud cover and cloud albedo.

In addition to the correlations between the mean morphol-
ogy behaviors, we examine the correlations based on the
points used to create the shaded lines in Fig. 6a–c. These
coefficients (Table 1) describe how strongly cloud albedo or
cloud amount relate to scene albedo for each morphology.
For every morphology (with the exception of MEASURES
suppressed), cloud albedo is a stronger driver of scene albedo
than cloud cover. This is consistent with the mean correla-
tions and implies that, for these morphologies, cloud reflec-
tivity may drive all-sky albedo variability more strongly than
cloud amount. These relationships are generally weaker for
the suppressed Cu types, which may indicate the difficulty
in detecting the larger proportion of optically thin clouds in
these predominantly clear scenes (Mieslinger et al., 2022).

Figure 6d shows normalized curves comparing the relative
number of observations per cloud amount bin for each mor-
phology. These curves show that stratiform types are more
frequently observed in cloudy environments, while most of
the disorganized or cumuliform types are frequently ob-
served when cloud cover is much lower. However, the dis-
tribution of morphology occurrence across the cloud amount
space is varied and overlapping, suggesting that morphology
is not a simple function of cloud cover, or vice versa.

In Figs. 7–9, maps show the geographic distributions of
cloud albedo anomaly for each morphology. Albedo anomaly
is defined as the daily mean albedo for a specific morphol-
ogy minus the mean albedo for all sampled low-cloud scenes
(from a combination of all routines) within a 5°× 5° grid
box for a 100 d running mean centered on every day. The
values shown are annual means. Results show that MEA-
SURES suppressed Cu, sugar, gravel, and MIDAS disor-
ganized scenes have anomalously low albedos throughout
our region, while closed-cell Sc and solid stratiform clouds
almost always have anomalously high albedos. For other
types, including MIDAS open cells, MEASURES open cells,
MEASURES clustered, MEASURES disorganized Cu, fish,
and flowers, the albedo anomaly is negative near the storm
track but positive to the south. This suggests a complex pic-
ture where climatologically relevant cloud radiative proper-
ties are a function of morphology and location. Because of
differing frequencies of occurrence for each morphology (as
shown in Figs. 2–4), the sum of all anomalies in Figs. 7-9
should not be zero.

In Fig. 6 and Table 1, cloud albedo was shown to have a
stronger effect than cloud amount on the all-sky albedo of a
cloud scene. This motivates further study into which cloud
properties most influence cloud albedo for each morphology.

In Fig. 10, the relationships between cloud albedo and a num-
ber of remotely sensed cloud variables are shown for each
morphology using the same method as Fig. 6. Data are gath-
ered only for cloud scenes with cloud amounts within 10 % of
the respective morphology median, which allows us to con-
trol for the differing mean cloud amounts associated with the
morphologies (sampling the “peaks” relative to cloud amount
in Fig. 6d). Results were not qualitatively sensitive to chang-
ing this threshold to 5 % or 20 %.

For all morphologies, cloud albedo increases when LWP,
Nd, τ , and IWP (Fig. 10a–c and g, respectively) increase,
while cloud albedo decreases when the fraction of optically
thin cloud cover increases (Fig. 10h). This final relationship
shows the strongest correlation, indicating that the fraction
of optically thin cloud cover most strongly explains the cloud
albedo variability between morphologies after controlling for
cloud amount, as shown by McCoy et al. (2023).

Figure 10 uses LWP, Nd, and IWP values from Filled
MODIS pixels only, excluding cloud edges or any other
scenes where pixels are partially filled. This is to avoid biases
caused by assumptions used by the retrievals that may not be
appropriate in broken cloud scenes. To see whether including
or excluding broken scenes could cause a bias, Fig. 10 was
also produced using weighted averages of Filled and PCL
pixels, with separate LWP, Nd, and IWP values averaged for
portions of each grid box considered Filled or PCL and then
averaged based on the fraction of Filled or PCL scenes within
each box. This averaged figure was qualitatively unchanged
from the original, suggesting that the relationships seen here
are unlikely to be biased by scattered or broken cloud scenes.
Optical depth values use this weighted-average technique, in-
corporating Filled and PCL observations, since that product
relies on fewer assumptions.

The spread of lines in the y direction in Fig. 10 indi-
cates that there is some degree of cloud albedo equifinal-
ity across morphologies. That is, different morphologies can
produce an equivalent cloud albedo despite significantly dif-
ferent cloud properties. A comparison of the plotted lines
shows that more cumuliform morphologies such as gravel,
disorganized clouds, and open-cell MCC have higher val-
ues of maximum τ , higher peak rain rates, more ice content,
and more optically thin clouds compared to the stratiform
types for an equivalent cloud albedo. This suggests that the
cumuliform morphologies are characterized by thick raining
cores surrounded by optically thin clouds while stratiform
morphologies are much more uniform.

We find a curious difference when comparing mean τ

and peak τ versus comparing mean rain rate and peak rain
rate behaviors. The relationship between τ and cloud albedo
is consistent and positive for both mean and maximum τ

(Fig. 10c and d). However this is not the case for rain rates;
mean rain rates are higher for a higher albedo, but maximum
rain rates are highest for middling albedos over a broad set
of cumuliform morphologies. This nuanced relationship be-
tween maximum rain rate and albedo may be associated with
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Figure 6. Morphology relationships (colored lines) for y-axis variables binned into quantiles along the x axis between (a) cloud albedo
vs. all-sky albedo, (b) cloud amount vs. all-sky albedo, (c) cloud albedo vs. cloud amount, and (d) cloud amount vs. normalized number
of observations. Line width in the y direction represents the 2σ standard error of the mean. Data for lines exclude the upper and lower
10 % quantile bins. Hollow symbols and colors distinguish lines between classifier routine classifications (legend in (b)) and do not represent
any values. In panels (a–c), averages for each morphology are shown as large, corresponding, and filled symbols. In panel (d), the observation
number per cloud amount bin is normalized between 0–1 in order to best compare shape.

Table 1. Correlations between all-sky albedo and cloud albedo (first column) and between all-sky albedo and cloud amount (second column)
for each morphology.

Correlation (r) with scene (all-sky) albedo

Cloud albedo Cloud amount

MIDAS Open MCC 0.92 0.66
Closed MCC 0.87 0.52
Disorganized 0.85 0.75

MEASURES Closed MCC 0.94 0.64
Clustered Cu 0.83 0.77
Disorganized Cu 0.89 0.73
Open MCC 0.91 0.75
Solid St 0.92 0.66
Suppressed Cu 0.57 0.63

SGFF Sugar 0.62 0.44
Gravel 0.83 0.70
Flowers 0.79 0.71
Fish 0.77 0.75
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Figure 7. Yearly mean of daily albedo anomalies relative to the 100 d running mean for all classifiable low-cloud scenes for MIDAS
morphologies: (a) open MCC, (b) closed MCC, and (c) disorganized.

