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Abstract. Exposure models for some criteria of air pollutants have been intensively developed in past research;
multi-air-pollutant exposure models, especially for particulate chemical species, have been however overlooked
in Asia. Lack of an integrated model framework to calculate multi-air-pollutant exposure has hindered the com-
bined exposure assessment and the corresponding health assessment. This work applied the land-use regression
(LUR) approach to develop an integrated model framework to estimate 2017 annual-average exposure of multi-
ple air pollutants in a typical high-rise and high-density Asian city (Hong Kong, China) including four criteria
of gaseous air pollutants (particulate matter with an aerodynamic diameter equal to or less than 10 µm (PM10)
and 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3)), as well as four major PM10 chemical species. Our
integrated multi-air-pollutant exposure model framework is capable of explaining 91 %–97 % of the variability
of measured gaseous air pollutant concentration, with the leave-one-out cross-validation R2 values ranging from
0.73 to 0.93. Using the model framework, the spatial distribution of the concentration of various air pollutants at
a spatial resolution of 500 m was generated. The LUR model-derived spatial distribution maps revealed weak-
to-moderate spatial correlations between the PM10 chemical species and the criteria of air pollutants, which may
help to distinguish their independent chronic health effects. In addition, further improvements in the develop-
ment of air pollution exposure models are discussed. This study proposed an integrated model framework for
estimating multi-air-pollutant exposure in high-density and high-rise urban areas, serving an important tool for
multi-air-pollutant exposure assessment in epidemiological studies.
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1 Introduction

Ambient air pollution has been identified as one of the
most important health risk factors, contributing to premature
deaths and disabilities worldwide (Bowe et al., 2018; Burnett
et al., 2018; HEI, 2019; Yim et al., 2019, 2022). In 2017, air
pollution was ranked fifth among all-mortality risk factors
globally, accounting for nearly 5 million premature deaths
(HEI, 2019). Ambient PM2.5 (particles of aerodynamic di-
ameter less than or equal to 2.5 µm) was associated with
2.9 million premature deaths, and ozone (O3) accounted for
approximately 0.5 million premature deaths in 2017 (HEI,
2019). Numerous previous epidemiological studies have doc-
umented good evidence of the positive association between
air pollution exposure and various types of health-effect end-
points, such as stroke, heart diseases, asthma, and lung can-
cer (Crouse et al., 2015; Fan et al., 2018; Renzi et al., 2019;
Wang et al., 2017; Xue et al., 2021). For example, Renzi
et al. (2019) estimated that there were increases of 0.8 %,
0.9 %, and 1.4 % in non-accidental, cardiovascular, and res-
piratory mortality, respectively, for every 1 µg m−3 increase
in annual-average PM10 (particles of aerodynamic diameter
less than or equal to 10 µm) concentration in the Latium re-
gion of Italy during 2006–2012.

Polluted air mass contains a complex mixture of toxic par-
ticles and various gas-phase pollutants. Health effects from
air pollution are consequences from combined exposure to
air pollution mixtures (Coker et al., 2016; Levy et al., 2014;
Stafoggia et al., 2017; J. Wang et al., 2022; Xue et al., 2021;
Yim et al., 2022). For instance, J. Wang et al. (2022) found
that PM10 and O3 dominated the health effects of air pollu-
tion mixtures on obstructive sleep apnea, a common sleep-
related breathing disorder, in a cross-sectional study in Bei-
jing, China. Up until now, most epidemiological studies tar-
geting air pollution and various health endpoints have typi-
cally focused on estimating the adverse health effects associ-
ated with exposure to a single air pollutant (or pollutant cat-
egory) mainly due to the difficulties of conducting a multi-
air-pollutant exposure assessment (Dominici et al., 2010;
Y. Wang et al., 2022). In recent years, the scientific commu-
nity has been moving toward a multi-air-pollutant concept
to quantify the health hazards of air pollution mixtures as a
whole (H. Chen et al., 2020; Dominici et al., 2010; Mauderly
et al., 2010; Vedal and Kaufman, 2011; Xue et al., 2021; Yim
et al., 2022). To achieve this target, we need to work on multi-
air-pollutant exposure assessment to support the correspond-
ing health-related studies (Billionnet et al., 2012; Mauderly
et al., 2010).

