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Abstract. Aerosol pH is commonly used to characterize the acidity of aqueous aerosols and is of significant
scientific interest due to its close relationship with atmospheric processes. The estimation of ambient aerosol pH
usually relies on the thermodynamic modeling approach. In existing chemical transport model and field obser-
vation studies, the temporal resolution of the chemical and meteorological data given as input to thermodynamic
models varies substantially, ranging from less than an hour to a year, because of the inconsistency in the res-
olution of the original data and the aggregation of time-series data in some studies. Furthermore, the average
value of the aerosol pH are represented by diverse metrics of central tendency in existing studies. This study
attempts to evaluate the potential discrepancies in the calculated average aerosol pH that arise from differences
in both the averaging metric and the temporal resolution, based on the ISORROPIA-II thermodynamic model
and example datasets prepared by the GEOS-Chem chemical transport model simulation. Overall, we find that
the variation in the temporal resolution of input data may lead to a change of up to more than two units in the
average pH, and the averaging metrics calculated based on the pH values of individual samples may be about
two units higher than the averaging metrics calculated based on the activity of hydrogen ions. Accordingly, we
recommend that the chosen averaging metrics and temporal resolutions should be stated clearly in future studies
to ensure comparability of the average aerosol pH between models and/or observations.

1 Introduction

Aerosol acidity, typically characterized by the pH, stands as
a crucial property of aqueous aerosols, as it influences var-
ious physical and chemical processes (Tilgner et al., 2021).
Aerosol pH can influence aerosol mass by regulating the gas–
particle partitioning of semi-volatile acids and bases such
as HCl-Cl−, HNO3-NO−3 , and NH3-NH+4 (B. Zhang et al.,
2021; Nah et al., 2018; Ding et al., 2019) as well as by moder-
ating the production of secondary components through multi-
phase reactions (Pye et al., 2013; Cheng et al., 2016). Aerosol

pH can also affect the solubilization of trace metals such as
copper and iron and therefore has implications for human
health risks and nutrient cycling in ecosystems (Meskhidze
et al., 2003; Lippmann, 2014; Vasilakos et al., 2018; Wu et
al., 2023).

The definition of pH is the negative log (base 10) of hy-
drogen ion (H+) activity on a molality basis according to
the International Union of Pure and Applied Chemistry (IU-
PAC, https://goldbook.iupac.org/terms/view/P04524, last ac-
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cess: 15 February 2024), as shown in Eq. (1):

pH=−log10 (aH+ )= log10

(
γH+

mH+

m	

)
= log10

(mH+

m	

)
− log10 (γH+ ) , (1)

where aH+ is the activity of H+ (dimensionless), m	 is the
standard molality (1 mol kg−1 water), andmH+ and γH+ indi-
cate the molality (mol kg−1 water) and the activity coefficient
(dimensionless) of H+, respectively. pH is also frequently de-
fined based on the standard state of 1 mol H+ dm−1 solution
(i.e., molarity based) or the standard state of a hypothetical
pure H+ solution (i.e., mole fraction based). Jia et al. (2018)
comprehensively compared the aerosol pH values quantified
at the three different scales (i.e., molarity, molality, and mole
fraction). They found that the difference between the mole-
fraction-based and the molality-based pH values is a constant
equal to 1.74. There is a minor difference (< 0.25 units) be-
tween the molarity-based pH and the molality-based pH val-
ues owing to the effects of temperature, pressure, and the
composition and density of aerosols.