Figure 8. As in Fig. 7 but for MEASURES morphologies: (a) closed MCC, (b) clustered Cu, (c) disorganized Cu, (d) open MCC, (e) solid St,
and (f) suppressed cu.

heavily precipitating cores surrounded by more optically thin
clouds. Because of the limitations in the 89 GHz rain rate
product in sensing heavier rain, this result may need to be
evaluated using rain rate products with a greater sensitivity
to strong rain rates.

3.4 Vertical profiles and optical thickness from
CALIPSO

The CALIOP lidar aboard CALIPSO provides vertical pro-
files of cloud tops and a measure of cloud optical thickness.
This section analyses cloudy retrievals in 30 m height bins
in the lowest 4 km of CALIOP lidar profiles in classified
boxes. Profiles that penetrate the clouds and detect the sur-
face are considered optically thin, while fully attenuated pro-
files are considered optically thick. Optically thick profiles
only represent cloud tops, since the true vertical extent of
the cloud is unknown due to attenuation of the lidar beam.
Profiles that see layered clouds are more complex; occasion-

ally, the lidar sees through upper clouds and attenuates in
a lower cloud. Here, layered profiles are split into thin and
thick portions. The thin portion represents all clouds that the
lidar sees through, and the thick portion consists only of the
cloud that fully attenuates the beam. Plots in Fig. 11 show
the fraction of cloudy observations for thin (dashed blue) and
thick (solid black) profiles in each height bin divided by the
total number of profiles that see cloud for each classifica-
tion. Combined profiles (sum of thick and thin) are shown as
dashed thin black lines. Clear profiles are excluded from the
denominator in order to better show and compare the shapes
of the cloud profiles. Anomalies for thin and thick profiles,
shown, respectively, as shaded blue and black regions, rep-
resent the profiles for each type minus the mean profile of
all types shown in Fig. 11n. Frames are arranged to facili-
tate comparisons between theoretically similar identification
types across classifiers.

Since overlying high clouds could potentially attenuate the
lidar beam, Fig. 11 was also created only for profiles with no
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Figure 9. As in Figs. 7 and 8 but for SGFF morphologies: (a) sugar, (b) gravel, (c) flowers, and (d) fish.

cloud cover above 4 km. This filtered subset of our data pro-
duced qualitatively comparable results and showed no bias
caused by high clouds.

Results show strong differences in vertical profiles be-
tween classifications. Shallower and less vertically dis-
tributed types include suppressed Cu types, closed MCC,
MEASURES disorganized, and flowers. Deeper types are
gravel, open cells, MEASURES solid St, and fish. These
deeper types tend to rain more heavily (Fig. 10f), except
for MEASURES solid St which are likely associated with
weather systems and not convection. Note that because we
are limiting to 4 km depth, the fish identifications are likely
highlighting the low-level scud clouds that happen in the
vicinity of the larger feature (e.g., Fig. 1). Generally, opti-
cally thin clouds tend to be lower in height than surrounding
optically thick clouds for all classifications even when ac-
counting for layered scenes.

Comparing absolute and anomaly profiles between simi-
lar types classified by different routines, we find similar be-
haviors for suppressed Cu types (MEASURES suppressed
vs. sugar) and closed MCC types (MEASURES vs. MI-
DAS). Some differences are apparent between other theo-
retically similar types. Gravel scenes tend to contain more
optically thin and fewer optically thick clouds compared to
MEASURES clustered Cu. This may be because more opti-
cally thin clouds are present in the larger classification boxes
around gravel. MEASURES open cells contain more clouds,
especially optically thin, in the upper portions of the profile
compared to MIDAS open cells, perhaps owing to the MEA-

SURES open cells’ disproportionate prevalence in the storm
track.

CALIOP provides an independent measure of the fraction
of optically thin clouds that can be compared to MODIS.
In Fig. 12 the number of CALIOP profiles that see the sur-
face divided by the total number of cloudy profiles is plot-
ted against the fraction of cloudy MODIS pixels with τ < 3.
Layered CALIOP soundings are considered optically thick
here, since an equivalent MODIS observation would be un-
able to effectively distinguish the layers, and the albedo
would be more akin to that of an optically thick scene. We
see strong agreement between MODIS and CALIOP mea-
sures of τ (88 % variance explained), increasing confidence
in our assessment of optically thin fractions for the classified
types.

3.5 Regional differences

Figure 10 shows significant differences in cloud properties
between morphologies, while Figs. 2–4 show strong dif-
ferences in their geographic distributions. Given this, we
wish to investigate the degree to which cloud property dif-
ferences are influenced by varying geographic distributions
separately from morphological differences. To assess this,
Figs. 14 and 15 present a comparison of cloud properties in
smaller sub-regions that are illustrated in Fig. 13. Boxes sam-
ple different sub-regions along the anticyclonic flow in the
Atlantic, as illustrated by mean winds at cloud level (vectors;
925 hPa). Boxes in the far North Atlantic and East Atlantic
subsidence regions are chosen to compare stratiform mor-
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Figure 10. Cloud properties: (a) in-cloud liquid water path (LWP), (b) droplet number concentration (Nd), (c) mean optical depth (τ ),
(d) maximum optical depth, (e) mean rain rate, (f) maximum rain rate, (g) in-cloud ice water path (IWP), and (h) fraction of optically thin
cloud features (τ < 3) as a function of cloud albedo. As in Fig. 6, symbols show the mean relationship for each classification, lines show the
relationship for cloud properties within each morphology for bins of constant cloud albedo, and line width in the y direction represents the
2σ standard error of the mean. Panels (a), (b), and (g) only use Filled MODIS pixels and not cloud edges in order to reduce possible biases
in retrievals in partly cloudy regions.

phologies, while boxes in the upwind and downwind tropical
trade winds are chosen in order to compare shallow tropical
convective morphologies. Plots compare cloud micro- and
macro-physics, radiative properties, precipitation, and phase.
Scatterplots in Figs. 14 and 15 present each sub-region on an

axis. A 1 : 1 line is also shown, where the area-wide North
Atlantic mean values for each morphology are shown as a
hollow symbol in order to compare sub-regional behavior to
the entire regional mean.
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Figure 11. CALIPSO vertical feature mask (VFM) vertical profiles of all (dashed black), optically thin (dashed blue), and thick (solid black)
clouds for each morphology. Anomalies relative to the mean profiles in panel (n) are shown as shaded regions (blue for thin; black for thick).

Figure 14 compares the far North Atlantic with the East
Atlantic subsidence region. This effectively contrasts strat-
iform morphologies between those that frequently occur in
the storm track where cold air outbreaks are common and
the Sc cloud types that commonly occur under a shallow
marine inversion. Rain rate data derived from Tb are fre-
quently missing in the far North Atlantic region due to the
presence of ice, so rain rates are replaced by cloud droplet
effective radius (re) in order to better compare rain charac-
teristics. The far North Atlantic shows a greater maximum
τ , marginally fewer but somewhat bigger cloud drops (likely
indicating more rain), greater LWP and IWP, and more cloud
cover but fewer optically thin clouds. These differences sug-
gest a thicker, icier, and rainier cloud environment for all
morphologies in the far North Atlantic. As a consequence of

these thicker clouds, the cloud albedo in this region is con-
sistently higher compared to both the entire study region and
the subsidence region in the East Atlantic.