In order to assess health effects of air pollution mixture,
an integrated model framework is urgently needed to esti-
mate exposure to multiple air pollutants. However, available
exposure assessment studies have typically focused on one
or several criteria of air pollutants, mainly traffic-related air
pollutants including PM2.5 and NO2 (Cai et al., 2020; Cordi-
oli et al., 2017; Hoek et al., 2008; Jin et al., 2019; Luminati

et al., 2021; Ross et al., 2007; Xu et al., 2019). For exam-
ple, Jin et al. (2019) estimated annual-average exposure to
PM2.5 and NO2 in Lanzhou, China, with R2 values of 0.77
and 0.71, respectively. In addition, Luminati et al. (2021) de-
veloped a NO2 exposure model in Sao Paulo, Brazil, using
the land-use regression (LUR) approach. It should be noted
that chemical species of ambient particles have their signif-
icance in addition to independent toxicity and health risks
(Li et al., 2022; Rappazzo et al., 2021; Requia et al., 2019;
Y. Wang et al., 2022). Apart from the criteria of gaseous air
pollutants, the chemical species of ambient particles should
also be studied (Li et al., 2022; Rappazzo et al., 2021; Re-
quia et al., 2019; Y. Wang et al., 2022). To the best of our
knowledge, none of these previous studies has comprehen-
sively evaluated the spatial heterogeneity among a large set
of air pollutants (e.g., particulates and their chemical species
and gaseous pollutants) (Cai et al., 2020; Hoek et al., 2008;
Li et al., 2021). Thus, it is essential to explore the establish-
ment of an integrated multi-air-pollutant model framework to
support epidemiological studies to isolate the health effects
of multiple air pollutants.

The major objective of this study was to develop an in-
tegrated model framework for multi-air-pollutant exposure
assessments in high-density and high-rise cities. The case of
Hong Kong was illustrated to estimate annual-average expo-
sure to major chemical species of ambient PM10 as well as
ambient PM10, PM2.5, NO2, and O3. Materials and methods,
including the development and application of an integrated
multi-air-pollutant model framework in Hong Kong, are de-
scribed in Sect. 2. Section 3 presents the established multi-
air-pollutant models and the spatial distribution maps of tar-
geted air pollutants derived from the established models. The
discussion and implications are provided in Sect. 4.

2 Materials and methods

We developed an integrated model framework for establish-
ing multi-air-pollutant exposure models with two major mod-
ules of particulate matter (PM module) and gaseous pollu-
tants (GAS module) (Fig. 1). The PM and GAS modules
were separated because the measurement and LUR model-
ing of PM species and gaseous pollutants are largely differ-
ent in terms of measurement techniques, the number of re-
quired measurement sites, selected predictor variables, etc.
The integrated model framework handles the input datasets
required for the PM and GAS modules and develops the LUR
model for each air pollutant independently. The LUR models
and the corresponding spatial distribution maps within each
module can be used to further validate the LUR models and
the corresponding spatial distribution maps under the same
or another module (Li et al., 2021). For instance, in high-
density cities, the spatial distribution of O3 typically shows
a generally opposite spatial variability compared with traffic-
related air pollutants, e.g., NOx because of NOx titration. The
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established LUR models of the PM and GAS modules were
used for assessing exposure to different air pollutants in epi-
demiological studies. In the present study, the PM module
includes the LUR models for different sizes of PM and its
chemical components, whereas the GAS module includes the
LUR models for two typical gaseous pollutants of NO2 and
O3. The included air pollutants can vary depending on the
data availability when the proposed integrated model frame-
work is applied for other cities in future studies.

2.1 Study area

Hong Kong (latitude 22◦08′ N to 22◦35′ N, longitude
113◦49′ E to 114◦31′ E) is a mountainous high-density and
high-rise city situated on the southeast coast of the Pearl
River Delta (PRD) region, China (Yim et al., 2009). Hong
Kong has a total land area of about 1100 km2, of which 24 %
is built-up area. It has a population of over 7 million, and the
population density of 6690 people per square kilometer is
among the highest in the world (Li et al., 2018). Hong Kong
is characterized by cool and dry winters with an average tem-
perature of 19 ◦C, and hot and humid summers with after-
noon temperatures often above 31 ◦C and night temperatures
around 26 ◦C (HKO, 2020). Hong Kong is typically influ-
enced by the transboundary air pollution issue, when polluted
air masses are transported from the PRD region and beyond
to the region in winter (Lee et al., 2017; Li et al., 2020; Yim,
2020). The traffic density in Hong Kong is among the high-
est in the world, with 839 882 registered vehicles on 2100 km
of road in 2017 (HKTD, 2020). Therefore, traffic emissions
from different types of vehicles are another important source
of air pollution in Hong Kong (Li et al., 2022).