Generally, the method used to estimate the pH values of
ambient aerosols depends upon the thermodynamic model-
ing approach used, since a commonly accepted direct mea-
surement method is still lacking, despite some recent signif-
icant advances (Weber et al., 2016; Li and Kuwata, 2023;
Li et al., 2023; Cui et al., 2021; Ault, 2020). Thermody-
namic models can predict the gas–particle, solid–liquid, and
liquid–liquid equilibria, the liquid-phase activity coefficients,
the mass transfer of semi-volatile species, the aerosol liquid-
water content (AWC, µg m−3 air), and the pH (Pye et al.,
2020). The input data for thermodynamic modeling should
include the total (gas plus particle) chemical compositions
(e.g., HCl+Cl−, HNO3+NO−3 , and NH3+NH+4 ) and me-
teorological variables (relative humidity (RH) and temper-
ature (T )). The E-AIM, AIOMFAC-GLE, MOSAIC, and
ISORROPIA-II thermodynamic models are the box models
most commonly used to calculate the aerosol pH. They differ
in the chemical species they treat, their computational com-
plexity and rigor, and the solution methods used for activ-
ity coefficients. MOSAIC and ISORROPIA-II are computa-
tionally efficient when applied in three-dimensional chemi-
cal transport models such as WRF-Chem, WRF-CMAQ, and
GEOS-Chem (Pye et al., 2020).

Many studies have calculated the aerosol pH using the
thermodynamic modeling approach (see a brief summary in
Table S1 in the Supplement). The chemical and meteorolog-
ical input data were obtained from either three-dimensional
chemical transport model simulations or field observations.
In these studies, the temporal resolution of the input data
varied substantially, ranging from less than an hour to a year.
The original time resolutions of field observations range from
tens of minutes to 1 week. Chemical transport model simula-
tions usually have time resolutions of less than an hour. Some
studies may aggregate the time series of the original chem-

ical and meteorological data to a lower resolution (monthly,
seasonally, or yearly) before running thermodynamic mod-
els, while the others use the original dataset as model input.

The average of the aerosol pH dataset obtained from ther-
modynamic modeling is represented by diverse measures of
central tendency in existing studies (Table S1). A common
metric is the arithmetic mean, denoted by pH and calculated
with Eq. (2). The symbols n and i are the number of sam-
ples in the dataset and the ith sample, respectively. Another
two metrics, pH∗ (the pH based on the arithmetic mean of
aH+ ) and pH∗w (the pH based on the AWC-weighted mean
of aH+ ), have also been employed in previous studies to rep-
resent the center of the aerosol pH dataset, as described in
Eqs. (3) and (4), respectively. Similar to pH∗w, the pH based
on the volume-weighted mean of [H+] has usually been con-
sidered when averaging the cloud/fog water pH and precipi-
tation pH (Möller and Zierath, 1986; Sun et al., 2010; Straub
et al., 2012; Shah et al., 2020).

pH=
1
n

n∑
i=1

pHi (2)

pH∗ =−log10

(
1
n

n∑
i=1

(aH+ )i

)
(3)

pH∗w =−log10


n∑
i=1

{
(aH+ )i(AWC)i

}
n∑
i=1

(AWC)i

 (4)

Since the pH and aH+ are both non-conservative quantities
upon mixing individual samples, different averaging met-
rics and different temporal resolutions may lead to disparate
values, posing potential challenges when comparing the re-
ported average pH across studies. However, such discrepan-
cies have not been addressed with sufficient care. The ob-
jective of this technical note is thus to quantitatively assess
averaged aerosol pH values obtained using different metrics
and different temporal resolutions. The rest of this article is
structured as follows. In the “Methods” section (Sect. 2), we
describe the preparation of the evaluation datasets (Sect. 2.1),
which include the relevant chemical and meteorological vari-
ables and are obtained from the GEOS-Chem chemical trans-
port model simulations. Statistical methods and analytical
tools are then provided in Sect. 2.2. In the “Results and dis-
cussion” section (Sect. 3), we first present the probability
distributions of aerosol pH and AWC from the evaluation
dataset and estimate the differences among averaging met-
rics (Sect. 3.1). Section 3.2 provides theoretical explanations
for the calculated differences between the averaging metrics.
We then evaluate the discrepancies in the average aerosol pH
caused by using different temporal resolutions (Sect. 3.3). Fi-
nally, the conclusions of this study are given in Sect. 4.
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2 Methods

