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Abstract. Haze events in the North China Plain (NCP) and a decline in ozone levels in Southern Coast China
(SC) from 21 January to 9 February 2020 during the COVID-19 lockdown have attracted public curiosity and
scholarly attention. Most previous studies focused on the impact of atmospheric chemistry processes associated
with anomalous weather elements in these cases, but fewer studies quantified the impact of various weather ele-
ments within the context of a specific weather pattern. To identify the weather patterns responsible for inducing
this unexpected situation and to further quantify the importance of different meteorological factors during the
haze event, two approaches are employed. These approaches implemented the comparisons of observations in
2020 with climatology averaged over the years 2015–2019 with a novel structural SOM (self-organising map)
model and with the prediction of the “business as usual” (hereafter referred to as BAU) emission strength by the
GBM (gradient-boosting machine) model, respectively. The results reveal that the unexpected PM2.5 pollution
and O3 decline from the climatology in NCP and SC could be effectively explained by the presence of a double-
centre high-pressure system across China. Moreover, the GBM results provided a quantitative assessment of the
importance of each meteorological factor in driving the predictions of PM2.5 and O3 under the specific weather
system. These results indicate that temperature played the most crucial role in the haze event in NCP, as well as
in the O3 change in SC. This valuable information will ultimately contribute to our ability to predict air pollution
under future emission scenarios and changing weather patterns that may be influenced by climate change.

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has
lasted for 4.5 years and has led to over 7 million deaths glob-
ally as of June 2023 (WHO, 2024). The Chinese government
implemented strict lockdown measures nationwide during
the first 2 months of 2020 to curb the spread of this pandemic
(Le et al., 2020), which led to significant reductions in an-
thropogenic emissions, especially in the transportation sector
(Xu et al., 2020; Wang et al., 2021; Liu et al., 2021). As a re-
sult, a decline not only in NO2 but also in PM2.5, PM10, SO2,
and CO concentrations on a national scale was indicated by

both satellite and ground-based measurements, although with
the negative consequence of enhancements in O3 concentra-
tions (Shen et al., 2022; Liu et al., 2021; He et al., 2020).
Contrary to the situation in other regions from 21 January
to 9 February 2020, Northern China (NC) and Southwest-
ern China (SWC) experienced severe haze pollution and de-
creased O3 situations, respectively (Le et al., 2020; Huang
et al., 2021; Wang et al., 2020). This exceptional situation
during the haze event in China thus lends itself to a large-
scale “experiment” to study the unusual phenomenon driven
by atmospheric chemistry and meteorology.
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PM2.5 and ground-level ozone (O3), especially in highly
polluted regions, adversely affect human health (Lelieveld
et al., 2015), agriculture (Feng et al., 2015; Wang et al.,
2007), and the Earth’s radiation budget (Liao et al., 2015;
Dang and Liao, 2019), thereby leading to premature mortal-
ity, decreases in crop yields, and altering the climate. An-
thropogenic PM2.5, in addition to being generated by fos-
sil fuels and biomass burning, is also produced through the
reactions of inorganics (e.g. NO, NO2, SO2, and NH3) and
volatile organic compounds (VOCs) (Zheng et al., 2017). In
contrast, O3 is not directly emitted but is formed through
a series of photochemical reactions involving multiple pre-
cursors (e.g. carbon monoxide (CO), methane (CH4), VOCs,
NO, and NO2) (Ge et al., 2013). Apart from intense local pri-
mary emissions and secondary chemical formation, stagnant
meteorological conditions and regional transport are two ad-
ditional contributors to severe haze and O3 pollution events
(Shen et al., 2020). Recently, a series of air quality regula-
tions (Clean Air Plans, CAPs) released by the Chinese gov-
ernment have resulted in a notable decrease in anthropogenic
emissions, leading to a substantial improvement in air quality
due to reductions in PM2.5 concentrations but a nationwide
enhancement of O3 pollution in China (Shen et al., 2020;
K. Li et al., 2019). It is known that the impacts of meteoro-
logical conditions and atmospheric chemical processes could
result in non-linear responses of PM2.5 and O3 to the de-
creases in their precursor concentrations (H. Li et al., 2019;
Li et al., 2020). However, the specific responses of air pollu-
tants and atmospheric chemistry to emissions and meteoro-
logical conditions have not been clearly determined.

For the haze event in China introduced above, recent stud-
ies on the topic suggested that complex atmospheric chem-
istry processes triggered by emission reductions and meteo-
rological conditions are responsible for the unexpected haze
formation regionally during the COVID-19 lockdown (Le et
al., 2020; Fu et al., 2021). In detail, the substantial decrease
in NO2 emissions during the COVID-19 lockdown resulted
in an increase in O3 levels and nighttime NO3 radical forma-
tion, enhancing the atmospheric oxidation capacity (AOC)
and facilitating the formation of secondary aerosols. Addi-
tionally, the presence of anomalous relative humidity pro-
moted heterogeneous chemistry processes (Le et al., 2020;
Huang et al., 2021; Ma et al., 2022). After the formation,
more generated secondary aerosols were transported toward
the in situ measurement station in northern China (Lv et al.,
2020). Meanwhile, some research pointed out that the high
ambient humidity is also the key to the NC haze from the
perspective of adjusting pH to control the formation effi-
ciency of nitrate aerosol, which is one of the major species
for NC haze (Chang et al., 2020; Sun et al., 2020). In ad-
dition to the influence of changes in chemical reactions, a
physical mechanism known as the aerosol–planetary bound-
ary layer (PBL) interaction is also considered to have had a
significant impact on the haze formation (Su et al., 2020).
For O3, the decline in climatology in SC was attributable