2.2 Air pollution monitoring data

The Hong Kong air quality monitoring network provides a
suitable demonstration because the locations of air quality
monitoring stations (AQMSs) were chosen with reference
to international guidelines and with practical consideration
for the localized city characteristics (Fig. S1 in the Sup-
plement). The environmental characteristics of the AQMSs
are summarized in Table S1 in the Supplement. The daily
average concentration data of PM10, PM2.5, NO2, and O3,
measured at 16 AQMSs, operated by the Hong Kong Envi-
ronmental Protection Department (HKEPD), were collected
from 1 January to 31 December 2017 (https://cd.epic.epd.
gov.hk/EPICDI/air/station/, last access: September 2023).
These AQMSs are generally diverse and representative, rang-
ing from rural stations under a limited influence of anthro-
pogenic emissions to traffic stations near the major roads
in Hong Kong. PM10 and PM2.5 were measured continu-
ously by automatic monitors, while the Opsis AR 500 sys-
tem and the T-API 400 system were used to measure NO2
and O3 concentration, respectively (HKEPD, 2018). The de-
tails for the list of equipment for measurement of air pol-

lutant concentration as well as the quality control and as-
surance procedures are documented in HKEPD (2018). All
of the air pollutant concentration data had at least 345 daily
values, which represented a relatively complete set of data.
Due to data availability, the 2017 annual-average concentra-
tion of these air pollutants was estimated for development
of the LUR models using collected daily air pollutant con-
centration data. In addition, the annual-average concentra-
tion of four major PM10 chemical species, including total
carbon (TC), nitrate (NO−3 ), sulfate (SO2−

4 ), and cadmium
(Cd), at 10 AQMSs was collected from the air quality re-
ports of the HKEPD (https://www.aqhi.gov.hk/en/download/
air-quality-reportse469.html?showall=&start=1, last access:
September 2023) for development of the LUR models.

2.3 Potential predictor variables

All of the potential predictor variables with their corre-
sponding buffer sizes and data sources are summarized in
Table S2 and Fig. S2. Meteorological variables (i.e., wind
speed, wind direction, relative humidity, and temperature)
were collected from nearby weather stations operated by the
Hong Kong Observatory (https://www.hko.gov.hk/en/index.
html, last access: September 2023). In addition, five cate-
gories of geospatial predictor variables including land use,
road networks with traffic volume information, population
density data, topography, and urban/building morphology
were collected from various databases (Table S2). The Ar-
cGIS software, version 10.6 (ESRI Inc., Redlands, CA,
USA), was used to process these datasets. The land-use
type was classified into 10 main categories and 27 subcat-
egories. The 10 main categories of land use were residen-
tial, commercial, industrial, institutional/open space, trans-
portation, other urban or built-up land, agriculture, wood-
land/shrubland/grassland/wetland, barren land, and water
bodies (https://www.pland.gov.hk/pland_en/info_serv/open_
data/landu/index.html, last access: September 2023). The
traffic volume data for different vehicle types were provided
by the Hong Kong Transport Department (https://data.gov.
hk/en-data/dataset/hk-td-tis_15-road-network-v2, last ac-
cess: September 2023). Seven vehicle types, private cars,
non-franchised buses, light goods vehicles, franchised buses,
medium and heavy goods vehicles, taxis, and public light
buses, were counted. Values of these geospatial variables
with buffer sizes of 50, 100, 300, 500, 700, 1000, 2000, 3000,
4000, and 5000 m around the AQMSs were estimated as the
potential predictor variables using an ArcGIS buffer analysis.
The geolocations (longitude and latitude) were also adopted
because they can reveal a north–south or west–east variabil-
ity gradient of air pollutant concentrations that cannot be cap-
tured by the selected predictor variables in the model (Huang
et al., 2017). The geographical coordinate information for
each station was obtained from the HKEPD.
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Figure 1. An integrated model framework for multi-air-pollutant exposure assessments in high-density cities. It mainly includes two compo-
nents of particulate matter (PM module) and gaseous pollutants (GAS module). PM module consists of the measurement and LUR modeling
of PM2.5, PM10, and PM10 major chemical components (e.g., ions, metals, and carbon), while GAS module involves the measurement and
LUR modeling of NO2 and O3.