Figure 15 compares warm, shallow convective morpholo-
gies between upwind and downwind locations in the tropical
trade winds (note axes changes from Fig. 14). Morphologies
observed upwind have lower peak rain rates with more drops
and are marginally cloudier with a smaller proportion of op-
tically thin clouds. The cloud LWP is also marginally lower
upwind, while ice is minimal in both sub-regions (not unex-
pected for the trades). The upwind region shows a higher max
τ and albedo, suggesting that the cleaner (lower Nd), more
remote, and likely more developed downwind cloud systems
are less reflective. This result hints at the presence of strong
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Figure 12. Mean optically thin cloud cover fraction as detected by
MODIS (no. of observations with τ < 3 divided by the total no. of
cloudy observations) plotted against mean optically thin cloud cover
as detected by CALIOP on CALIPSO (no. of soundings that see the
surface divided by the total no. of cloudy soundings).

Figure 13. The four study regions compared in Figs. 14 and 15 for
the entire year 2018. Mean wind vectors at 925 hPa from ERA5 are
shown as arrows, with arrow length scaled by mean wind speed.

Lagrangian development of cloud systems in the trade winds,
which may have significant radiative implications.

Figures 14 and 15 show that the ordering from high to low
for most cloud properties generally remains consistent be-
tween types and between regions, even though mean values
may differ significantly between regions. Some of the vari-
ability seen in Fig. 10 is likely caused by geographic dif-
ferences, but a strong morphology-driven variation in cloud
properties is still present after controlling for regionality. Fur-
thermore, Lagrangian development is apparent when looking
at upwind/downwind locations in the trade winds. Finally,
the association between rain rates and albedo may be de-
pendent upon morphology or cloud phase, with more heav-

ily raining warm tropical clouds being less reflective, while
rainier, and possibly icier, scenes in the mid-latitudes have a
higher albedo.

4 Discussion

In Fig. 6 and Table 1, we show that cloud albedo is at least
as strong a predictor of scene albedo as cloud amount. This
was true in explaining albedo variability between morpholo-
gies (Fig. 6) and within morphologies (Table 1). Figure 10
goes on to show that the fraction of optically thin cloud cover
best predicts the cloud albedo variability between morpholo-
gies, highlighting the importance of cloud optical thickness
in climate studies. This result agrees with the results of Mc-
Coy et al. (2023) in showing that differences in cloud op-
tical thickness between MIDAS morphologies drive albedo
variation between those morphologies for a constant cloud
amount. Here, we can now extend that conclusion by exam-
ining more specialized tropical cloud morphology identifica-
tions that were previously considered together as one disor-
ganized type.

The relative importance of albedo and cloud cover in di-
agnosing the radiative impact of clouds is in part dependent
upon thresholds used in satellite retrievals to identify cloudy
or clear scenes. It is possible that a modification of the thresh-
old used to separate cloudy from clear pixels in the MODIS
cloud mask employed here could modify our results. Be-
cause no perfect truth exists for quantifying satellite-detected
clouds, we motivate future work in this area to improve the
resolution of cloud cover retrievals.

The radiative importance of cloud optical depth in our
present and future climate has been demonstrated in prior
work (McCoy et al., 2023; Hu and Stamnes, 2000; Konsta
et al., 2022). Using a radiative–convective model, Hu and
Stamnes (2000) found that an increase in cloud optical depth
was associated with less warming. McCoy et al. (2023) used
present-day morphology observations as a basis for calcu-
lating the optical depth component of the shortwave cloud
feedback (e.g., Zelinka et al., 2012) from shifts in morphol-
ogy occurrence under extreme climate scenarios. For exam-
ple, McCoy et al. (2023) show a local, positive optical depth
feedback on SST warming from morphology shifts, which
occurred during the 2015–2016 North East Pacific marine
heatwave; MIDAS-closed-cell MCC was replaced by less
cloudy, optically thinner MIDAS disorganized scenes, in-
creasing sunlight on the sea surface. Here, we expanded the
specificity of morphology identifications, especially in the
tropics, from those used in McCoy et al. (2023) and found
some additional variation in behaviors across morphology
types. Our results highlight the potential complexity of un-
derstanding morphology feedback onto the climate system
in present and future climates. Identifying the processes in-
volved in development and transitions across these varied
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Figure 14. Mean cloud properties for each morphology that is commonly observed in the far North Atlantic (x axis) and subtropical
subsidence region (y axis). Properties include (a) maximum optical depth (τ ), (b) cloud droplet effective radius (re; in place of rain rate),
(c) cloud droplet concentration (Nd), (d) in-cloud liquid water path (LWP), (e) albedo, (f) fraction of optically thin cloud (τ < 3), (g) cloud
amount, and (h) in-cloud ice water path. A 1 : 1 line is also shown, where the area-wide North Atlantic mean values for each morphology are
shown as a hollow symbol.
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Figure 15. Mean cloud properties for each morphology that is commonly observed in the far upwind trade winds (x axis) and downwind
trade winds (y axis). Properties include (a) maximum optical depth (τ ), (b) rain rate, (c) cloud droplet concentration (Nd), (d) in-cloud liquid
water path (LWP), (e) albedo, (f) fraction of optically thin cloud (τ < 3), (g) cloud amount, and (h) in-cloud ice water path. A 1 : 1 line is
also shown, where the area-wide North Atlantic mean values for each morphology are shown as a hollow symbol.
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morphology types and the sensitivity of these processes to
the environment warrants additional study as well.

A comparison of climate models by Konsta et al. (2022)
shows that models fail to reproduce realistic cloud optical
depth variability, often producing no optically thin clouds.
This contributes to the “too few, too bright” problem en-
demic in cloud representation in general circulation models.
That study also showed a model failure to reproduce higher
cloud optical depths observed in thicker Sc scenes. Exam-
ining parameterized cloud behaviors in the context of mor-
phological classifications may aid in the reproduction of re-
alistic optical thicknesses. Relating morphology occurrence,
and their inherent radiative property signatures, to distinct
climate regimes (e.g., McCoy et al., 2017; Mohrmann et al.,
2021; McCoy et al., 2023) may also be useful in adding nu-
ance to regime-based forcing (e.g., Wall et al., 2022) and
feedback (e.g., Myers et al., 2021; Zelinka et al., 2022) calcu-
lations. In particular, trade–cumulus feedback is still a large
source of uncertainty in climate models and significantly dis-
agrees with observational estimates (e.g., Myers et al., 2021;
Vogel et al., 2022), emphasizing the importance of under-
standing cloud development and radiative impacts in this re-
gion.