to the weakened photochemistry reactions due to the emis-
sion reductions in and the dilution effect of the clean air
masses on the mass loadings of NOx and VOC (Fu et al.,
2021; Liu et al., 2021). Overall, meteorological conditions
always played a critical role; high relative humidity is the
trigger of aerosol heterogeneous chemistry by adjusting the
particle pH or providing a reaction medium. Meanwhile, the
transport of the secondary aerosol or clean air masses and
shallow PBL height are primarily driven by wind and pres-
sure, respectively. Importantly, the above weather elements
are modulated synergistically by synoptic-scale weather pat-
terns (SWPs) or large-scale atmospheric circulations.

Numerous studies have been conducted worldwide to ex-
plore the direct connections between SWPs and air quality
fields (Dayan and Levy, 2002; Demuzere et al., 2009; Pope
et al., 2015; Hegarty et al., 2007; Bei et al., 2016; Jiang et
al., 2017), indicating that good air quality conditions are of-
ten observed under cyclonic weather systems with certain
types and positions, while poor air quality is frequently as-
sociated with anticyclonic conditions. However, the relation-
ship between air quality and SWPs can differ depending on
location, time, and pollutants (Jiang et al., 2017; Liao et al.,
2017). The classification methods for SWPs employed in
these studies can generally be categorised into the following
three groups: subjective (manual), mixed (hybrid), and objec-
tive (automated) (Huth et al., 2008). Objective classification
methods for SWPs are known for their speed, objectivity, and
high reproducibility, often achieving classification 100 % au-
tomatically. On the other hand, manual approaches for SWPs
have the advantage of allowing the user to control the selec-
tion of representative weather types (Lewis and Keim, 2015).
Hybrid classification combines the strengths of both manual
and automated techniques, where the users define the clas-
sification types, but the classification process itself is per-
formed automatically (Frakes and Yarnal, 1997; Lewis and
Keim, 2015; Huth et al., 2008). At present, the subjective
method was used to investigate the contribution of six SWPs
to PM2.5 pollution in Northwest China (Bei et al., 2016).
While subjective approaches are suitable for analysing short
time series, they have significant limitations when applied to
large datasets spanning extended periods of time (Chen et al.,
2022). Hybrid classification for SWPs is more popular than
the subjective one and was applied to explore the impact of
SWPs on O3, PM2.5 and CO in the North China Plain (NCP),
Yangtze River Delta (YRD), and Eastern China, respectively
(Zhang et al., 2013, 2016; Han et al., 2018; Liao et al.,
2017). As an objective classification and with its advantages,
the self-organising map (SOM) algorithm has been used to
identify the impact of different SWPs on O3 and PM2.5 in
the YRD and Sichuan Basin (SCB), respectively (Shu et al.,
2020; Zhan et al., 2019). In addition, the principle compo-
nent analysis T mode, k-means clustering, and other cluster-
ing approaches (like the Lamb–Jenkinson method) also were
adopted to quantify the impact of SWPs on O3 in NCP (Miao
et al., 2017; Dong et al., 2020; Liu et al., 2019).
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Based on the studies mentioned above, previous research
on the drivers for unusual haze and O3 decline events has
concentrated on the influence of atmospheric chemistry pro-
cesses accompanied by the anomaly of one or two weather
elements but has not yet focused on the impact of weather
elements in a comprehensive and synergistic way. Therefore,
we here investigate the effect of anomalies in weather condi-
tions with respect to climatology on PM2.5 and O3 concen-
trations during the haze event in the COVID-19 lockdown,
specifically. To this end, we apply a novel SOM algorithm
called structural SOM (S-SOM) to identify the most mean-
ingful clustering number of weather patterns and compare it
to other traditional SOM methods including ED-SOM and
the SOM algorithm based on the Pearson correlation coeffi-
cient (hereafter named COR-SOM). Furthermore, after deter-
mining the weather patterns, we evaluate the contribution of
SWPs to PM2.5 and O3 changes during the COVID-19 lock-
down in China. Last, to better understand what role each me-
teorological factor played in the PM2.5 and O3 pollution dur-
ing this period, the SHapley Additive exPlanation (SHAP)
approach is used to evaluate their relative importance for the
predictions of the machine learning (ML) model. The knowl-
edge gained will ultimately help to predict air pollution under
future emission scenarios and weather patterns potentially al-
tered by climate change.