2.4 Development of multi-air-pollutant exposure models

The LUR approach was based on the principle that air pol-
lutant concentration at a given location depends on the envi-
ronmental features (e.g., land-use types, traffic volume, me-
teorological conditions) of the surrounding area (Text S1 in
the Supplement) (Li et al., 2022; Lu et al., 2020; Meng et al.,
2015; Naughton et al., 2018; Wu et al., 2017). The supervised
forward linear regression method was utilized to conduct the
LUR modeling of multiple air pollutants (Eeftens et al., 2012,
2016; Huang et al., 2017; Jin et al., 2019; Liu et al., 2016;
Saha et al., 2020). The method computed the direction of ef-
fect for a predictor variable to reflect the effect of the predic-
tor variable on air pollutant concentration. It should be noted
that the direction of effect can be positive or negative. Hence,
the method first judged the direction of effect for each type
of predictor variable based on the currently known relation-
ship between the predictor variable and the corresponding air
pollutant. As a secondary pollutant, O3 is involved in many
complex chemical reactions, and the expected directions of
its effects were not as clear as that of other air pollutants (Li
et al., 2022; Wolf et al., 2017), and O3 has to be thus con-
sidered carefully in the process. Using the full dataset, we
ranked all the predictor variables based on their adjusted ex-
plained variance (adjusted R2) with air pollutant concentra-
tion. The predictor variable with the highest adjusted R2 was
selected to be included in the model when the direction of
effect was consistent with our judgment. We then evaluated
which of the remaining predictor variables further improved
the adjusted R2 of the LUR model and selected the one giv-
ing the largest gain in the adjusted R2 of the model and with
the expected direction of effect. Subsequent predictor vari-
ables were not selected when they changed the direction of
effect of one of the previously included predictor variables.
This process proceeded until there were no more predictor
variables with the expected direction of effect, which added
at least 1 % to the adjusted R2 of the previous LUR model.
Finally, the predictor variables with a P value above 0.10

were removed from the LUR model. If the variance inflation
factor (VIF), which measured the severity of multicollinear-
ity in the regression analysis, was higher than 5.0, the pre-
dictor variable with the highest VIF was removed, and the
model was then re-established (Gulliver et al., 2018; Hsu et
al., 2018; Jones et al., 2020; Ma et al., 2019; Zhang et al.,
2015). Due to this procedure, the included predictor variables
may obscure the potential influence of others.

The spatial autocorrelation (Moran’s I ) tool measured spa-
tial autocorrelation using both feature locations and feature
values simultaneously. Meanwhile, z score and P values
were calculated to evaluate the significance of Moran’s I

value. z score values are standard deviations, whereas the
Moran’s I index is bounded by −1.0 and 1.0. When the z

score or P value indicates statistical significance, a positive
Moran’s I index value indicates tendency towards cluster-
ing, whereas a negative Moran’s I index value indicates ten-
dency towards dispersion (Cordioli et al., 2017; Luminati et
al., 2021). Moran’s I index and the corresponding z score and
P value on concentration residuals of the final LUR mod-
els were quantified using the ArcGIS software to evaluate
their spatial autocorrelation. Leave-one-out cross-validation
(LOOCV) was used to evaluate the predictive ability of the
established LUR model to a new dataset (Ma et al., 2019;
Wu et al., 2017). In brief, each station was withheld from
the model sequentially, whereas the remaining stations were
used to establish the model. The concentration at the with-
held station was estimated using the established model in
each iteration. The procedure was repeated until all the sta-
tions have been predicted once (Eeftens et al., 2016; Ji et
al., 2019; Wolf et al., 2017). We validated the model per-
formance using training and LOOCV R2 values calculated
based on the linear regression between measured and pre-
dicted concentration of the omitted stations. The statistical
analysis was performed using the R statistical software, ver-
sion 3.5.2 for Windows (R Foundation for Statistical Com-
puting, Vienna, Austria).
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2.5 Spatial mapping of studied air pollutants

The spatial distribution maps of predicted annual-average
concentration of PM10 and its chemical species, PM2.5, NO2,
and O3 were generated by our final LUR models, following
the typical procedures of previous studies (Cai et al., 2020;
Huang et al., 2017; Xu et al., 2019). A spatial resolution of
500 m was adopted here due to the spatial resolution of most
predictor variables being several hundred meters. The study
area of Hong Kong was divided into grids at the spatial res-
olution of 500 m, and the air pollutant concentration at the
centroid of each grid was estimated. Finally, the pollution
distribution maps were generated using the predicted con-
centration values (Henderson et al., 2007). The LUR model
estimated concentration of the studied air pollutants in the
18 districts of Hong Kong, which was summarized and com-
pared.

3 Results

3.1 Air pollutant measurements

The measurements at the AQMSs show that the annual-
average PM10 and PM2.5 concentration varied over 30.9–
45.7 and 18.4–31.2 µg m−3, respectively (Fig. S3), which
was higher than the air quality guideline (AQG) for PM10
(15.0 µg m−3) and PM2.5 (5.0 µg m−3) proposed by the
World Health Organization (WHO) (WHO, 2021). PM10 TC,
PM10 NO−3 , PM10 SO2−

4 , and PM10 Cd had annual-average
concentration of 4511–9019, 2920–4642, 6713–7525, and
0.58–0.72 ng m−3, respectively. The annual-average NO2
concentration was from 9.70 to 197.0 µg m−3, which were
generally higher than the WHO NO2 AQG of 10 µg m−3

(WHO, 2021). The annual-average O3 concentration ranged
from 17.8 to 73.9 µg m−3 in Hong Kong (Fig. S3).