Geographic distribution maps and co-occurrence statistics
shown in sections 3.1 and 3.2 suggest that Lagrangian transi-
tions between morphologies are common as the mean flow
advects clockwise (anti-cyclonically) around the study re-
gion. Given the regional morphology albedo anomalies we
found (Figs. 7–9), Earth’s radiation budget will be mod-
ified by shifts in the location of the climatological aver-
age transition regions or other changes in the most com-
mon types of transitions occurring in this basin. A few stud-
ies have already addressed the drivers of Lagrangian mor-
phology changes in these regions. Narenpitak et al. (2021)
demonstrated that moisture convergence and large-scale as-
cent can drive a sugar–flowers transition in the trade winds.
Eastman et al. (2022) found that increased rain driven by
strong winds and its accompanying moisture fluxes can drive
a closed- to open-MCC transition in the subtropics, while a
warmer sea surface, a weaker inversion, and stronger dry air
entrainment were associated with MIDAS closed to MIDAS
disorganized transitions. Identifying more such mechanisms
influencing climatological and Lagrangian morphology tran-
sitions and their sensitivity to environmental changes will be
important for understanding how these transitions will mod-
ulate present and future energy flows in the climate system.

Our results also motivate future work examining other fre-
quent, radiatively significant transitions that are now appar-
ent from the relatively frequent co-occurrences suggested in
Fig. 5. For example, the change between disorganized types
and flowers or suppressed Cu evolving into or from clustered
Cu. The importance of examining these regionally specific
transitions is further emphasized by our finding that a single
morphology may present differing radiative characteristics
as it undergoes Lagrangian evolution (e.g., along the flow),

as shown by MEASURES clustered Cu or gravel becom-
ing rainier and increasingly optically thin in the downwind
trades (Fig. 15). That relationship combined with the heav-
ier maximum rain rates observed at middling cloud albedo
values in Fig. 10f for several shallow convective morpholo-
gies hints at a precipitation-driven process, where heavy
rain may be associated with less reflective clouds for some
morphologies. This may be broadly consistent with the in-
creased prevalence of cloud-free cold pools surrounding ma-
ture raining cells. However, Vogel et al. (2021) suggest the
opposite relationship with greater optical thickness associ-
ated with stronger rain rates. Heavier precipitation observed
in the stratocumulus–cumulus transition was shown by O
et al. (2018) to be associated with more optically thin veil
clouds, which is broadly consistent with lower albedos seen
with heavier rain rates. Further work is needed to better un-
derstand these processes. The differences in droplet concen-
trations (e.g., higher upwind in the trades) in Figs. 14 and 15
also motivate a more detailed examination of aerosol influ-
ence on morphology radiative properties (e.g., higher albedo
upwind) and cloud evolution.

In Leahy et al. (2012), the fraction of optically thin cloud
cover was shown to vary inversely with cloud size. Although
our study has not specifically studied the sizes of cloudy el-
ements within each morphology, our results generally agree
with this inverse relationship. Morphologies such as MEA-
SURES suppressed Cu or sugar, which consist of many small
clouds, contain a greater proportion of optically thin cloud
compared to the broad cells associated with closed-cell Sc.
Objective classification methods have also found that cloud
size is one of four important dimensions to consider in sep-
arating cloud morphology types, indicating this is a fun-
damental property of different organization states (Janssens
et al., 2021). This motivates future study of cell size, pos-
sibly using methods developed by Zhou et al. (2021) and
Janssens et al. (2021), to see whether this inverse relationship
applies within each morphology or only between morpholo-
gies. Both Leahy et al. (2012) and Mieslinger et al. (2022)
found that small, optically thin clouds are frequently unde-
tected by remote platforms such as MODIS and CALIPSO,
causing significant uncertainty in cloud radiative effects and
suggesting that optically thin fractions shown here may be
underestimated. Advances in observations may aid in detect-
ing these “hidden” but radiatively significant clouds.

In Fig. 5, open-cell co-occurrence statistics are peculiar in
that MEASURES open cells tend be infrequent when MI-
DAS open cells are reported, relative to the opposite rela-
tionship where MIDAS open cells are more frequent when
MEASURES open cells are present. Differing geographic
distributions are also present in Figs. 2a and 3d, showing that
MEASURES open cells are more confined to the storm track
where Fig. 15d shows much higher LWP values. One pos-
sible explanation for this difference is the contrast in train-
ing regions between MIDAS, which is exclusively trained in
the subtropics, and MEASURES, which is trained globally.
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The inclusion of the storm track in the MEASURES training
region may have increased the LWP threshold for the clas-
sification of open cells. A brief comparison of mean LWP
between MIDAS and MEASURES open cells in Fig. 10a
shows that MEASURES open cells have higher LWP, con-
sistent with a sensitivity to differing training regions.

This comparison may aid in establishing a single set
of unique morphologies. Given their radiative and physi-
cal characteristics, distinct morphologies likely include solid
stratus, closed-cell MCC, open-cell MCC (though these may
present differently in the storm track compared to subsidence
regions), aggregated Cu (a combination of gravel and MEA-
SURES clustered Cu, with the former presenting a deeper,
more developed version of the latter), suppressed Cu (as seen
similarly by MEASURES suppressed and SGFF sugar), fish,
and flowers. Co-occurrence statistics for fish and flowers sug-
gest that these are currently or formerly sub-types of aggre-
gated Cu and can be alternately described as disorganized.
However, their radiative properties appear unique enough to
warrant a distinct classification, as do their formation mech-
anisms (i.e., the larger structures in fish are typically associ-
ated with trailing cold fronts, Schulz et al., 2021; Aemisegger
et al., 2021). It will be necessary for future work to converge
on this set of morphologies or one like it to avoid the endless
proliferation of differing cloud types, causing a lack of com-
parability in studies. New data sources, including improved
geostationary satellites, should be used in producing globally
focused versions of these identifications in order to maintain
a continuing record and to establish daily and seasonal cli-
matologies.

Finally, this work hints at the presence of both equifinal-
ity and multifinality in the cloud–climate system. Equifinal-
ity, equivalent outcomes born of diverse processes or prop-
erties, is demonstrated by the wide range of cloud properties
that can be combined to produce the same albedo, depending
on cloud morphology. Multifinality, diverse outcomes result-
ing from similar perturbations, is also present in this system,
given the unique cloud processes and properties associated
with each morphology; a single perturbation to the climate
system will likely favor one cloud morphology over another.
These concepts motivate future research to better quantify
the diverse cloud processes and radiative characteristics as-
sociated with each unique morphology.

5 Conclusions

Three supervised machine learning routines (MIDAS, MEA-
SURES, and SGFF) are used to produce 13 cloud classi-
fications representing distinct morphologies using MODIS
Aqua satellite imagery and radiances over the North Atlantic
Ocean for the year 2018. Geographic distributions of mor-
phologies vary between classifiers. MIDAS open and MI-
DAS closed MCC are most prevalent in mid-latitude storm
track and eastern subsidence regions, while MIDAS dis-

organized scenes are most common in the tropical trade
winds. MEASURES stratiform cloud types are most com-
mon in the mid-latitudes, with MEASURES disorganized
clouds more prevalent in the subsidence region. MEASURES
Cu types are most common in the tropical trade winds, with
MEASURES clustered Cu peaking upwind, east of MEA-
SURES suppressed Cu. All four of the morphologies pro-
duced by SGFF are common in the tropical trade winds. A
study of classifier co-occurrence (when a 1°× 1° grid box
is assigned multiple morphologies) finds that MIDAS dis-
organized clouds co-occur with all of the morphologies fre-
quently seen in the tropical trade wind region. This demon-
strates that the added specificity of the SGFF and MEA-
SURES routines have added value by separating this expan-
sive category into distinct subsets.