2.1 Evaluation datasets

The datasets were obtained from atmospheric sim-
ulations with the three-dimensional GEOS-Chem
chemical transport model (version 14.1.1, DOI:
https://doi.org/10.5281/zenodo.7696632, The Interna-
tional GEOS-Chem User Community, 2023). The North
China Plain (33–41° N, 114.375–120° E; Fig. S1), where
multiple studies on aerosol pH have been conducted
because of the concern about haze events, was chosen
as the modeling region. The vertical grid spanned from
the surface to the mesosphere, encompassing 47 hybrid
sigma/pressure levels. A horizontal resolution of 0.625°
(longitude)× 0.5° (latitude) was used, and the boundary
conditions were supplied by a global simulation with a
coarser resolution of 5°× 4°. Meteorological input was from
the MERRA-2 (Modern-Era Retrospective Analysis for
Research and Applications, Version 2) product provided by
the Goddard Earth Observing System (GEOS) of NASA’s
Global Modeling and Assimilation Office (Gelaro et al.,
2017). The simulation period covered the winter season from
December 2018 to February 2019, and the summer season
was from June to August 2019. The detailed settings of the
emission databases and chemical mechanisms are shown
in Text S1 in the Supplement. The modeled concentrations
of fine aerosol components (SO2−

4 , NO−3 , NH+4 , elemental
carbon, and organic materials) were evaluated with the
Tracking Air Pollution in China (TAP) dataset (Geng et al.,
2017; Liu et al., 2022; Wang et al., 2012; S. Wang et al.,
2020). TAP is a reanalysis data product that amalgamates
surface observations, remote sensing, emission inventories,
and model simulations to construct a near-real-time dataset
of aerosol and gas pollutant concentrations over China.
We found reasonable agreement between our GEOS-Chem
model simulation results and the TAP reanalysis dataset
(Fig. S2).

The ISORROPIA-II model (version 2.2) was used in
GEOS-Chem to calculate the thermodynamic equilibrium
processes for the H+-NH+4 -K+-Ca2+-Mg2+-Na+-OH−-
SO2−

4 -NO−3 -Cl−-H2O inorganic aerosol system (Fountoukis
and Nenes, 2007; Pye et al., 2009). The model assumed that
γH+ was always equal to unity. The calculation of pH was
simplified as shown in Eq. (5):

pH=−log10

(mH+

m	

)
(5)

mH+ =
xH+

xwater
× 55.509, (6)

where xH+ and xwater indicate the molar fractions of H+ and
aerosol liquid water, respectively. m	 is the standard molal-
ity (1 mol kg−1 water), and 55.509 is the molality of water
(Peng et al., 2019).

During the application of ISORROPIA-II, we assumed
that the aerosol was internally mixed, forming a single aque-
ous phase encompassing the inorganic species and with no
phase separations that could affect pH (Guo et al., 2017).
In the mode calculations, meteorological data (T and RH),
gaseous concentrations (HCl, HNO3, and NH3), and aerosol
concentrations (SO2−

4 , NO−3 , NH+4 , Cl−, fine-sized dust, and
fine-sized sea salt) were called by the ISORROPIA-II rou-
tines. Fine-sized dust was used to estimate Ca2+ and Mg2+,
and fine-sized sea salt was used to estimate Na+ and Cl−

(Wang et al., 2019). We chose the forward mode (i.e., the to-
tal gas+ aerosol concentrations were used as model inputs)
and assumed that the aerosol was in the metastable state. It
has been suggested that calculations using only the aerosol-
phase composition as model input (i.e., the reverse mode) are
sensitive to observational errors for ionic species and thus
should be avoided (Hennigan et al., 2015). The assumed par-
ticle phase state, either stable or metastable, does not signifi-
cantly affect pH calculations (Song et al., 2018).

Two datasets from the GEOS-Chem simulation outputs
were used in this study. The first dataset (see Sects. 3.1
and 3.2) encompassed the aerosol pH, AWC, meteorologi-
cal data (T and RH), gaseous concentrations (HCl, HNO3,
and NH3), and aerosol concentrations (SO2−