3.2 Multi-air-pollutant exposure models

The established annual-average LUR models for ambient
PM10, PM2.5, NO2, O3, and four major PM10 chemical
species are shown in Table S3. The training R2 values ranged
between 0.91 and 0.97, whereas the LOOCV R2 values
ranged between 0.73 and 0.93. The results proved that the es-
tablished LUR models overall achieved relatively good pre-
dictive accuracy (Table S3, Figs. 2, S4, S5, S6, and S7). The
prediction error fractions of the LUR models ranged from
−5.9 % to 7.0 %, −6.1 % to 14 %, −4.5 % to 7.3 %, −1.1 %
to 1.2 %, −2.3 % to 3.8 %, −8.1 % to 8.6 %, −24 % to 25 %,
and −13 % to 27 %, respectively, for PM10, PM10 TC, PM10
NO−3 , PM10 SO2−

4 , PM10 Cd, PM2.5, NO2, and O3 (Fig. 2).
There were two to five predictor variables included in the fi-
nal models. The number of predictor variables was typically
within the range of the number of predictor variables in pre-
vious studies (Cai et al., 2020; Henderson et al., 2007; Li et
al., 2022; Meng et al., 2016; Miri et al., 2019). The selec-
tion of these predictor variables was driven by the emission

Figure 2. The distribution of prediction error fractions (%) of the
established LUR models. The prediction error fraction is defined as
[(predicted concentration− observed concentration)/observed con-
centration].

sources of the air pollutants, the dispersion and transport con-
ditions, and the influence of transboundary air pollution in
Hong Kong. The selected predictor variables included traffic
emission-related variables, different land-use types (e.g., the
industrial land), population density, urban morphology (e.g.,
the canyon height), and geographical locations (Table S3).

Five predictor variables were entered into the PM10 LUR
model, including the number of private cars with a buffer size
of 100 m, the area of buildings within a 100 m buffer, the area
of residential land with a buffer size of 100 m, the area of in-
dustrial land within a 3000 m buffer, and the area of urban
green space with a buffer size of 4000 m. Among these pre-
dictor variables, only the urban green space had a negative
direction of effect. The R2 and LOOCV R2 values were 0.92
and 0.77, respectively, representing remarkable PM10 con-
centration prediction (Table S3). Residual spatial autocorre-
lation analysis of the PM10 LUR model is shown in Fig. S8.
The z score was 0.399, which means that the model residuals
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were not spatially correlated, confirming that the PM10 LUR
model was reasonably established.

For the LUR models of PM10 chemical species, two to
three predictor variables were selected finally. As expected,
the traffic-related predictor variables and urban/building
morphology-related parameters dominated the variability of
the four chemical species. This was because the PM10 chem-
ical species in the city were mainly influenced by vehicu-
lar emissions and urban form patterns (Hsu et al., 2018; Li
et al., 2022). For example, the Cd LUR model included the
area of transportation land with a buffer size of 2000 m, lat-
itude, and the average canyon height within a 300 m buffer.
The R2 ranged from 0.92 to 0.97, whereas the LOOCV R2

values ranged between 0.73 and 0.92, suggesting relatively
high predictive accuracy (Table S3). The assumption of spa-
tial error independence was confirmed with z score values
of −0.249, 0.453, −0.504, and −0.843 for PM10 TC, PM10
NO−3 , PM10 SO2−

4 , and PM10 Cd, respectively (Fig. S8).
The PM2.5 LUR model included five predictor variables,

namely the number of light-duty vehicles with a buffer size of
500 m, the area of urban green space within a 4000 m buffer,
the area of residential land with a buffer size of 300 m, the
area of buildings within a 50 m buffer, and the maximum
building height with a buffer size of 100 m. Four of these
variables were the same as those in the PM10 LUR model,
even though the buffer sizes varied. The R2, LOOCV R2,
and z score values all confirmed that the PM2.5 LUR model
was reasonably established with acceptable statistical perfor-
mance (Table S3 and Fig. S8).

The predictor variables included in the NO2 LUR model
were the number of total vehicles within a 500 m buffer, the
number of people with a buffer size of 100 m, and the area of
industrial land within a 1000 m buffer. These predictor vari-
ables all had a positive effect on NO2 concentration, as evi-
denced by the positive regression slope values. The R2 and
LOOCV R2 values were 0.96 and 0.93, respectively, indicat-
ing the relatively good prediction performance of the model
(Table S3). The model residuals were spatially independent,
with a z score value of 0.935 (Fig. S8).