A comparison of CERES-derived albedos shows that
cloud albedo and cloud amount both strongly predict the vari-
ability in total scene albedo between morphologies. When
analyzing albedo variability within each morphology, the
scene albedo was consistently more strongly correlated with
cloud albedo than cloud amount. The fraction of optically
thin clouds most strongly predicts the mean cloud albedo
compared with other physical quantities such as in-cloud liq-
uid water path, in-cloud ice water path, droplet number con-
centration, maximum optical depth, or rain rate. Different
morphologies display unique combinations of these physical
variables to achieve a similar cloud albedo. This equifinality
complicates our understanding of what controls cloud albedo
and highlights the importance of process understanding and
the usefulness of a morphology-based analysis framework. A
comparison with the CALIPSO-derived fractions of optically
thin cloud cover shows strong agreement with the MODIS-
derived fractions, showing the robustness of the MODIS op-
tically thin feature detection method.

Vertical profiles of optically thin and thick cloud cover
are produced using CALIPSO lidar data. More vertically
extensive morphologies include clustered Cu types (gravel
and MEASURES clustered), MEASURES solid St, open-
cell MCC from MIDAS and MEASURES, and, for clouds
below 4 km near these features, fish. Shallower morphologies
include closed-cell MCC from MIDAS and MEASURES,
flowers, and both MEASURES suppressed Cu and sugar
types. Optically thin features are more common at lower al-
titudes, nearer cloud base, despite separating multi-layered
scenes into thin upper and thick lower portions.

A geographic breakdown shows strong regional differ-
ences in radiative and physical properties. Stratiform mor-
phologies are thicker, rainier, and more reflective in the far
North Atlantic region where cold air outbreaks commonly
occur compared to the subtropical subsidence region. Trade
wind Cu types are less rainy, more reflective, and less op-
tically thin in the upwind trades nearer the subsidence re-
gion compared to downwind. This suggests there is some
Lagrangian evolution occurring within types, as well as vari-

https://doi.org/10.5194/acp-24-6613-2024 Atmos. Chem. Phys., 24, 6613–6634, 2024



6632 R. Eastman et al.: Survey of mesoscale cloud morphologies

ability in cloud properties, that may be associated with prox-
imity to aerosol sources on land.

Overall, this work describes how a morphology-driven ap-
proach to the study of clouds can provide radiatively impor-
tant insights about cloud characteristics and evolution, poten-
tially helping us to better encapsulate cloud behaviors in cli-
mate models and reduce uncertainty in climate projections.
For the wide range of morphological cloud types examined in
this study, we find unique relationships between cloud phys-
ical properties and radiation. Future work may improve upon
this by tying archetypal cloud morphologies to common cli-
mate regimes, identifying processes unique to the develop-
ment and evolution of each morphology, and examining the
sensitivity of these processes to environmental changes.

Data availability. Datasets include MODIS L2 data
used to run the classifier routines and are available at
https://doi.org/10.5067/MODIS/MYD06_L2.006 (Platnick
et al., 2015). CERES data used to quantify albedo are available at
https://doi.org/10.5067/AQUA/CERES/SSF1DEGHOUR_L3.004
(NASA/LARC/SD/ASDC, 2015). MODIS L3 cloud data are avail-
able at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/
MYD08_D3 (Platnick et al., 2017). ERA5 reanalysis data are avail-
able at https://doi.org/10.24381/cds.adbb2d47 (Copernicus Climate
Change Service, 2017). CALIPSO VFM data are available at
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-
ValStage1-V3-41 (Vaughan et al., 2004). Rain rate
data from AMSR2 and CloudSat are available at
https://www.cloudsat.cira.colostate.edu/community-products/
warm-rain-rate-estimates-from-amsr-89ghz-and-cloudsat (last ac-
cess: 22 May 2024, Eastman et al., 2019). The joint mesoscale cloud
morphology dataset (https://doi.org/10.5281/zenodo.10641821,
Eastman et al., 2024.) can be accessed via the intake catalog
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University of Washington.

Author contributions. RE was the lead author and created most
of the analyses. ILM initiated and originally organized this project,
reprocessed MIDAS data, and contributed to the overlapping study.
HS processed SGFF data for additional years. All co-authors aided
in focusing and developing the project.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Tianle Yuan and Hua Song have generously
made processed MEaSUREs data available early for this study and
have worked with us to further improve the product. Pornampai
(Ping-Ping) Narenpitak and Leif Denby have provided valuable dis-
cussion and input to this project. The International Space Science
Institute in Bern, Switzerland, has supported this work.

Financial support. Ryan Eastman has been supported by NASA
(grant no. 80NSSC19K1274). Isabel L. McCoy has been sup-
ported by the NOAA Climate and Global Change Postdoctoral Fel-
lowship Program administered by UCAR’s Cooperative Programs
for the Advancement of Earth System Science (CPAESS; award
no. NA18NWS4620043B) and by NOAA cooperative agreements
(grant nos. NA17OAR4320101 and NA22OAR4320151). Hauke
Schulz has been funded by the Cooperative Institute for Climate,
Ocean, and Ecosystem Studies (CICOES) under a NOAA Co-
operative Agreement (grant no. NA20OAR4320271; contribution
no. 2023-1293).

Review statement. This paper was edited by Odran Sourdeval
and reviewed by two anonymous referees.

References

Aemisegger, F., Vogel, R., Graf, P., Dahinden, F., Villiger, L.,
Jansen, F., Bony, S., Stevens, B., and Wernli, H.: How Rossby
wave breaking modulates the water cycle in the North At-
lantic trade wind region, Weather Clim. Dynam., 2, 281–309,
https://doi.org/10.5194/wcd-2-281-2021, 2021.

Agee, E. M.: Mesoscale cellular convection over
the oceans, Dynam. Atmos. Oceans, 10, 317–341,
https://doi.org/10.1016/0377-0265(87)90023-6, 1987.

Bennartz, R.: Global assessment of marine boundary layer cloud
droplet number concentration from satellite, J. Geophys. Res.-
Atmos., 112, D02201, https://doi.org/10.1029/2006JD007547,
2007.

Boers, R., Acarreta, J. R., and Gras, J. L.: Satellite monitoring of
the first indirect aerosol effect: Retrieval of the droplet concen-
tration of water clouds, J. Geophys. Res.-Atmos., 111, D22208,
https://doi.org/10.1029/2005JD006838, 2006.

Bretherton, C. S., Wood, R., George, R. C., Leon, D., Allen, G.,
and Zheng, X.: Southeast Pacific stratocumulus clouds, precip-
itation and boundary layer structure sampled along 20° S dur-
ing VOCALS-REx, Atmos. Chem. Phys., 10, 10639–10654,
https://doi.org/10.5194/acp-10-10639-2010, 2010.