4 , NO−3 , NH+4 ,
fine-sized dust, fine-sized sea salt, and PM2.5) at the sur-
face layer during the 2018/2019 winter for the North China
Plain. The AWC and aerosol pH values were calculated on-
line within the GEOS-Chem model using the incorporated
ISORROPIA-II thermodynamic module. The dataset had a
temporal resolution of 3 h, consistent with that for the me-
teorological input data for GEOS-Chem. Following previous
studies (Guo et al., 2016; Haskins et al., 2018), we selected
the data with RH values between 25 % and 95 % to meet the
metastable assumption set by ISORROPIA-II and to avoid
the large uncertainty associated with very high RH. After
filtering, this dataset contained approximately 100 000 indi-
vidual samples. The second dataset consisted of the chem-
ical and meteorological data in the Beijing grid (centered
at 40° N, 116.25° E) extracted from the first dataset. This
dataset had the same temporal resolution of 3 h and in-
cluded 720 samples for the 2018/2019 winter season. It could
be considered as a pseudo-observation dataset analogous to
what was reported by a field campaign.

2.2 Statistical analysis

We computed the following five data metrics describing the
central tendency of a pH dataset: pHMd (median of the pH),
pHMo (mode of the pH), pH (arithmetic mean of the pH),
pH∗ (pH based on the arithmetic mean of aH+ ), and pH∗w (pH
based on the AWC-weighted mean of aH+ ). As per statisti-
cal definitions, pHMd and pHMo represent the value of the
50th percentile and the most frequently occurring value of
the dataset, respectively. The algorithms for calculating pH,
pH∗, and pH∗w have been provided in Eqs. (2)–(4), respec-

https://doi.org/10.5194/acp-24-6583-2024 Atmos. Chem. Phys., 24, 6583–6592, 2024

https://doi.org/10.5281/zenodo.7696632


6586 H. Wang et al.: Technical note: Influence of averaging metrics and temporal resolutions on aerosol pH

tively. The probability density functions of aerosol pH and
AWC were calculated using the kernel smoothing function
(via ksdensity and mvksdensity), a feature within the Statis-
tics Toolbox of the MATLAB R2021b software. Prior to data
processing, AWC was logarithmized. The ksdensity function
was employed to calculate the probability density functions
of aerosol pH and AWC, respectively. Meanwhile, the mvks-
density function was employed to calculate the joint prob-
ability density function of the two variables. The data met-
rics for averaging the pH were calculated utilizing Microsoft
Excel 2016. In the calculations, a bandwidth of 0.1 was set
to preserve important features of the distribution while sup-
pressing noise.

To derive comprehensive distributional parameters from
the available dataset and to construct appropriate confidence
intervals to minimize statistical randomness, we used the
bootstrap approach (a statistical resampling technique, im-
plemented through the datasample function of the Statistics
and Machine Learning Toolbox of the MATLAB R2021b
software). In this study, our original dataset in winter com-
prised 105 403 sets of data (Sect. 3.1). We extracted 1000
new datasets, with 10 000 sets of data in each. We also con-
ducted a similar sampling for the Beijing pseudo-observation
data (720 sets of data; Sect. 3.3). Each dataset underwent 720
samplings, and a total of 1000 new datasets were collected.
For each new dataset, pH, pHMd, pHMo, pH∗, and pH∗w were
calculated separately.

3 Results and discussion

3.1 Distributions of aerosol pH and aerosol water
content

We present the probability distributions of the aerosol pH and
AWC for the winter season in Fig. 1a and c, respectively,
as well as their joint probability distribution in Fig. 1b. It
can be seen that the distributions of aerosol pH and AWC
are not independent (Yuan and Shou, 2022). Mechanistic
studies have revealed that AWC is a primary contributor
to pH shifts. Zheng et al. (2020) proposed a multiphase-
buffer theory suggesting that AWC could considerably reg-
ulate the peak buffer pH of the individual buffering agent
(i.e., conjugate acid–base pairs NH+4 /NH3, HSO−4 /SO2−

4 ,
and HNO3 /NO−3 ). The distribution of AWC was charac-
terized as being similar to a skewed log-normal distribu-
tion, with noticeable differences between its arithmetic mean
(53.3 µg m−3), median (6.8 µg m−3), and mode (0.5 µg m−3).
The properties of hygroscopic components in aerosols and
the positive feedback between the primary hygroscopic com-
ponents (SNA: sulfate, nitrate, and ammonium) and aerosol
water content lead to an exponential response of AWC to
changes in relative humidity (Liu et al., 2023; T. Zhang et
al., 2021; Y. Wang et al., 2020). Simultaneously, the ambient
relative humidity typically exhibits a skewed normal distri-