The predictor variables included in the O3 LUR model
were the number of total vehicles with a buffer size of 700 m,
longitude, and the area of urban green space within a 300 m
buffer. The predictor variable of vehicles had a negative ef-
fect on O3 concentration. This negative effect reflected the
titration of O3 in urban areas with high quantities of NO and
NO2 emitted by traffic (Han et al., 2023). Longitude had a
positive effect on O3 concentration, suggesting the influence
of regional transported air masses. A LUR study in Nanjing,
China also included longitude in the final O3 model (Huang
et al., 2017). Urban green space had a positive effect on O3
concentration, which was probably due to biogenic volatile
organic compounds as the precursors of ozone formation (Ma
et al., 2021; Ren et al., 2017). The R2 and LOOCV R2 val-
ues were 0.92 and 0.87, respectively, showing the relatively
high predictive accuracy of the model (Table S3). The z score

(1.186) of the residual spatial autocorrelation analysis indi-
cates that the O3 LUR model was well explained by the in-
cluded predictor variables, with spatially independent model
residuals (Fig. S8).

3.3 Spatial distribution maps

The spatial distribution maps of multiple air pollutants de-
rived from established LUR models are shown in Fig. 3,
whereas Table S4 shows the statistical description of the es-
timated air pollutant concentration. The PM10, PM2.5, and
NO2 LUR models included several predictor variables rep-
resenting vehicular emissions, e.g., the number of medium
and heavy-duty vehicles with a buffer size of 500 m (Ta-
ble S3). Thus, the concentration of PM10, PM2.5, and NO2
was largely affected by the traffic emissions in Hong Kong,
with higher concentration estimated along the road network.
In addition, the relatively higher concentration of PM10,
PM2.5, and NO2 was estimated in areas with high popula-
tion density (e.g., the northern part of Hong Kong Island,
the Kowloon City district, and the Yau Tsim Mong dis-
trict). PM10 and PM2.5 had moderate positive corrections
with NO2, with Pearson correlation coefficient (PCC) val-
ues of 0.570 and 0.696, respectively (Table 1). Consistent
with Li et al. (2022), the LUR model-derived concentration
of PM10 TC, PM10 NO−3 , and PM10 SO2−

4 was relatively
higher at developed urban areas and along major roads. In
contrast to this, the spatial distribution of PM10 Cd showed
a north–south gradient, with relatively higher concentration
in the northern part and relatively lower concentration in the
southern part. These PM10 chemical species only had weak-
to-moderate positive correlations with PM10 mass, with PCC
values ranging from 0.189 to 0.589 (Table 1). For O3, there
was an increasing trend from west to east, suggesting the in-
fluence of transboundary pollution on the spatial distribution
pattern. In addition, O3 concentration was largely affected by
traffic emissions, with lower concentration estimated along
major roads compared with other areas. Due to nitric oxide
titration (Han et al., 2023), O3 concentration was generally
negatively correlated by various degree with PM10, PM10
chemical species, PM2.5, and NO2 (Table 1).

The spatial patterns of the studied air pollutants varied
largely among the districts (Table S5 and Fig. S9). As shown
by the three example districts in Fig. 4, the Yuen Long district
had relatively high concentration of PM10, PM10 species, and
PM2.5, and moderate concentration of NO2 and O3. For the
Yau Tsim Mong district, the PM10, PM10 species, PM2.5, and
NO2 concentration was relatively high, whereas the O3 con-
centration was relatively low. In contrast to this, the Sai Kung
district had quite high concentration of O3 but relatively low
concentration of other studied air pollutants.
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Table 1. Pearson correlation coefficients (PCCs) among the LUR estimated concentration of ambient PM10, PM10 TC, PM10 NO−3 , PM10

SO2−
4 , PM10 Cd, PM2.5, NO2, and O3 in Hong Kong.

PM10 PM10 TC PM10 NO−3 PM10 SO2−
4 PM10 Cd PM2.5 NO2 O3

PM10 1 0.397∗ 0.589∗ 0.189∗ 0.430∗ 0.781∗ 0.570∗ −0.354∗

PM10 TC 1 0.747∗ 0.418∗ 0.432∗ 0.598∗ 0.785∗ −0.677∗

PM10 NO−3 1 0.495∗ 0.479∗ 0.729∗ 0.921∗ −0.654∗

PM10 SO2−
4 1 0.192∗ 0.256∗ 0.488∗ −0.383∗

PM10 Cd 1 0.368∗ 0.522∗ −0.174∗

PM2.5 1 0.696∗ −0.500∗

NO2 1 −0.678∗

O3 1

∗ Correlation is significant at the 0.01 level (two tailed).