Brueck, M., Nuijens, L., and Stevens, B.: On the Seasonal and Syn-
optic Time-Scale Variability of the North Atlantic Trade Wind
Region and Its Low-Level Clouds, J. Atmos. Sci., 72, 1428–
1446, https://doi.org/10.1175/jas-d-14-0054.1, 2015.

Copernicus Climate Change Service: ERA5: Fifth generation of
ECMWF atmospheric reanalyses of the global climate, Coper-
nicus Climate Change Service Climate Data Store (CDS) [data
set], https://doi.org/10.24381/cds.adbb2d47, 2017.

Denby, L.: Discovering the Importance of Mesoscale
Cloud Organization Through Unsupervised Classi-

Atmos. Chem. Phys., 24, 6613–6634, 2024 https://doi.org/10.5194/acp-24-6613-2024

https://doi.org/10.5067/MODIS/MYD06_L2.006
https://doi.org/10.5067/AQUA/CERES/SSF1DEGHOUR_L3.004
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_D3
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_D3
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-ValStage1-V3-41
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-ValStage1-V3-41
https://www.cloudsat.cira.colostate.edu/community-products/warm-rain-rate-estimates-from-amsr-89ghz-and-cloudsat
https://www.cloudsat.cira.colostate.edu/community-products/warm-rain-rate-estimates-from-amsr-89ghz-and-cloudsat
https://doi.org/10.5281/zenodo.10641821
https://github.com/ISSI-CONSTRAIN/meso-morphs
https://doi.org/10.5194/wcd-2-281-2021
https://doi.org/10.1016/0377-0265(87)90023-6
https://doi.org/10.1029/2006JD007547
https://doi.org/10.1029/2005JD006838
https://doi.org/10.5194/acp-10-10639-2010
https://doi.org/10.1175/jas-d-14-0054.1
https://doi.org/10.24381/cds.adbb2d47


R. Eastman et al.: Survey of mesoscale cloud morphologies 6633

fication, Geophys. Res. Lett., 47, e2019GL085190,
https://doi.org/10.1029/2019gl085190, 2020.

Eastman, R., Warren, S. G., and Hahn, C. J.: Variations in
Cloud Cover and Cloud Types over the Ocean from Sur-
face Observations, 1954–2008, J. Climate, 24, 5914–5934,
https://doi.org/10.1175/2011JCLI3972.1, 2011.

Eastman, R., Lebsock, M., and Wood, R.: Warm Rain Rates
from AMSR-E 89-GHz Brightness Temperatures Trained Using
CloudSat Rain-Rate Observations, J. Atmos. Ocean. Tech., 36,
1033–1051, https://doi.org/10.1175/JTECH-D-18-0185.1, 2019.

Eastman, R., McCoy, I. L., and Wood, R.: Wind, Rain, and the
Closed to Open Cell Transition in Subtropical Marine Stra-
tocumulus, J. Geophys. Res.-Atmos., 127, e2022JD036795,
https://doi.org/10.1029/2022JD036795, 2022.

Eastman, R., Schulz, H., McCoy, I., and Wood, R.: Joint
Mesoscale Cloud Morphology Dataset, Zenodo [data set],
https://doi.org/10.5281/zenodo.10641821, 2024.

Hahn, C. J., Warren, S. G., and Eastman, R.: Extended
edited cloud reports from ships and land stations over the
globe, 1952–1996 (2009 update), Carbon Dioxide Informa-
tion Analysis Center Numerical Data Package NDP-026C,
https://doi.org/10.3334/CDIAC/CLI.NDP026C, 2009.

Hu, Y. and Stamnes, K.: Climate sensitivity to
cloud optical properties, Tellus B, 52B, 81–93,
https://doi.org/10.3402/tellusb.v52i1.16084, 2000.

Janssens, M., Vilà-Guerau de Arellano, J., Scheffer, M.,
Antonissen, C., Siebesma, A. P., and Glassmeier, F.:
Cloud Patterns in the Trades Have Four Interpretable
Dimensions, Geophys. Res. Lett., 48, e2020GL091001,
https://doi.org/10.1029/2020gl091001, 2021.

JAXA: GCOM-W/AMSR2 L1B Brightness Temperature, Japan
Aerospace Exploration Agency (JAXA), https://doi.org/10.
57746/EO.01GS73ANS548QGHAKNZDJYXD2H, 2012.

King, M. D., Tsay, S.-C., Platnick, S. E., Wang, M., and Liou, K.-
N.: Cloud Retrieval Algorithms for MODIS: Optical Thickness,
Effective Particle Radius, and Thermodynamic Phase, MODIS
Algorithm Theoretical Basis Document No. ATBD-MOD-05
MOD06 – Cloud product, 1997.

King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Gao,
B. C., Platnick, S., Ackerman, S. A., Remer, L. A., Pin-
cus, R., and Hubanks, P. A.: Cloud and aerosol properties,
precipitable water, and profiles of temperature and water va-
por from MODIS, IEEE T. Geosci. Remote, 41, 442–458,
https://doi.org/10.1109/tgrs.2002.808226, 2003.

Klein, S. A., Hartmann, D. L., and Norris, J. R.: On the Rela-
tionships among Low-Cloud Structure, Sea Surface Tempera-
ture, and Atmospheric Circulation in the Summertime Northeast
Pacific, J. Climate, 8, 1140–1155, https://doi.org/10.1175/1520-
0442(1995)008<1140:OTRALC>2.0.CO;2, 1995.

Konsta, D., Dufresne, J.-L., Chepfer, H., Vial, J., Koshiro, T.,
Kawai, H., Bodas-Salcedo, A., Roehrig, R., Watanabe, M., and
Ogura, T.: Low-Level Marine Tropical Clouds in Six CMIP6
Models Are Too Few, Too Bright but Also Too Compact and
Too Homogeneous, Geophys. Res. Lett., 49, e2021GL097593,
https://doi.org/10.1029/2021GL097593, 2022.

Leahy, L. V., Wood, R., Charlson, R. J., Hostetler, C. A., Rogers,
R. R., Vaughan, M. A., and Winker, D. M.: On the nature and
extent of optically thin marine low clouds, J. Geophys. Res.-

Atmos., 117, D22201, https://doi.org/10.1029/2012JD017929,
2012.

Lebsock, M. D. and L’Ecuyer, T. S.: The retrieval of warm
rain from CloudSat, J. Geophys. Res.-Atmos., 116, D20209,
https://doi.org/10.1029/2011JD016076, 2011.

Loeb, N. G., Su, W., Doelling, D. R., Wong, T., Minnis, P., Thomas,
S., and Miller, W. F.: 5.03 – Earth’s Top-of-Atmosphere Ra-
diation Budget, in: Comprehensive Remote Sensing, edited by
Liang, S., Elsevier, Oxford, https://doi.org/10.1016/B978-0-12-
409548-9.10367-7, pp. 67–84, 2018.