2 Method

2.1 Observational and model dataset sources

The hourly observation dataset during the first 2 months (Jan-
uary and February) from 2015 to 2020, including two air pol-
lutants (PM2.5 and O3) and six meteorological factors (pres-
sure is P , precipitation is Precip, temperature is Temp, rel-
ative humidity is RH, wind speed is WS, wind direction is
WD), was divided into two parts, namely the training dataset
and test dataset, which were used to build a prediction model
based on machine learning. Air pollutant and meteorologi-
cal station datasets were downloaded from the National En-
vironmental Monitoring Centre (http://www.cnemc.cn, last
access: 28 May 2024) and the National Meteorological Sci-
ence Data Center repository (https://data.cma.cn, last access:
28 May 2024). To better understand the climatological be-
haviour of air pollutants, 367 surface measurement stations
across China are divided into eight different regions (includ-
ing NCP for North China Plain, IM for Inner Mongolia,
NEC for North Eastern China, YRD for Yangtze River Delta,
CS for Central South, SC for Southern Coast, TP for Tibet
Plateau, and NWC for North Western China) based on dif-
ferent typical climate characteristics (see the climate classifi-
cation scheme at https://www.resdc.cn/data.aspx?DATAID=
243, last access: 28 May 2024; Fig. 1). In addition, hourly
surface ERA5 data with 0.25× 0.25 spatial resolution, in-
cluding mean sea level pressure (MSLP) (at 14:00 local time
per day) and total solar radiation (SR), were retrieved from

Figure 1. The spatial distribution of air quality measurement sta-
tions in different climate regions (circles represent surface measure-
ment stations; colours indicate different climate zones). The abbre-
viations used in the figure are as follows: NCP – North China Plain;
IM – Inner Mongolia; NEC – North Eastern China; YRD – Yangtze
River Delta; CS – Central South; SC – Southern Coast; TP – Tibet
Plateau; and NWC – North Western China.

the European Centre for Medium-Range Weather Forecasts
(ECMWF).

2.2 Structural SOM algorithm (S-SOM)

The SOM algorithm involves an iterative learning processes
that progressively update the nodes in the output map until
they converge to a stable solution. During each learning step,
the SOM algorithm selects an input vector in a random way
and then searches for a node that best matches that particu-
lar vector. Traditionally, the Euclidean distance (ED) in the
SOM algorithm is often used as a criterion to search for the
winning node that is closest to an input vector. ED is very
popular in the SOM algorithm but with significant shortcom-
ings when applied to compare structured inputs with tempo-
ral or spatial orders. As a result, the limitations of ED be-
come particularly significant in climatology research, where
the data are often given with a spatial and temporal structure,
which might result in the degradation of the spatial correla-
tions between air pressure patterns in weather maps (Doan et
al., 2021).

The S-SOM algorithm is executed following the procedure
proposed by Kohonen (1982) and is widely used in many
studies. To begin, an S-SOM is initialised by configuring the
SOM node and determining the number of training iterations.
The training process involves three key steps:

1. selecting an input vector,

2. identifying the best-matching unit in the SOM for the
input vector, and
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3. updating the weight vectors of the SOM nodes using
specific parameters.

The only difference between the traditional SOM and S-
SOM is that the similarity index (S-SIM) rather than ED is
used to compare the similarity between vectors. S-SOM was
first proposed by Wang et al. (2004) and can be expressed in
the following equation:

S-SOM(x,y)=
[
l(x,y)α × c(x,y)β × s(x,y)γ

]
. (1)

Here, x and y are two vectors, and l, c, and s are three com-
parison measurements representing luminance, contrast, and
structure, respectively. The three comparison functions are as
follows:

l(x,y)=
2µxµy + c1

µ2
x +µ

2
y + c1

, (2)

c(x,y)=
2σxσy + c2

σ 2
x + σ

2
y + c2

, (3)

s(x,y)=
σxy + c3

σxσy + c3
. (4)

Here, the average and standard deviation values are repre-
sented by µ and σ , respectively. The parameters c1, c2, and
c3 are used to stabilise the division operations involving a
weak denominator. The luminance, contrast, and structure in
the S-SOM formula are three elements of human perception.
Luminance assesses the similarity in brightness values be-
tween images. Contrast quantifies the similarity in illumina-
tion variability among images. Last, the structure measures
the correlation in spatial interdependencies between images,
reflecting how the spatial elements of the images are related
to each other (Wang and Bovik, 2009). Here, we can set the
values of c1, c2, and c3 to 0 and the weights α, β, and γ to 1
to simplify the model (Doan et al., 2021). The final expres-
sion shows

S-SOM(x,y)=

(
2µxµy

)(
σxy

)(
µ2
x +µ

2
y

)(
σ 2
x + σ

2
y

) . (5)

As the function shows, S-SOM ranges from−1 to 1. A value
of 1 indicates complete similarity, while a value of −1 in-
dicates complete dissimilarity. S-SOM offers robust, user-
friendly, and comprehensible alternatives to the conventional
ED approach, particularly when dealing with datasets with a
spatial and temporal order (Wang and Bovik, 2009).