Figure 1. Probability distributions of the (a) aerosol water content
(AWC, µg m−3) and (c) aerosol pH in the North China Plain during
the winter season from December 2018 to February 2019; (b) the
corresponding joint probability distribution of AWC and aerosol
pH. The blue triangle indicates pH and AWC, the pink inverted tri-
angle indicates pHMd and AWCMd, the yellow diamond indicates
pHMo and AWCMo, the green square indicates pH∗ and AWC, and
the red circle indicates pH∗w and AWC.

bution (Yuan et al., 2020). These factors collectively shape
the probability distribution of AWC.

On the other hand, the distribution of aerosol pH approx-
imated a skewed normal distribution, and there were only
very small differences (< 0.1 unit) among its arithmetic mean
(pH, 4.6), median (pHMd, 4.6), and mode (pHMo, 4.5). How-
ever, the calculated pH∗ (the arithmetic mean of the pH based
on aH+ ) was 2.6, close to 2 units lower than the above three
metrics, indicating a deviation of around 2 orders of magni-
tude in the activity of hydrogen ions. aH+ followed a skewed
log-normal distribution. Based on the AM–GM inequality
(i.e., that the geometric mean does not exceed the arith-
metic mean), it can be deduced that pH∗ is always less than
or equal to pH. For example, assume that the aerosol was
strongly acid (e.g., pH= 1, which means that aH+ is 10−1)
for half a day and the aerosol was weakly acidic (i.e., pH= 5,
which means that aH+ is 10−5) for the remaining time. In
this case, pH is 3

(
pH= 1+5

2 = log10

√
10−1
· 10−5

)
, while

pH∗ is 1.3
(

pH∗ =−log10

(
10−1
+10−5

2

))
, as it is evident

that
√

10−1
· 10−5 is less than 10−1

+10−5

2 . pH∗w (the AWC-
weighted mean) differed from pH∗ by only about 0.4 units.

We employed the bootstrap approach to measure the dis-
persion for pH, pHMd, pHMo, pH∗, and pH∗w. We extracted
1000 new datasets, each comprising 10 000 sets of data, and
calculated pH, pHMd, pHMo, pH∗, and pH∗w for each new
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Figure 2. Dispersion in the calculations of pH, pHMd, pHMo, pH∗,
and pH∗w in the North China Plain during winter 2018, based on
bootstrapping. The results were extracted from 1000 new datasets,
each containing 10 000 sets of data. For each box with whiskers,
the point indicates the mean, the top whisker represents the sum
of the upper quartile and 1.5 times the interquartile range (IQR),
the bottom whisker represents the sum of the lower quartile and
1.5 times the IQR, the top of the box indicates the 75th percentile,
the line in the middle of the box represents the 50th percentile, and
the bottom of the box represents the 25th percentile.

dataset separately. The results of the statistical analysis are
shown in Fig. 2. The results indicated that the means of pH,
pHMd, pHMo, pH∗, and pH∗w were 4.6, 4.6, 4.5, 2.6, and 2.2,
respectively, which were consistent with our original dataset.
Additionally, the results exhibited high stability, with mini-
mal differences in interquartile distances, namely 0.13, 0.19,
0.02, 0.02, and 0.38, respectively.

Indeed, it is noteworthy that the aforementioned discrep-
ancies were notably diminished during the summer season.
Figure S3 illustrates the probability distributions of aerosol
pH and AWC during the summer season, as well as their
joint probability distribution. The joint distribution in sum-
mer was the opposite to the winter results, with a higher
pH observed at high AWC values and a lower pH at low
AWC values. This is because summer months are typically
cleaner, with AWC predominantly influenced by RH. The re-
sulting high AWC has a diluting effect on acidic components,
leading to higher pH levels. The quantitative results for pH,
pHMd, pHMo, pH∗, and pH∗w were 2.6, 2.7, 3.0, 2.0, and 2.4,
respectively. The main reason for the lower pH in summer
compared to winter is the temperature difference (Text S2).
While pH∗ and pH∗w remained lower than pH, the difference
was significantly smaller in summer compared to winter. The
smaller range of pH also contributed to the proximity of the
three statistics.