Maddux, B. C., Ackerman, S. A., and Platnick, S.:
Viewing Geometry Dependencies in MODIS Cloud
Products, J. Atmos. Ocean. Tech., 27, 1519–1528,
https://doi.org/10.1175/2010JTECHA1432.1, 2010.

McCoy, I. L., Wood, R., and Fletcher, J. K.: Identifying Me-
teorological Controls on Open and Closed Mesoscale
Cellular Convection Associated with Marine Cold Air
Outbreaks, J. Geophys. Res.-Atmos., 122, 11678–11702,
https://doi.org/10.1002/2017JD027031, 2017.

McCoy, I. L., McCoy, D. T., Wood, R., Zuidema, P., and Ben-
der, F. A.-M.: The Role of Mesoscale Cloud Morphology
in the Shortwave Cloud Feedback, Geophys. Res. Lett., 50,
e2022GL101042, https://doi.org/10.1029/2022GL101042, 2023.

Mieslinger, T., Stevens, B., Kölling, T., Brath, M., Wirth, M.,
and Buehler, S. A.: Optically thin clouds in the trades, At-
mos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-
22-6879-2022, 2022.

Mohrmann, J., Wood, R., Yuan, T., Song, H., Eastman, R.,
and Oreopoulos, L.: Identifying meteorological influences
on marine low-cloud mesoscale morphology using satel-
lite classifications, Atmos. Chem. Phys., 21, 9629–9642,
https://doi.org/10.5194/acp-21-9629-2021, 2021.

Muhlbauer, A., McCoy, I. L., and Wood, R.: Climatology of
stratocumulus cloud morphologies: microphysical properties
and radiative effects, Atmos. Chem. Phys., 14, 6695–6716,
https://doi.org/10.5194/acp-14-6695-2014, 2014.

Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris,
J. R., and Caldwell, P. M.: Observational constraints on low
cloud feedback reduce uncertainty of climate sensitivity, Nat.
Clim. Change, 11, 501–507, https://doi.org/10.1038/s41558-
021-01039-0, 2021.

Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P., and Feingold,
G.: From Sugar to Flowers: A Transition of Shallow Cumu-
lus Organization During ATOMIC, J. Adv. Model. Earth Sy.,
13, e2021MS002619, https://doi.org/10.1029/2021MS002619,
2021.

NASA/LARC/SD/ASDC: CERES Regionally Averaged TOA
Fluxes, Clouds and Aerosols Hourly Aqua Edition4A, NASA
Langley Atmospheric Science Data Center DAAC [data
set], https://doi.org/10.5067/AQUA/CERES/SSF1DEGHOUR_
L3.004, 2015.

Norris, J. R., Zhang, Y., and Wallace, J. M.: Role of Low Clouds
in Summertime Atmosphere–Ocean Interactions over the North
Pacific, J. Climate, 11, 2482–2490, https://doi.org/10.1175/1520-
0442(1998)011<2482:ROLCIS>2.0.CO;2, 1998.

O, K.-T., Wood, R., and Tseng, H.-H.: Deeper, Precipitat-
ing PBLs Associated With Optically Thin Veil Clouds in
the Sc-Cu Transition, Geophys. Res. Lett., 45, 5177–5184,
https://doi.org/10.1029/2018gl077084, 2018.

https://doi.org/10.5194/acp-24-6613-2024 Atmos. Chem. Phys., 24, 6613–6634, 2024

https://doi.org/10.1029/2019gl085190
https://doi.org/10.1175/2011JCLI3972.1
https://doi.org/10.1175/JTECH-D-18-0185.1
https://doi.org/10.1029/2022JD036795
https://doi.org/10.5281/zenodo.10641821
https://doi.org/10.3334/CDIAC/CLI.NDP026C
https://doi.org/10.3402/tellusb.v52i1.16084
https://doi.org/10.1029/2020gl091001
https://doi.org/10.57746/EO.01GS73ANS548QGHAKNZDJYXD2H
https://doi.org/10.57746/EO.01GS73ANS548QGHAKNZDJYXD2H
https://doi.org/10.1109/tgrs.2002.808226
https://doi.org/10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2
https://doi.org/10.1029/2021GL097593
https://doi.org/10.1029/2012JD017929
https://doi.org/10.1029/2011JD016076
https://doi.org/10.1016/B978-0-12-409548-9.10367-7
https://doi.org/10.1016/B978-0-12-409548-9.10367-7
https://doi.org/10.1175/2010JTECHA1432.1
https://doi.org/10.1002/2017JD027031
https://doi.org/10.1029/2022GL101042
https://doi.org/10.5194/acp-22-6879-2022
https://doi.org/10.5194/acp-22-6879-2022
https://doi.org/10.5194/acp-21-9629-2021
https://doi.org/10.5194/acp-14-6695-2014
https://doi.org/10.1038/s41558-021-01039-0
https://doi.org/10.1038/s41558-021-01039-0
https://doi.org/10.1029/2021MS002619
https://doi.org/10.5067/AQUA/CERES/SSF1DEGHOUR_L3.004
https://doi.org/10.5067/AQUA/CERES/SSF1DEGHOUR_L3.004
https://doi.org/10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2
https://doi.org/10.1029/2018gl077084


6634 R. Eastman et al.: Survey of mesoscale cloud morphologies

Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi,
J., and Frey, R.: The MODIS cloud products: algorithms and
examples from Terra, IEEE T. Geosci. Remote, 41, 459–473,
https://doi.org/10.1109/TGRS.2002.808301, 2003.

Platnick, S., Ackerman, S., King, M., Menzel, P., Wind,
G., and Frey, R.: MODIS Atmosphere L2 Cloud Prod-
uct (06_L2), NASA MODIS Adaptive Processing Sys-
tem, Goddard Space Flight Center, USA [data set],
https://doi.org/10.5067/MODIS/MYD06_L2.006, 2015.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe,
N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz,
R. E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS cloud
optical and microphysical products: Collection 6 updates and ex-
amples from Terra and Aqua, IEEE T. Geosci. Remote, 55, 502,
https://doi.org/10.1109/TGRS.2016.2610522, 2017 (data avail-
able at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/
61/MYD08_D3, last access: 22 May 2024).

Possner, A., Eastman, R., Bender, F., and Glassmeier, F.: De-
convolution of boundary layer depth and aerosol constraints
on cloud water path in subtropical stratocumulus decks, At-
mos. Chem. Phys., 20, 3609–3621, https://doi.org/10.5194/acp-
20-3609-2020, 2020.

Qu, X., Hall, A., Klein, S. A., and DeAngelis, A. M.: Posi-
tive tropical marine low-cloud cover feedback inferred from
cloud-controlling factors, Geophys. Res. Lett., 42, 7767–7775,
https://doi.org/10.1002/2015GL065627, 2015.

Rasp, S., Schulz, H., Bony, S., and Stevens, B.: Combining Crowd-
sourcing and Deep Learning to Explore the Mesoscale Organiza-
tion of Shallow Convection, B. Am. Meteorol. Soc., 101, E1980–
E1995, https://doi.org/10.1175/bams-d-19-0324.1, 2020.