2.3 Gradient-boosting machine (GBM) model

The impact of meteorological factors on the variation in
the air pollutant concentrations is typically determined
via chemical transport models. However, these model
predictions are associated with substantial uncertainty, since
they rely on the correct quantification of changes in the

emission inventory of each city under multi-faceted an-
thropogenic air pollution interventions (e.g. clean-air plans
and COVID-19 lockdown measures). Besides, uncertainties
can also be derived from the chemical mechanism (Knote
et al., 2015; Weng et al., 2023). Here, a gradient-boosting
machine (GBM) model was trained with observations of
meteorological factors, with the GBM being able to capture
the location-specific characteristics and thus being suitable
for the prediction of air pollutant concentrations attributable
to the impact of meteorology in different cities across China.
Observations of meteorological factors, together with time
variables from 2015 to 2019, are considered to be the train-
ing dataset to predict the concentrations of PM2.5 and O3
in China. The meteorological factors are listed as follows:
P , Precip, Temp, RH, WS, and WD. The time variables
include the Julian day (JD), day of week (DOW), holidays,
and Chinese New Year (CNY) days in each year. For the
GBM prediction model, cross-validation is mainly used to
estimate how accurately a predictive model will perform in
practice. To check the accuracy of the ML model used in
our study, a time series split rolling cross-validation based
on five splits was used, for which data used for the training
task always preceded the data used for validation. In detail,
the ML training model was used for 2015, 2015–2016,
2015–2017, 2015–2018, and 2015–2019, while the testing
of the model then was implemented over the first 2 months
of 2016, 2017, 2018, 2019, and 2020, respectively (Shen
et al., 2022). The hyperparameters of the model that we
selected are as follows: “number_leaves”, “objective”,
“min_data_in_leaf”, “learning_rate”, “feature_fraction”,
“bagging_fraction”, “bagging_freq”, and “metric” (detailed
parameter information of the model can be accessed from
https://lightgbm.readthedocs.io/en/latest/Parameters.html,
last access: 28 May 2024). After selecting the best ML model
under cross-validation, a ML experiment was designed to
make a prediction of PM2.5 and O3 in the first 2 months of
2020.

2.4 SHapley Additive exPlanation (SHAP) method

Quantifying the importance of input features of the GBM
model is as vital as the overall accuracy of the prediction
itself. However, interpreting the higher accuracy achieved by
ensemble or ML models on certain datasets can be a chal-
lenging task. To deal with this contradiction between higher
accuracy and non-interpretability, SHAP, a game theory ap-
proach, is applied to calculate the importance value for each
specific independent feature. In brief, the SHAP value of
each feature is attributed to the difference in one prediction
output with one feature versus the prediction output without
this corresponding feature. SHAP’s local explanations can
vary in terms of being positive or negative, reflecting how
predictors influence the predicted outcome. In contrast, other
ML methods typically yield a single positive value, indicat-
ing overall importance. Specifically, in local interpretability
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analysis (Lundberg et al., 2020), SHAP indicates the contri-
bution of each variable to the prediction of a specific sample.
This contribution is assessed from the base value (the pre-
dicted mean value) to the final model output. Variables that
push the prediction to higher values are displayed as posi-
tive, while those decreasing the prediction are shown to be
negative. For each predicted model with n variables in one
sample (xl) and the predicted output f (xl), the equation of
the prediction function is described as follows:

f (xl)= E0(f,x)+
n∑

m=1
Em (f,xl) , (6)

where xl is the input with variable m in the prediction model
f generating the SHAP value ofEm(f,xl).E0(f,x) is the ex-
pected value for the prediction model over the whole dataset.

3 Results

3.1 Spatial variations in the air pollutant and
meteorology in climatology

The spatial distribution of the fractional differences in air
pollutant concentrations during the haze event from 21 Jan-
uary to 9 February 2020, calculated between mean values
during the event in 2020 and the values averaged over the
same period from 2015 to 2019, for all six air pollutants is
shown in Fig. 2. Half of the climate regions, including the
YRD, CS, SC, and TP, showed different magnitudes in the
decreases (increases) (Table 1) in the climatology for PM2.5,
PM10, NO2, SO2, and CO (O3), which were primarily at-
tributed to the significant anthropogenic emission reduction
during the COVID-19 lockdown (Nie et al., 2021; Wang et
al., 2022; Shen et al., 2022). However, contrary to expec-
tations, PM2.5 concentrations did not drop as anticipated at
the beginning of the lockdown in NCP, IM, NEC, and NWC.
Instead, these regions experienced an unexpected increase of
8.6 %, 31.8 %, 22.3 %, and 2 % compared to climatology dur-
ing the same period, respectively. Even though the decline
was small, O3 showed an unexpected drop of −0.8 % in SC
when compared to climatology during the same period. Our
recent work also found a −0.9 % decline in O3 driven by the
meteorological effect during the COVID-19 lockdown across
China (Shen et al., 2022). As a fractional difference com-
pared to climatology, the spatial distribution of the key mete-
orological variables RH, P , Precip, Temp, and WS are shown
in Fig. 3. Generally, positive RH and negative WS anomalies
are always accompanied by the strong regional elevation of
PM2.5 in NCP, NEC, IM, and NWC. Positive P anomalies
coupled with increased PM2.5 demonstrate the most promi-
nent regional characteristics in NEC. In SC, the most notice-
able features were observed as a combination of hotspot Pre-
cip anomalies and decreased O3 levels. Overall, the regional
characteristics of PM2.5 and O3 all have a close relationship
with different meteorological anomalies, which are usually
controlled by the regionally prevailing SWPs.