Figure 3. LUR model-derived spatial distribution maps of annual-
average ambient PM10, PM10 TC, PM10 NO−3 , PM10 SO2−

4 , PM10
Cd, PM2.5, NO2, and O3 concentration in Hong Kong. The colored
circles represent observations at AQMSs.

4 Discussion and implications

High-density cities usually have spare air quality monitor-
ing stations. This discrepancy clearly highlighted the need
to develop LUR models for the spatial mapping of air pollu-
tion in high-density cities. This work developed an integrated
model framework for assessing multi-air-pollutant exposure
in a high-density city based on the air quality data collected at
the sparse monitoring stations. Following the proposed inte-
grated model framework, we established multi-air-pollutant
exposure models for four major PM10 chemical species as
well as four criteria of gaseous air pollutants in Hong Kong
using the LUR model approach (Table S3). Similar to other
LUR model studies, one limitation of this study is typically
the limited number of monitoring stations. It should be noted
that the adequacy of monitoring should not be determined
by number of stations alone. This study performed detailed
evaluations to examine the adequacy of number of stations.
In the GAS module, the established NO2 and O3 exposure
models had R2 values of 0.96 and 0.92, respectively, which
were similar with previous studies. In the PM module, our
PM10 and PM2.5 exposure models achieved remarkable pre-
dictive accuracy, comparable with or higher than those of tra-
ditional LUR studies (Tables 2 and S3; Text S2). Following
our previous study, Li et al. (2021), in the PM module, we
established LUR exposure models of PM10 TC, PM10 NO−3 ,
PM10 SO2−

4 , and PM10 Cd, with model R2 values higher
than 0.92 (Table S3). The detailed evaluation results prove
that our models had promising performance and are capable
of reflecting the air quality characteristics of the city. There-
fore, our models are considered sufficient for the scope of
this study. Certainty, it is strongly recommended to carry out
a further study using different modeling methods (e.g., ma-
chine learning) when more data are collected from a larger
number of monitoring stations and at a finer temporal resolu-
tion.

This research work aimed to contribute to the research
area of exposure assessment through providing new oppor-
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Figure 4. The average LUR estimated ambient PM10, PM10 TC, PM10 NO−3 , PM10 SO2−
4 , PM10 Cd, PM2.5, NO2, and O3 concentration in

three representative districts in Hong Kong. (a) The distribution of Yuen Long, Yau Tsim Mong, and Sai Kung districts in Hong Kong with
the population density shown. (b) Yuen Long (a district more influenced by the transboundary pollution). (c) Yau Tsim Mong (a high-density
district more influenced by vehicular emissions). (d) Sai Kung (a rural district).

Table 2. A comparison of this study with previous LUR studies. Example LUR studies focusing on at least one of the criteria of air pollutants
published in recent years are included.

Study area PM10 PM10 TC PM10 NO−3 PM10 SO2−
4 PM10 Cd PM2.5 NO2 O3 References

Hong Kong, China 0.92 0.94 0.93 0.97 0.92 0.91 0.96 0.92 This work
Beijing, China 0.86 Xu et al. (2019)
Tianjin, China 0.98 Wang et al. (2020)
Nanjing, China 0.75 0.87 0.65 Huang et al. (2017)
Lanzhou, China 0.77 0.71 Jin et al. (2019)
Hong Kong, China 0.59 0.46 Lee et al. (2017)
Southern California, USA 0.47 Jones et al. (2020)
Sabzevar, Iran 0.75 0.71 Miri et al. (2019)
Auckland, New Zealand 0.66 Ma et al. (2019)
Mexico City, Mexico 0.73 0.83 0.81 Son et al. (2018)
Augsburg, Germany 0.91 0.84 0.95 0.92 Wolf et al. (2017)
Manchester, UK 0.95 Mölter and Lindley (2021)
Sydney, Australia 0.84 Cowie et al. (2019)

tunities to distinguish the independent associations between
combined exposure to multiple air pollutants (i.e., PM10,
PM10 TC, PM10 NO−3 , PM10 SO2−