The significant bias between the averaging metrics cal-
culated based on the pH values of individual samples (pH,
pHMd, and pHMo) and those based on the hydrogen ion activ-
ities of individual samples (pH∗ and pH∗w) may have impor-

Figure 3. Variations in several chemical and physical parame-
ters as a function of RH. (a) pH∗w, pH∗, pH, pHMd, and pHMo.
(b) The fractions of SNA (the sum of sulfate, nitrate, and ammo-
nium) and dust in PM2.5. (c) pNH3 (atm). (d) [NH+4 (aq)] (mol kg−1)
and γNH+4 (aq). The range of RH was 25 %–95 %, and the parameters
were averaged at 10 % RH intervals.

tant implications for the understanding of atmospheric pro-
cesses regulated by aerosol pH (Pye et al., 2020). For in-
stance, the phase partitioning of HNO3–NO−3 and NH3–NH+4
could lead to a complete transition between the gaseous and
particulate phases upon changing the pH by 2 units in their
sensitive regimes (Chen et al., 2016, 2018).

3.2 Variation of aerosol pH with relative humidity

In order to further explain the discrepancies among different
aerosol pH averaging metrics in winter season, we calculated
the trends in pH∗w, pH∗, pH, pHMd, and pHMo with increasing
RH bin (Fig. 3a). As shown, pH, pHMd, and pHMo had simi-
lar gradually decreasing trends with RH. pH∗w and pH∗, how-
ever, showed a different pattern from the above three met-
rics. Interestingly, there were significant drops in pH∗w and
pH∗ when RH increased from 30 % to 50 %, after which they
remained nearly constant within the RH range from 50 % to
90 %. Figure S4 shows the joint probability distribution of
AWC and aerosol pH (mirroring Fig. 1b) for RH intervals of
10 %. The characteristic skewed log-normal distributions of
RH in the range of 40 % to 90 % showed a right-skewed pH
probability distribution. Conversely, RH= 30 % was aligned
closer to a log-normal distribution, with pH exhibiting a sym-
metrical distribution. This explains the variation in the differ-
ences in aerosol pH between statistical metrics across differ-
ent RH levels in Fig. 3a.
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We investigated the changes in the proportions of sec-
ondary inorganic aerosols (SNA: NH+4 , SO2−

4 , and NO−3 ) and
dust in PM2.5 under different RH conditions. As depicted in
Fig. 3b, in general, the elevation of RH was accompanied
by an increase in the fraction of SNA and a decrease in that
of dust. The large proportion of dust at low RH (∼ 30 %)
is believed to enhance the aerosol pH (Guo et al., 2018).
As the RH escalated to around 50 %, the SNA proportion
experienced a rapid ascent and the dust proportion concur-
rently underwent a precipitous decline, which explained the
decrease in aerosol pH. The relatively stable pH∗w variation
from 50 % to 90 % RH could be explained by the multiphase-
buffering theory (Zheng et al., 2020, 2022). The theoretical
equation derived from the multiphase-buffering theory (see
Text S2) suggests that when the aerosol pH is predominantly
moderated by the buffering of the conjugate acid–base pair
NH3 /NH+4 , the aerosol pH can be simplified to a function
of pNH3 (the partial pressure of gaseous NH3), [NH+4 (aq)]
(the molality of NH+4 in aerosol water), and γNH+4 (aq) (the

activity coefficient of NH+4 (aq)). Figure 3c illustrates that
pNH3 is nearly constant under varying RH. Figure 3d shows
that [NH+4 (aq)] displayed a downward trend with elevated
RH, whereas γNH+4 (aq) exhibited an upward trend, particu-
larly in the 70 %–90 % RH range. Overall, considering the
alterations in pNH3 , [NH+4 (aq)], and γNH+4 (aq), it was under-

standable that pH∗w appeared to show minor variations from
50 %–90 % RH. Additionally, it should be noted that the rea-
son for the consistent trends in pH∗w and pH∗ with RH is that,
in most cases, there was more H+ production when AWC
was high and vice versa, as seen in both Fig. 1 and Fig. 3a.
This led to the discrepancies between the pH∗w and pH∗, as
the aerosol water content was masked.