3.2 Identification of the SWPs during the unexpected
haze event

To identify which SWPs can regionally induce an unex-
pected PM2.5 increase and O3 reduction compared to cli-
matology averaged over the years 2015–2019, three differ-
ent SOM methods were employed to identify different types
of SWPs (from two to eight) using MSLP data in the first
2 months from 2015 to 2020 over China. Figure 4 shows
MSLP patterns identified by S-SOM, COR-SOM, and ED-
SOM running three nodes, respectively. Taking this three-
node analysis as an example, we find that the three SWPs
identified by S-SOM (Fig. 4a, b, and c) are clearly distinct
from each other. On the other hand, ED-SOM (Fig. 4d and
e) and COR-SOM (Fig. 4g and h) both classify two similar
SWPs characterised by high-pressure systems over Siberia,
thus resulting in a failure of clustering. This interpretation
is supported by the result of clustering the number distribu-
tions for the three-node SWPs (Fig. 5d). It should be noted
that cluster numbers do not necessarily correspond to the
same pattern between S-, ED-, or COR-SOM. Here, it is
found that S-SOM results are in a more “ordered” cluster-
ing of nodes, where a prominent node (62.9 %) is accom-
panied by two non-dominant nodes (7.5 % and 29.5 %). On
the other hand, both ED-SOM and COR-SOM exhibit rela-
tively similar cluster sizes with percentages of 27 %, 35.1 %,
and 37.9 % for ED-SOM and 40.7 %, 34.6 %, and 24.7 % for
COR-SOM, highlighting the prevalence of a more “flat” clus-
tering pattern. It can be concluded that the better classifica-
tion method for three-node SWPs is S-SOM with an ordered
clustering number distribution accompanied by a prominent
node (Doan et al., 2021). This consistent finding is also ob-
served in other cases (e.g. node numbers smaller or greater
than 3; Figs. S1–S12 in the Supplement). Then, we make
a further comparison of the node number distribution of S-
SOM (Fig. 5a), ED-SOM (Fig. 5b), and COR-SOM (Fig. 5c)
in each year and find that S-SOM always has a prominent
node with a value of more than 50 % (2015 with 50 %, 2016
with 85 %, 2017 with 64 %, 2018 with 81 %, 2019 with 63 %,
and 2020 with 55 %), and the cluster sizes for ED-SOM and
COR-SOM are close to each other as well, which is consis-
tent with a recent study indicating a better performance of
S-SOM (Doan et al., 2021). Therefore, in addition to the al-
gorithmic advantages, the characteristics of ordered cluster-
ing nodes reinforce the superiority of the S-SOM approach.

In terms of structure characteristics of clustering number
distribution for S-SOM, three-node SWPs (Fig. 4) and seven-
node SWPs (Fig. S13) were regarded as being the optimal
numbers of SWPs after checking the clustering number dis-
tribution for each run. From the top panel of Fig. 4, three
types of SWPs identified by S-SOM demonstrate that NCP,
YRD, NEC, and NWC are under the control or influence
of different high-pressure systems. For seven-node SWPs
identified by S-SOM, even though the high-pressure system
varies in numbers and locations, some patterns (Fig. S13d

https://doi.org/10.5194/acp-24-6539-2024 Atmos. Chem. Phys., 24, 6539–6553, 2024



6544 F. Shen et al.: Impact of weather on PM2.5 and O3 responses to COVID-19 lockdown in China

Figure 2. The spatial distributions of fractional differences between mean values during the haze event in 2020 and the climatology over the
same period during the years 2015–2019 for six air pollutants (including PM2.5, PM10, NO2, O3, SO2, and CO).

Table 1. The climate zones and mean fractional climatology anomalies (2020 – mean (2015–2019)) of six air pollutants across China.

Climate Number Climate characteristics PM2.5 PM10 O3 NO2 SO2 CO
zone of cities

NCP 86 Semi-humid warm temperate climate 8.6 % −17.6 % 39.3 % −43.4 % −66.9 % −23 %

IM 17 Semi-arid mid-temperate climate 31.8 % −10.7 % 15 % −9.4 % −40.2 % −2.6 %

NEC 31 Cold temperate climate, semi-humid, 22.3 % 0.7 % 26.4 % −24.2 % −45.8 % −10.3 %
mid-temperate climate

YRD 67 Humid north subtropical climate −29.7 % −41.7 % 32.4 % −54.3 % −60.9 % −24.6 %

CS 68 Humid mid-subtropical climate −41.4 % −50.9 % 11.5 % −53.2 % −56.7 % −25.2 %

SC 42 South subtropical climate −40.2 % −45.2 % −0.8 % −51.8 % −44.3 % −24.8 %

TP 9 Plateau climate −48 % −61.9 % 16 % −27.3 % −40.1 % −26.4 %

NWC 28 Arid, mid-arid, mid-temperate climate 2 % −34.1 % 28.7 % −14.5 % −49.6 % −12.3 %

and e) still have a relatively high similarity, which might be
attributed to the over-splitting or a dataset that is too short to
capture the full climatology. Overall, the result of the three-
node SWPs of S-SOM is thus identified as the best solution
to study the haze event in China in further detail.