Salazar, A. M. and Tziperman, E.: Exploring Subtropical Stra-
tocumulus Multiple Equilibria Using a Mixed-Layer Model,
J. Climate, 36, 2421–2437, https://doi.org/10.1175/JCLI-D-22-
0528.1, 2023.

Schulz, H., Eastman, R., and Stevens, B.: Characterization and
Evolution of Organized Shallow Convection in the Down-
stream North Atlantic Trades, J. Geophys. Res.-Atmos., 126,
e2021JD034575, https://doi.org/10.1029/2021JD034575, 2021.

Stevens, B., Bony, S., Brogniez, H., Hentgen, L., Hohenegger,
C., Kiemle, C., L’Ecuyer, T. S., Naumann, A. K., Schulz,
H., Siebesma, P. A., Vial, J., Winker, D. M., and Zuidema,
P.: Sugar, gravel, fish and flowers: Mesoscale cloud patterns
in the trade winds, Q. J. Roy. Meteor. Soc., 146, 141–152,
https://doi.org/10.1002/qj.3662, 2019.

Vaughan, M., Young, S., Winker, D., Powell, K., Omar, A., Liu,
Z., Hu, Y., and Hostetler, C.: Fully automated analysis of
space-based lidar data: an overview of the CALIPSO retrieval
algorithms and data products, Laser Radar Techniques for
Atmospheric Sensing, edited by: Singh, U. N., International
Society for Optical Engineering, SPIE Proceedings, 5575, 16,
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-
ValStage1-V3-41, 2004.

Vogel, R., Konow, H., Schulz, H., and Zuidema, P.: A climatology
of trade-wind cumulus cold pools and their link to mesoscale
cloud organization, Atmos. Chem. Phys., 21, 16609–16630,
https://doi.org/10.5194/acp-21-16609-2021, 2021.

Vogel, R., Albright, A. L., Vial, J., George, G., Stevens,
B., and Bony, S.: Strong cloud–circulation coupling ex-
plains weak trade cumulus feedback, Nature, 612, 696–700,
https://doi.org/10.1038/s41586-022-05364-y, 2022.

Wall, C. J., Storelvmo, T., Norris, J. R., and Tan, I.: Observa-
tional Constraints on Southern Ocean Cloud-Phase Feedback,
J. Climate, 35, 5087–5102, https://doi.org/10.1175/JCLI-D-21-
0812.1, 2022.

Warren, S. G., London, J., and Hahn, C. J.: Cloud hole over the
United States?, B. Am. Meteorol. Soc., 72, 237–238, 1991.

Wentz, F. J., Meissner, T., Gettleman, C., Hilburn, K. A., and Scott,
J.: Remote Sensing Systems GCOM-W1 AMSR2 Daily Envi-
ronmental Suite on 0.25 deg grid, Version 8.2, Remote Sens-
ing Systems, http://www.remss.com/missions/amsr (last access:
22 May 2024), 2014.

WMO: Manual on Codes. Volume 1, WMO, Geneva, ISBN 978-92-
63-10306-2, 1974.

Wood, R. and Hartmann, D. L.: Spatial Variability of Liq-
uid Water Path in Marine Low Cloud: The Importance of
Mesoscale Cellular Convection, J. Climate, 19, 1748–1764,
https://doi.org/10.1175/JCLI3702.1, 2006.

Wyant, M. C., Bretherton, C. S., Rand, H. A., and Stevens,
D. E.: Numerical Simulations and a Conceptual Model
of the Stratocumulus to Trade Cumulus Transition, J. At-
mos. Sci., 54, 168–192, https://doi.org/10.1175/1520-
0469(1997)054<0168:NSAACM>2.0.CO;2, 1997.

Yamaguchi, T., Feingold, G., and Kazil, J.: Stratocumulus to Cu-
mulus Transition by Drizzle, J. Adv. Model. Earth Sy., 9, 2333–
2349, https://doi.org/10.1002/2017MS001104, 2017.

Yuan, T., Song, H., Wood, R., Mohrmann, J., Meyer, K., Ore-
opoulos, L., and Platnick, S.: Applying deep learning to NASA
MODIS data to create a community record of marine low-cloud
mesoscale morphology, Atmos. Meas. Tech., 13, 6989–6997,
https://doi.org/10.5194/amt-13-6989-2020, 2020.

Zelinka, M. D., Klein, S. A., and Hartmann, D. L.: Com-
puting and Partitioning Cloud Feedbacks Using Cloud Prop-
erty Histograms. Part II: Attribution to Changes in Cloud
Amount, Altitude, and Optical Depth, J. Climate, 25, 3736–3754,
https://doi.org/10.1175/jcli-d-11-00249.1, 2012.

Zelinka, M. D., Tan, I., Oreopoulos, L., and Tselioudis,
G.: Detailing cloud property feedbacks with a regime-
based decomposition, Clim. Dynam., 60, 2983–3003,
https://doi.org/10.1007/s00382-022-06488-7, 2022.

Zhou, X., Bretherton, C. S., Eastman, R., McCoy, I. L.,
and Wood, R.: Wavelet Analysis of Properties of Ma-
rine Boundary Layer Mesoscale Cells Observed From
AMSR-E, J. Geophys. Res.-Atmos., 126, e2021JD034666,
https://doi.org/10.1029/2021jd034666, 2021.

Atmos. Chem. Phys., 24, 6613–6634, 2024 https://doi.org/10.5194/acp-24-6613-2024

https://doi.org/10.1109/TGRS.2002.808301
https://doi.org/10.5067/MODIS/MYD06_L2.006
https://doi.org/10.1109/TGRS.2016.2610522
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_D3
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_D3
https://doi.org/10.5194/acp-20-3609-2020
https://doi.org/10.5194/acp-20-3609-2020
https://doi.org/10.1002/2015GL065627
https://doi.org/10.1175/bams-d-19-0324.1
https://doi.org/10.1175/JCLI-D-22-0528.1
https://doi.org/10.1175/JCLI-D-22-0528.1
https://doi.org/10.1029/2021JD034575
https://doi.org/10.1002/qj.3662
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-ValStage1-V3-41
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_VFM-ValStage1-V3-41
https://doi.org/10.5194/acp-21-16609-2021
https://doi.org/10.1038/s41586-022-05364-y
https://doi.org/10.1175/JCLI-D-21-0812.1
https://doi.org/10.1175/JCLI-D-21-0812.1
http://www.remss.com/missions/amsr
https://doi.org/10.1175/JCLI3702.1
https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2
https://doi.org/10.1002/2017MS001104
https://doi.org/10.5194/amt-13-6989-2020
https://doi.org/10.1175/jcli-d-11-00249.1
https://doi.org/10.1007/s00382-022-06488-7
https://doi.org/10.1029/2021jd034666

	Abstract
	Introduction
	Data
	Classifier routines
	MIDAS
	SGFF
	MEASURES

	Cloud properties from satellites

	Results
	Geographic distributions
	Co-occurrence statistics
	Morphology and albedo
	Vertical profiles and optical thickness from CALIPSO
	Regional differences

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