3.3 Influence of the time resolution of the input data on
the averaged aerosol pH

In our summary of aerosol pH calculations using the ther-
modynamic modeling approach and the data from chemical-
transport model simulations and field observations (Ta-
ble S1), we found that the temporal resolution of the input
data varied substantially, ranging from less than an hour to
a year. This inconsistency might have arisen from differ-
ences between the native resolutions of field sampling and
the model or from the use of data aggregation in various stud-
ies. Differences in the temporal resolution of the data used to
calculate the pH may lead to disparate results, making it in-
appropriate to directly compare the average aerosol pH val-
ues from different studies. In order to assess the impact of
the temporal resolution, we applied the pseudo-observation
data in Beijing for the winter season from December 2018
to February 2019 as inputs to the ISORROPIA-II thermo-
dynamic model. The measures of dispersion for this site are
shown in Fig. S5. The original input data with a 3 h resolu-
tion, including both chemical and meteorological variables,

Table 1. Comparison of AWC, pH, pH∗, pH∗w, pHMd, and pHMo
calculated based on different temporal resolutions.

Temporal AWC pH pH∗ pH∗w pHMd pHMo
resolution (µg m−3)

3 h 10.0 5.1 3.2 2.1 4.8 4.4
Daily 5.0 4.9 4.0 3.0 4.8 5.2
Weekly 2.8 4.9 4.3 4.1 5.1 5.1
Monthly 2.5 4.7 4.7 4.6 4.7 –
Seasonal 2.5 4.6 4.6 4.6 – –

were aggregated into daily, weekly, monthly, and seasonal
time steps. The results for AWC, pH, pH∗, pH∗w, pHMd, and
pHMo calculated based on the corresponding ISORROPIA-II
output are listed in Table 1.

The alteration of the temporal resolution exerted distinct
degrees of influence on AWC, pH, pH∗, pH∗w, pHMd, and
pHMo. AWC showed an overall declining trend as the time
resolution became lower. This was mainly due to the fact that
AWC had a general exponential relationship with RH, and
thus the high AWC values were largely averaged out when
averaging RH at a lower resolution. The maximum devia-
tions for pH, pH∗, pHMd, and pHMo were 0.5, 1.5, 1.4, and
0.3 units, respectively. In particular, it should be noted that
there was a maximum deviation of 2.5 units in pH∗w, sug-
gesting a fluctuation in the activity of H+ of more than 2 or-
ders of magnitude. The discrepancy in pH∗w was partly due to
rapid and transient fluctuations in AWC during variations in
meteorological conditions. pH∗w tended to lower as the tem-
poral resolution got rougher, which is an opposite trend to
that of pH. The results indicated that comparing the average
aerosol pH metrics with non-uniform temporal resolutions
might lead to erroneous conclusions.

Here, we use a simple example to illustrate the potential
effect of the temporal resolution of the input data on mul-
tiphase chemistry reaction rates. It is well known that the
rate of sulfate production from the oxidation of SO2 by dis-
solved O3 in the aqueous phase is pH dependent (Seinfeld
and Pandis, 2016). The Beijing pseudo-observation data were
applied with both 3 h resolution and daily resolution to as-
sess the sole effect of deviations in aerosol pH on this sul-
fate formation pathway. The mean levels of SO2 (3.8 ppb),
O3 (15.1 ppb), and T (269.8 K) during the study period (De-
cember 2018–February 2019) were used in the calculations.
More detailed formulas are provided in Tables S2 and S3. It
can be seen from Fig. S6 that the calculations using the daily-
resolution data resulted in many rapid sulfate production oc-
currences that were not captured otherwise. We also inves-
tigated the sulfate formation rate d(SO2−