3.3 Impact of weather elements on PM2.5 and O3 under
the SWPs

To better understand the regional influence of different SWPs
on PM2.5 and O3 concentration levels, NCP and NEC (SC),

which have higher (lower) than expected concentrations for
PM2.5 (O3) and have more measurement stations as well,
were selected as the research domains. To investigate the
cause of the unexpected PM2.5 and O3 variations with respect
to climatology, a comparison of the identified three-node
SWPs is made between the days of 2020 and 2015–2019. As
shown in Fig. 6 and as detailed in Figs. 7–9, pattern I in 2020
(Fig. 6d) shows a north coastal high-pressure circulation sys-
tem, located in the Yellow Sea, which is enhanced from that
in 2015–2019 (Fig. 6a) and influences the NCP and NEC re-
gions (see Figs. 7a, d–f and 8a, d–f) more strongly from the
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Figure 3. The spatial distributions of differences between mean values during the haze event in 2020 and the climatology over the same
period of the years 2015–2019 for meteorological factors (including relative humidity, pressure, precipitation, temperature, and wind speed).

southeast direction with a generally warmer and, in the case
of NEC, also faster airflow. The double-centre high-pressure
system in pattern II is strengthened in 2020 (Fig. 6e) and lo-
cated in the region of Mongolia and the Bohai Sea in China
compared to 2015–2019 (Fig. 6b). This brings along a more
stagnant, i.e. low speed and cold, but also extremely wet
northern airflow controlling the NCP region (Fig. 7a, d–f)
and a moderately wetter airflow dominating the NEC region
(Fig. 8a, d–f). Pattern III, on the other hand, shows a much
weakened Siberian high and a missing China north coastal
high in 2020 (Fig. 6f), when compared to a pattern exhibiting
two high-pressure centres during the 2015–2019 reference
period (Fig. 6c). This leads to a generally warmer, slightly
faster, and more humid airflow to the NCP (Fig. 7a, d–f) and
NEC (Fig. 8a, d–f) regions. For SC, which is always located
at the southernmost part of the observed high-pressure cen-
tres (Fig. 6), and for all three patterns, only small changes are
seen in 2020 compared to the 2015–2019 time period with a
more easterly component in the winds (Fig. 9a–c), leading to
slightly warmer and (except for pattern III) moister airflow
(Fig. 9d–f).

We now turn to the discussion of the observed distribu-
tions of PM2.5 and O3 (Fig. 10) aggregated over the three
SWPs and the regions of NCP, NEC, and SC for the 2020 and
the 2015–2019 time periods, respectively. For PM2.5 in NCP
(Fig. 10a), the mean values in patterns I, II, and III in 2015–
2019 all remained at high pollution levels with values of
96.4, 92.6, and 87.7 µg m−3, respectively. In contrast, due to
the anthropogenic emissions reductions during the lockdown

period in 2020, the PM2.5 mean values for patterns I and
III decreased to 68.8 and 59.8 µg m−3, even when coupled
with a positive RH climatological anomaly (Fig. 7e: 2 % and
10 %), which could be conducive to generating additional
PM2.5 generally. Unlike patterns I and III, the PM2.5 mean
value in pattern II 2020 surprisingly keeps at an equivalent
level (92.5 µg m−3) to pattern II in 2015–2019 (92.6 µg m−3)
under a weather condition of a combination of the greatest
RH anomaly (Fig. 7e; 17 %) and a negative WS anomaly
(Fig. 7f;−0.3 m s−1), which offsets the contribution from the
emissions reduction in NCP. For O3 in NCP (Fig. 10d), pat-
terns I and III in 2020 exhibit greater temperature anomalies
(Fig. 7d; 2.7 and 2.9 °C, consistent with higher total radiation
levels; see Fig. 7h) and thus facilitate additional O3 genera-
tion (20 and 13 µg m−3). Pattern II in 2020 with a negative
temperature anomaly (−0.1 °C, consistent with lower total
radiation levels; see Fig. 7h) favours a more moderate O3 in-
crease (3 µg m−3).

In the NEC region, the maximum PM2.5 increase
(15 µg m−3) occurred under the influence of pattern II in
2020 (Fig. 10b), with a negative wind speed anomaly
(Fig. 8f; −0.3 m s−1) when compared to the same pattern
in 2015–2019, indicating that the meteorological effect acts
in the opposite way to the emission reductions during the
COVID-19 lockdown period. Without an offsetting effect
from the unfavourable meteorological conditions, mean val-
ues of PM2.5 for patterns I and III in 2020 decreased by 5
and 8 µg m−3, respectively. For O3 (Fig. 10e), unlike a neg-
ative temperature anomaly (Fig. 8d; −1.3 °C) in SWP II,

https://doi.org/10.5194/acp-24-6539-2024 Atmos. Chem. Phys., 24, 6539–6553, 2024



6546 F. Shen et al.: Impact of weather on PM2.5 and O3 responses to COVID-19 lockdown in China

Figure 4. Spatial distributions of three weather patterns for MSLP (mean sea level pressure) identified by S-SOM (a, b, c), COR-
SOM (d, e, f), and ED-SOM (g, h, i) during the first 2 months from 2015 to 2020.

Figure 5. Cluster size distributions identified by S-SOM (inner ring), COR-SOM (middle ring), and ED-SOM (outer ring) over the years
2015–2020 (d) and cluster days in each year. (a) S-SOM, (b) COR-SOM, and (c) ED-SOM.

both higher O3 increases in SWPs I (11 µg m−3) and III
(11 µg m−3) compared to that in SWP II (2 µg m−3) are
driven by positive temperature anomalies (Fig. 8d; 2 and
4.4 °C).