4 , PM10 Cd, PM2.5, NO2,
and O3) and chronic health effects. For example, the find-
ing of weak-to-moderate spatial correlation between PM10
and its chemical species may enable epidemiological stud-
ies to separate the chronic health effects of PM10 chemical
species from the total mass. In addition, the spatial variation
in air pollution, together with the geospatial locations of the
subjects, can be used for hotspot identification in air qual-
ity management and exposure assessment in epidemiologi-

cal studies (Crouse et al., 2015; Jones et al., 2020; Li et al.,
2021). The major explanation for the spatial differences in
concentration of multiple air pollutants was the differences
in their emission sources (Cai et al., 2020; Jin et al., 2019;
Levy et al., 2014; Wu et al., 2017). For instance, PM2.5 and
NO2 are more linked to traffic and industrial emissions in
developed urban areas, while relatively high O3 concentra-
tion in rural areas is formed through complex chemical reac-
tions between biogenic volatile organic compounds and ni-
trogen oxides (Table S3 and Fig. 3). The results highlight
the importance of the synergistic control of multiple air pol-
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lutants and emission sources (Saha et al., 2020; Yim et al.,
2019). For instance, the Hong Kong government has made
tremendous efforts to reduce vehicular emissions over the
past 2 decades that have successfully reduced traffic-related
air pollutants like PM2.5 and NO2. However, as revealed by
the present study and previous studies (HKEPD, 2022; Zeng
et al., 2022), O3 pollution has become an emerging issue,
especially in rural areas of Hong Kong. The relationship be-
tween the control of vehicular emissions and O3 pollution
is complex (Song et al., 2023; Zeng et al., 2022). In Hong
Kong, NOx reductions from the control of vehicular emis-
sions may lead to an increase in the levels of oxidants and
then cause net O3 production. It is suggested that the con-
trol of volatile organic compounds should be implemented
to better mitigate O3 pollution in Hong Kong (Zeng et al.,
2022). This highlights the importance of simulating multiple
air pollutants together during exposure assessments. In ad-
dition, more research should be conducted to understand the
complex and varying interaction of emission sources, pol-
lutant sensitivity to its precursors, and air quality in a city
in order to formulate more effective and specific air quality
management policies.

The development and applicability of exposure models de-
pend on the focus of the air pollution epidemiological stud-
ies, which focus on long-term, short-term, or even acute ex-
posure. Annual and long-term LUR exposure models have
been widely adopted to provide long-term exposure esti-
mates for health studies (Chen et al., 2021; Wang et al.,
2020). Meanwhile, considering the requirement for high
spatial-resolution and short-term acute exposure assessment,
it is recommended that more studies should be conducted
to establish high spatiotemporal-resolution exposure mod-
els when detailed measurement data are available. Indeed,
several recent studies have explored the possibility of es-
timating high spatiotemporal-resolution air pollution expo-
sure models using the spatiotemporal statistical modeling ap-
proach (Lu et al., 2020; Masiol et al., 2018). In addition,
in future studies, a multi-dimensional and multi-air-pollutant
exposure modeling approach is recommended, for instance,
by combining spatiotemporal statistical modeling with atmo-
spheric chemistry knowledge and with the particulate chemi-
cal species and their toxicity and volatile organic compounds
being modeled (Brokamp et al., 2017; J. Chen et al., 2020; Lu
et al., 2020). In addition, the vertical distribution of air pollu-
tants should also be measured and modeled to be combined
with spatiotemporal exposure models to reveal the vertical
variability of population exposure to air pollution (Eeftens et
al., 2019; Ho et al., 2015; Jin et al., 2019). Moreover, most
previous air pollution exposure assessment studies and the
current work have focused on ambient air quality, but it is
strongly recommended that more research efforts be made
toward developing prediction models of air pollutant concen-
tration in indoor environments (e.g., residential households)
for more accurate exposure estimates (Tang et al., 2018).

5 Conclusions

In the present study, we developed an integrated model
framework for accurate multi-air-pollutant exposure assess-
ments in high-density and high-rise cities. Following the
proposed integrated model framework, with the air pollu-
tant concentration data from a routine monitoring network,
annual-average multi-air-pollutant exposure models for am-
bient PM10, major PM10 chemical species, PM2.5, NO2, and
O3 were developed with relatively high predictive perfor-
mance in Hong Kong, a typical high-rise and high-density
Asian city. The estimated air pollution maps (500× 500 m
resolution) of these air pollutant mixtures could be used to
support a unique combined exposure assessment in health
studies.

We anticipate that the proposed integrated model frame-
work can be easily extended to establish multi-air-pollutant
exposure models in other cities. Apart from the LUR ap-
proach, other spatiotemporal statistical modeling methods,
such as various machine learning algorithms, should be ap-
plied when a larger dataset is available. Particularly, the de-
velopment of high spatiotemporal exposure models should
be explored when a high temporal-resolution air pollutant
measurement dataset is collected. Furthermore, the associ-
ations of combined exposure to multiple air pollutants with
health endpoints should be analyzed to provide new insights
into the health-oriented air pollution control.
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