4 )/dt vs. AWC and
d(SO2−

4 )/dt vs. pH to isolate the effect of AWC (Fig. S6b–
e). This example shows that the aerosol pH had a greater ef-
fect on the rate of sulfate production than AWC, and aerosol
pH had a linear relationship with d(SO2−

4 )/dt . The mean
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sulfate formation rate calculated based on the 3 h resolution
data for this winter period was 1.57 µg m−3, while the corre-
sponding value calculated based on the daily-resolution data
was merely 0.72 µg m−3, a factor of 2 smaller, indicating the
significance of the temporal resolution when estimating this
chemical pathway.

4 Conclusions

In the present study, we evaluated the discrepancies in the
average aerosol pH that arose from differences in the averag-
ing metric and temporal resolution based on thermodynamic
modeling and evaluation datasets from a chemical-transport
model. Among the five metrics investigated, i.e., pH, pHMd,
pHMo, pH∗, and pH∗w, the first three metrics (calculated based
on the pH values of individual samples) were found to be∼ 2
units higher than the last two (which are based on the aH+

values of individual samples) in winter, although there were
only minor differences within each group. In summer, how-
ever, the differences were small for all five metrics. Changes
in the temporal resolution of the input data for the thermo-
dynamic models exerted distinct degrees of influence on the
five metrics, with a maximum deviation of > 2 units in pH∗w.
The variation in pH∗w was partly due to the fluctuations in
aerosol water content.

Previous studies have highlighted the importance of main-
taining consistency in terms of the assumed standard states
(Jia et al., 2018), the thermodynamic model used, and the cal-
culation method adopted (e.g., an open vs. a closed system
and a metastable vs. a stable state) (Hennigan et al., 2015;
Song et al., 2018) when comparing pH results across studies.
This technical note underscores the importance of avoiding
the default use of the arithmetic mean as the sole measure
of average. Additionally, it is also essential to consider the
uncertainties introduced by the chosen averaging approach
and temporal resolution, which should be described clearly
in future studies to ensure the comparability of aerosol pH
between models and/or observations. Using this study as an
example, pH results for the 2018/2019 winter in the North
China Plain were derived at 3 h resolution through GEOS-
Chem simulations. Measures of central tendency included
the arithmetic mean (pH, 4.6), median (pHMd, 4.6), and mode
(pHMo, 4.5), the arithmetic mean based on aH+ (pH∗, 2.6),
and the volume-weighted mean based on AWC and aH+

(pH∗w, 2.2). For further details, refer to the “Code and data
availability” section.

From an atmospheric chemical perspective, pH∗w may of-
fer a more accurate representation of the average aerosol pH
state. However, significant changes in pH can induce shifts
in reaction rates, and any averaging method may fail to cap-
ture the reaction dynamics over extended timescales. There-
fore, when utilizing pH datasets for theoretical calculations
of reaction rates, we advocate for the utilization of hourly-
resolution data over data with a longer time resolution.
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Appendix A

Table A1. List of abbreviations.

Abbreviation Definition Unit

aH+ Activity of H+ in the standard state of a hypothetical ideal aqueous solution Dimensionless
of standard molality and the reference state of an infinite dilute solution

AWC Aerosol liquid water content µg m−3 air

mH+ Molality of H+ mol kg−1 water

m	 Standard molality 1 mol kg−1 water

pH Negative log (base 10) of the H+ activity Dimensionless

pHMd Median of the pH Dimensionless

pHMo Mode of the pH Dimensionless

pH Arithmetic mean of the pH Dimensionless

pH∗ Negative log (base 10) of the arithmetic mean of the H+ activity Dimensionless

pH∗w Negative log (base 10) of the AWC-based weighted mean of the H+ activity Dimensionless

γH+ Activity coefficient of H+ Dimensionless

Code and data availability. The standard GEOS-Chem model is
available at https://doi.org/10.5281/zenodo.7696632 (The Interna-
tional GEOS-Chem User Community, 2023). The data are available
at https://doi.org/10.5281/zenodo.11480367 (Song, 2024).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-6583-2024-supplement.
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