In the SC region, without an extreme weather element
anomaly facilitating additional PM2.5 production, PM2.5
mean values for all three SWPs in 2020 are at a lower level
than in 2015–2019 (Fig. 10c) and attributable to the emis-
sions reductions during the COVID-19 lockdown. Higher
precipitation levels in 2020 than during the 2015–2019 pe-
riod also helped reduce PM2.5 levels (see Figs. 3c and S14).
For O3 (Fig. 10f), a negative RH anomaly (Fig. 9e) for

SWP III in 2020 led to the greatest O3 elevation for this re-
gion. On the other hand, the O3 in pattern I is found to remain
at similar levels during both time periods since no significant
differences in the weather patterns are found. Finally, a pos-
itive wind speed anomaly (Fig. 9f; 0.21 m s−1) is conducive
to an unusual O3 decline (−0.5 µg m−3) in SWP II in 2020
when compared to 2015–2019, which is contrary to the O3
situation under the effect of all other SWPs discussed above.

Overall, we found that the unexpected PM2.5 pollution in-
crease in NCP and NEC and an O3 decline in SC occur si-
multaneously but only during SWP II, which is equivalent to
the situation found in the observations during the haze event.
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Figure 6. Comparison of the three weather patterns between cluster days in 2020 (d, e, f) and 2015–2019 (a, b, c), respectively.

Figure 7. Comparisons of different weather factors (including wind speed, wind direction, temperature, relative humidity, pressure, and total
radiation) between cluster days in 2020 (red wind rose and solid box-and-whisker plots) and in 2015–2019 (black wind rose and hollow
box-and-whisker plots) for the three weather patterns in NCP.

When we further investigate the calendar occurrences of the
three different SWPs (Fig. S15), it is indeed found that 70 %
of the haze days were associated with SWP II. This finding
thus indicates that SWP II can be regarded as the represen-
tative weather pattern which best explains the cause of the
unexpected haze and O3 decline events.

3.4 Predominant meteorological factors for PM2.5 and
O3 pollution

After identifying which SWP could control the impact of
each weather element on the PM2.5 and O3 levels, as ob-
served during the haze event in 2020, we further use ma-
chine learning coupled with the SHAP approach to quantify
the impact of each weather element on the PM2.5 and O3
under the business as usual (hereafter referred to as BAU)
emission strength scenario during the haze event in 2020.
This BAU scenario thereby is constructed by the gradient-

boosting machine that trained the model using historical fea-
tures to predict the future-dependent features without con-
sidering the huge emission reduction due to the COVID-19
lockdown. It is a counterfactual scenario assuming that the
emission strength is the same as the BAU. In our previous
study, the GBM model was applied to train daily data over
2015–2019 and predict six air pollutants including PM2.5
and O3 over the first 3 months of 2020 in 367 cities across
China (Shen et al., 2022). The good performance of the GBM
model was measured by achieving relatively high Pearson
correlation coefficients (PCCs) and lower root mean squared
errors (RMSEs) for the final predictions of PM2.5 and O3
(details can be found in the Supplement). Figures 11a, d, and
g and S16 show the time series results in the first 2 months
for PM2.5 and O3 between the observation and prediction in
NCP, NEC, and SC, respectively. We find that the predictions
generally agree well with the observations with reasonably
high PCCs (NCP 0.7, NEC 0.6, and SC 0.8), indicating the
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Figure 8. Comparisons of different weather factors (including wind speed, wind direction, temperature, relative humidity, pressure, and total
radiation) between cluster days in 2020 (red wind rose and solid box-and-whisker plots) and in 2015–2019 (black wind rose and hollow
box-and-whisker plots) for the three weather patterns in NEC.

Figure 9. Comparisons of different weather factors (including wind speed, wind direction, temperature, relative humidity, pressure, and total
radiation) between cluster days in 2020 (red wind rose and solid box-and-whisker plots) and in 2015–2019 (black wind rose and hollow
box-and-whisker plots) for the three weather patterns in SC.

good performance of the GBM model. Note that these predic-
tions might be with high RMSEs due to the input being the
BAU emissions instead of the lockdown emission reduction.
Many studies have estimated PM2.5 and O3 using different
prediction models, but they are limited to explain the final
predictions (Xiao et al., 2018; Zhang et al., 2021; Jin et al.,
2022), especially to provide details of specific input features
(Weng et al., 2022). In our study, the SHAP module coupled
to the GBM model was run to quantify the importance of the
input variables during the haze event in 2020 (Fig. 11b, e, and
h). On average, in the BAU scenario, the SHAP value of the
time variables, including CNY, DOW, holidays, and JD, have
no impact or negative impacts on PM2.5 and O3 (Fig. 11c, f,
and i). For meteorological elements that enhanced the pro-
duction of PM2.5, temperature ranked first among the six me-
teorological elements during the haze event, followed by RH,

WS, and pressure in NCP versus WS, pressure, and RH in
NEC, respectively. In terms of the positive SHAP values of
temperature, pressure, RH, and WS in PM2.5 predictions, it
reveals that those meteorological features push PM2.5 pre-
diction to a higher value, suggesting that the final predictions
were up to the baseline concentrations in NCP and NEC. In
SC (Fig. 11i), positive mean SHAP values (2.2 µg m−3) for
RH would be conducive to additional ozone generation due
to the relatively lower values compared to before the haze
event (Fig. 11g), thus pushing the predicted ozone higher.
In contrast, a negative mean SHAP value (−5.5 µg m−3) for
temperature during the haze event (Fig. 11i) would suppress
ozone production attributable to smaller mean values, thus
leading to a lower-ozone prediction. It should be noted that
RH with a higher absolute SHAP value (9.8 µg m−3) exceed-
ing temperature (−6.7 µg m−3) became the primary factor

Atmos. Chem. Phys., 24, 6539–6553, 2024 https://doi.org/10.5194/acp-24-6539-2024



F. Shen et al.: Impact of weather on PM2.5 and O3 responses to COVID-19 lockdown in China 6549

Figure 10. Comparisons of PM2.5 (green colour) and O3 (red colour) between cluster days in 2020 (filled box-and-whisker plots) and in
2015–2019 (hollow box-and-whisker plots) for the three weather patterns in NCP (a, d), NEC (b, e), and SC (c, f).

dominating the high-ozone level from 27 January to 2 Febru-
ary 2020. It is attributed to the SWP II in SC (Fig. 9d, f)
with strong moist winds from the ocean, leading to the impor-
tance of RH surpassing temperature, which is consistent with
the previous study (Weng et al., 2022). However, over the
full period of the haze event, the negative effect of temper-
ature dominated a higher-ozone level during the haze event
based on the larger absolute SHAP value for temperature.
The weaker than expected decrease in ozone as response to
a lower temperature might be attributed to the emission re-
ductions in the ozone precursors due to the COVID-19 lock-
down measures. When we investigate the observed weather
elements in 2020 against that averaged over 2015–2019, we
can find that NCP and NEC were both under the control of
SWP II, with lower temperatures and a higher RH, which
facilitated the formation of PM2.5. Meanwhile, the SC re-
gion was influenced by the SWP II with higher temperatures,
higher RH, and higher WS weather conditions, resulting in
a decline in the O3 in climatology but a relative high-ozone
level in prediction from the SHAP explanation. Overall, we
can not only find the impact of weather elements on PM2.5
and O3 in the prediction scenario and in climatology, but we
can also conclude that temperature plays a key role in such
an impact.

4 Conclusion

At the beginning of the COVID-19 pandemic, China sus-
pended almost all non-essential human activities. However,
serious haze pollution still occurred in North China during
this period, triggering extensive investigations. On the other

hand, while O3 concentrations were increasing across almost
all of China due to the shift in the chemical regime, the SC
region exhibited a decrease in O3. To further understand the
role of meteorology in regulating air pollution during this pe-
riod, we investigated in more detail the role of synoptic-scale
weather patterns in driving the meteorology in these regions
of China. To this end, we first determined the optimal ap-
proach for identifying synoptic-scale weather patterns out of
three self-organising map methods. With the S-SOM method
yielding the most optimal results, we then analysed the vari-
ation in the each meteorological factor under the control of
the weather type that produces anomalous PM2.5 concentra-
tions in the NCP and NEC and anomalous O3 concentrations
in SC. Finally, we quantified the importance of each meteo-
rological factor assuming a BAU scenario through a machine
learning model coupled with a SHAP module.

The large-scale double-centre high-pressure system was
identified by the optimal S-SOM method with a low-speed,
cold, and extremely wet northern airflow controlling the NCP
region; a low-speed, warm, and wet airflow from the Bohai
Sea dominating the NEC region; and warmer air masses cov-
ering the SC region simultaneously. The above weather el-
ement anomalies controlled by the large-scale high-pressure
system could well explain the unexpected PM2.5 pollution
and O3 decline in climatology in NCP, NEC, and SC, respec-
tively.

Moreover, the SHAP results indicate that, in the BAU sce-
nario, the time series trend of PM2.5 and O3 have a high sim-
ilarity with that of the observations, indicating a good perfor-
mance of the prediction model (despite the differing emis-
sions). The SHAP results stress the impact of meteorologi-
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Figure 11. Time series comparisons between observations (dotted black line) and predictions (triangled red line) combined with the SHAP
values of the input variables (colourful bar) for the PM2.5 and O3 predictions in NCP (a, b), NEC (d, e), and SC (g, h), respectively (note
that the box-and-whisker plots represent the mean SHAP value of the input variables during the prediction in NCP (c), NEC (f), and SC (i),
respectively, and the shaded area (a, d, g) indicates the haze event period).

cal conditions on PM2.5 and O3 and further quantify the im-
portance of each weather element under the specific weather
system, revealing the most important role that temperature
played in PM2.5 pollution in NCP and NEC and in high O3
level (note that this has to be understood relative to a lower-
ozone level compared to climatology) in SC, respectively.

Overall, this study provides a potential way to understand
the synergistic effects of various meteorological factors in
reducing pollution and to quantify the importance of each
weather element as well. As a result, the provision of in-
formation on what role each weather element plays in un-
expected air pollution cases can help policymakers to im-
plement air pollution control strategies. However, our work
will have to be expanded further and add more related me-
teorological factors to the GBM model to improve its per-
formance. In fact, more studies should focus on the topic of
understanding the impact of meteorology on different air pol-
lutants in particular due to weather conditions in a changing
climate.
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